1
|
Wolf K, Kosinski J, Gibson TJ, Wesch N, Dötsch V, Genuardi M, Cordisco EL, Zeuzem S, Brieger A, Plotz G. A conserved motif in the disordered linker of human MLH1 is vital for DNA mismatch repair and its function is diminished by a cancer family mutation. Nucleic Acids Res 2023; 51:6307-6320. [PMID: 37224528 PMCID: PMC10325900 DOI: 10.1093/nar/gkad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
DNA mismatch repair (MMR) is essential for correction of DNA replication errors. Germline mutations of the human MMR gene MLH1 are the major cause of Lynch syndrome, a heritable cancer predisposition. In the MLH1 protein, a non-conserved, intrinsically disordered region connects two conserved, catalytically active structured domains of MLH1. This region has as yet been regarded as a flexible spacer, and missense alterations in this region have been considered non-pathogenic. However, we have identified and investigated a small motif (ConMot) in this linker which is conserved in eukaryotes. Deletion of the ConMot or scrambling of the motif abolished mismatch repair activity. A mutation from a cancer family within the motif (p.Arg385Pro) also inactivated MMR, suggesting that ConMot alterations can be causative for Lynch syndrome. Intriguingly, the mismatch repair defect of the ConMot variants could be restored by addition of a ConMot peptide containing the deleted sequence. This is the first instance of a DNA mismatch repair defect conferred by a mutation that can be overcome by addition of a small molecule. Based on the experimental data and AlphaFold2 predictions, we suggest that the ConMot may bind close to the C-terminal MLH1-PMS2 endonuclease and modulate its activation during the MMR process.
Collapse
Affiliation(s)
- Karla Wolf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Centre for Structural Systems Biology (CSSB), Hamburg, 22607, Germany
| | - Toby J Gibson
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome00168, Italy
| | - Emanuela Lucci Cordisco
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Angela Brieger
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Guido Plotz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| |
Collapse
|
2
|
MutS recognition of mismatches within primed DNA replication intermediates. DNA Repair (Amst) 2022; 119:103392. [PMID: 36095926 DOI: 10.1016/j.dnarep.2022.103392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
Abstract
MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.
Collapse
|
3
|
Monakhova MV, Kubareva EA, Kolesnikov KK, Anashkin VA, Kosaretskiy EM, Zvereva MI, Romanova EA, Friedhoff P, Oretskaya TS, Zatsepin TS. Reactive Acrylamide-Modified DNA Traps for Accurate Cross-Linking with Cysteine Residues in DNA–Protein Complexes Using Mismatch Repair Protein MutS as a Model. Molecules 2022; 27:molecules27082438. [PMID: 35458636 PMCID: PMC9031232 DOI: 10.3390/molecules27082438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA–protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2′-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA–protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA–protein interactions because of high selectivity of cysteine trapping.
Collapse
Affiliation(s)
- Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
- Correspondence: ; Tel.: +7-(903)-593-8905
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Kirill K. Kolesnikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| | - Viktor A. Anashkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Egor M. Kosaretskiy
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia;
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| | - Elena A. Romanova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany;
| | - Tatiana S. Oretskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Timofei S. Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| |
Collapse
|
4
|
On YY, Welch M. The methylation-independent mismatch repair machinery in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34882086 PMCID: PMC8744996 DOI: 10.1099/mic.0.001120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last 70 years, we've all gotten used to an Escherichia coli-centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from E. coli to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, Pseudomonas aeruginosa (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in E. coli, and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.
Collapse
Affiliation(s)
- Yue Yuan On
- Department of Biochemistry, Hopkins Building, Tennis Court Road, Downing Site, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, Hopkins Building, Tennis Court Road, Downing Site, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
5
|
Abstract
Mismatched base pairs alter the flexibility and intrinsic curvature of DNA. The role of such DNA features is not fully understood in the mismatch repair pathway. MutS/DNA complexes exhibit DNA bending, PHE intercalation, and changes of base-pair parameters near the mismatch. Recently, we have shown that base-pair opening in the absence of MutS can discriminate mismatches from canonical base pairs better than DNA bending. However, DNA bending in the absence of MutS was found to be rather challenging to describe correctly. Here, we present a computational study on the DNA bending of canonical and G/T mismatched DNAs. Five types of geometric parameters covering template-based bending toward the experimental DNA structure, global, and local geometry parameters were employed in biased molecular dynamics in the absence of MutS. None of these parameters showed higher discrimination than the base-pair opening. Only roll could induce a sharply localized bending of DNA as observed in the experimental MutS/DNA structure. Further, we demonstrated that the intercalation of benzene mimicking PHE decreases the energetic cost of DNA bending without any effect on mismatch discrimination.
Collapse
Affiliation(s)
- Tomáš Bouchal
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Perry SA, Kubareva EA, Monakhova MV, Trikin RM, Kosaretskiy EM, Romanova EA, Metelev VG, Friedhoff P, Oretskaya TS. DNA with a 2-Pyridyldithio Group at the C2' Atom: A Promising Tool for the Crosslinking of the MutS Protein Preserving Its Functional Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bouchal T, Durník I, Illík V, Réblová K, Kulhánek P. Importance of base-pair opening for mismatch recognition. Nucleic Acids Res 2020; 48:11322-11334. [PMID: 33080020 PMCID: PMC7672436 DOI: 10.1093/nar/gkaa896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.
Collapse
Affiliation(s)
- Tomáš Bouchal
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Viktor Illík
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Inagawa T, Wennink T, Lebbink JHG, Keijzers G, Florea BI, Verkaik NS, van Gent DC. C-Terminal Extensions of Ku70 and Ku80 Differentially Influence DNA End Binding Properties. Int J Mol Sci 2020; 21:ijms21186725. [PMID: 32937838 PMCID: PMC7555691 DOI: 10.3390/ijms21186725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance energy transfer (FRET) of the ECFP-Ku70/EYFP-Ku80 heterodimer in soluble and DNA end bound states. We confirmed that the relative binding efficiencies of various DNA substrates (blunt, 3 nucleotide 5′ extension, and DNA hairpin) measured in the FRET assay reflected affinities obtained from direct measurements using surface plasmon resonance. The FRET assay was subsequently used to investigate Ku70/80 behavior in the context of a DNA-dependent kinase (DNA-PK) holocomplex. As expected, this complex was much more stable than Ku70/80 alone, and its stability was influenced by DNA-PK phosphorylation status. Interestingly, the Ku80 C-terminal extension contributed to DNA-PK complex stability but was not absolutely required for its formation. The Ku70 C-terminal SAP domain, on the other hand, was required for the stable association of Ku70/80 to DNA ends, but this effect was abrogated in DNA-PK holocomplexes. We conclude that FRET measurements can be used to determine Ku70/80 binding kinetics. The ability to do this in complex mixtures makes this assay particularly useful to study larger NHEJ protein complexes on DNA ends.
Collapse
Affiliation(s)
- Takabumi Inagawa
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Thomas Wennink
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Joyce H. G. Lebbink
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
- Department of Radiation Oncology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Guido Keijzers
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Bogdan I. Florea
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
- Correspondence: ; Tel.: +31-10-7043932
| |
Collapse
|
9
|
Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, Strick TR, Lebbink JHG. The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res 2020; 47:11667-11680. [PMID: 31598722 PMCID: PMC6902014 DOI: 10.1093/nar/gkz834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.
Collapse
Affiliation(s)
| | - Katerina Nitsenko
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Charlie Laffeber
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Camille Duboc
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Enes Sahin
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Audrey Quessada-Vial
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | - Titia K Sixma
- Oncode Institute, the Netherlands.,Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Terence R Strick
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Superieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.,Programme "Equipe Labellisée", Ligue Nationale contre le Cancer
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Friedhoff P, Manelyte L, Giron-Monzon L, Winkler I, Groothuizen FS, Sixma TK. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair. Methods Enzymol 2017; 592:77-101. [PMID: 28668131 DOI: 10.1016/bs.mie.2017.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany.
| | - Laura Manelyte
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Luis Giron-Monzon
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ines Winkler
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | | - Titia K Sixma
- Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Ishida H, Matsumoto A. Mechanism for verification of mismatched and homoduplex DNAs by nucleotides-bound MutS analyzed by molecular dynamics simulations. Proteins 2016; 84:1287-303. [PMID: 27238299 DOI: 10.1002/prot.25077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022]
Abstract
In order to understand how MutS recognizes mismatched DNA and induces the reaction of DNA repair using ATP, the dynamics of the complexes of MutS (bound to the ADP and ATP nucleotides, or not) and DNA (with mismatched and matched base-pairs) were investigated using molecular dynamics simulations. As for DNA, the structure of the base-pairs of the homoduplex DNA which interacted with the DNA recognition site of MutS was intermittently disturbed, indicating that the homoduplex DNA was unstable. As for MutS, the disordered loops in the ATPase domains, which are considered to be necessary for the induction of DNA repair, were close to (away from) the nucleotide-binding sites in the ATPase domains when the nucleotides were (not) bound to MutS. This indicates that the ATPase domains changed their structural stability upon ATP binding using the disordered loop. Conformational analysis by principal component analysis showed that the nucleotide binding changed modes which have structurally solid ATPase domains and the large bending motion of the DNA from higher to lower frequencies. In the MutS-mismatched DNA complex bound to two nucleotides, the bending motion of the DNA at low frequency modes may play a role in triggering the formation of the sliding clamp for the following DNA-repair reaction step. Moreover, MM-PBSA/GBSA showed that the MutS-homoduplex DNA complex bound to two nucleotides was unstable because of the unfavorable interactions between MutS and DNA. This would trigger the ATP hydrolysis or separation of MutS and DNA to continue searching for mismatch base-pairs. Proteins 2016; 84:1287-1303. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai Kizugawa-Shi, Kyoto, 619-0215, Japan
| | - Atsushi Matsumoto
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai Kizugawa-Shi, Kyoto, 619-0215, Japan
| |
Collapse
|
12
|
Hermans N, Laffeber C, Cristovão M, Artola-Borán M, Mardenborough Y, Ikpa P, Jaddoe A, Winterwerp HHK, Wyman C, Jiricny J, Kanaar R, Friedhoff P, Lebbink JHG. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair. Nucleic Acids Res 2016; 44:6770-86. [PMID: 27174933 PMCID: PMC5001592 DOI: 10.1093/nar/gkw411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.
Collapse
Affiliation(s)
- Nicolaas Hermans
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Michele Cristovão
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Yannicka Mardenborough
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Pauline Ikpa
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Aruna Jaddoe
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
13
|
Hingorani MM. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 2016; 38:24-31. [PMID: 26704427 PMCID: PMC4740199 DOI: 10.1016/j.dnarep.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022]
Abstract
The focus of this article is on the DNA binding and ATPase activities of the mismatch repair (MMR) protein, MutS-our current understanding of how this protein uses ATP to fuel its actions on DNA and initiate repair via interactions with MutL, the next protein in the pathway. Structure-function and kinetic studies have yielded detailed views of the MutS mechanism of action in MMR. How MutS and MutL work together after mismatch recognition to enable strand-specific nicking, which leads to strand excision and synthesis, is less clear and remains an active area of investigation.
Collapse
|
14
|
Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 2015; 38:14-23. [PMID: 26796427 DOI: 10.1016/j.dnarep.2015.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
The machinery of DNA mismatch repair enzymes is highly conserved in evolution. The process is initiated by recognition of a DNA mismatch, and validated by ATP and the presence of a processivity clamp or a methylation mark. Several events in MMR promote conformational changes that lead to progression of the repair process. Here we discuss functional conformational changes in the MMR proteins and we compare the enzymes to paralogs in other systems.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Groothuizen FS, Winkler I, Cristóvão M, Fish A, Winterwerp HHK, Reumer A, Marx AD, Hermans N, Nicholls RA, Murshudov GN, Lebbink JHG, Friedhoff P, Sixma TK. MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. eLife 2015; 4:e06744. [PMID: 26163658 PMCID: PMC4521584 DOI: 10.7554/elife.06744] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch. DOI:http://dx.doi.org/10.7554/eLife.06744.001 The genetic code of DNA is written using four letters: “A”, “C”, “T”, and “G”. Molecules of DNA form a double helix in which the letters in the two opposing strands pair up in a specific manner—“A” pairs with “T”, and “C” pairs with “G”. A cell must replicate its DNA before it divides, and sometimes the wrong DNA letter can get added into the new DNA strand. If left uncorrected, these mistakes accumulate over time and can eventually harm the cell. As a result, cells have evolved several ways to identify these mistakes and correct them, including one known as “mismatch repair”. Mismatch repair occurs via several stages. The process starts when a protein called MutS comes across a site in the DNA where the letters are mismatched (for example, where an “A” is paired with a “C”, instead of a “T”). MutS can recognize such a mismatch, bind it, and then bind to another molecule called ATP. MutS then changes shape and encircles the DNA like a clamp that can slide along the DNA. Only when it forms this “sliding clamp” state can MutS recruit another protein called MutL. This activity in turn triggers a series of further events that ultimately correct the mismatch. However, it remains poorly understood how MutS forms a clamp around DNA and how and why this state recruits MutL in order to start the repair. To visualize this short-lived intermediate, Groothuizen et al. trapped the relevant complex in the presence of DNA containing a mismatch and then used a technique called X-ray crystallography to determine the three-dimensional structure of MutS bound to MutL. The structure reveals that two copies of MutS tilt across each other and open up a channel, which is large enough to accommodate the DNA. In this manner, MutS is able to form a loose ring around the DNA. The changes in the structure and the movement of the DNA to the new channel were confirmed using another technique, commonly referred to as FRET. Groothuizen et al. observed that the movements in the MutS protein also serve to make the interfaces available that can recognize MutL. If these interfaces were disturbed, MutS and MutL were unable to associate with each other, which resulted in a failure to trigger mismatch repair. Further analysis revealed that that MutL binds to DNA only after MutS has recognised the mismatch and formed a clamp around it. This is the first time that the MutS clamp and the MutS/MutL complex have been visualized, and further work is now needed to understand how MutL triggers other events that ultimately repair the mismatched DNA. DOI:http://dx.doi.org/10.7554/eLife.06744.002
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ines Winkler
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Michele Cristóvão
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Alexander Fish
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Annet Reumer
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreas D Marx
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Nicolaas Hermans
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robert A Nicholls
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Garib N Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joyce H G Lebbink
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
16
|
DeRocco VC, Sass LE, Qiu R, Weninger KR, Erie DA. Dynamics of MutS-mismatched DNA complexes are predictive of their repair phenotypes. Biochemistry 2014; 53:2043-52. [PMID: 24588663 PMCID: PMC3985873 DOI: 10.1021/bi401429b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
MutS
recognizes base–base mismatches and base insertions/deletions
(IDLs) in newly replicated DNA. Specific interactions between MutS
and these errors trigger a cascade of protein–protein interactions
that ultimately lead to their repair. The inability to explain why
different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge
of this process. Here, we present single-molecule Förster resonance
energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which
is known to have error specific deficiencies in signaling repair.
We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair
efficiencies ranging from high to low. We identify three dominant
DNA bending states [slightly bent/unbent (U), intermediately
bent (I), and significantly bent (B)] and
find that the kinetics of interconverting among states varies widely
for different complexes. The increased stability of MutS–mismatch/IDL
complexes is associated with stabilization of U and lowering
of the B to U transition barrier. Destabilization
of U is always accompanied by a destabilization of B, supporting the suggestion that B is a “required”
precursor to U. Comparison of MutS and MutS-E41A dynamics
on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates
the changes in base–base hydrogen bonding that are required
to achieve the U state, which has been implicated in
repair signaling. Taken together with repair propensities, our data
suggest that the bending kinetics of MutS–mismatched DNA complexes
may control the entry into functional pathways for downstream signaling
of repair.
Collapse
Affiliation(s)
- Vanessa C DeRocco
- Department of Chemistry and ‡Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
17
|
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HHK, Marinus MG, Lebbink JHG, Svergun DI, Friedhoff P, Sixma TK. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 2013; 41:8166-81. [PMID: 23821665 PMCID: PMC3783165 DOI: 10.1093/nar/gkt582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CancerGenomiCs.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands, European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany, Institute for Biochemistry, Justus Liebig University, Heinrich-Buff Ring 58, D-35392, Giessen, Germany, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands and Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Perevoztchikova SA, Romanova EA, Oretskaya TS, Friedhoff P, Kubareva EA. Modern aspects of the structural and functional organization of the DNA mismatch repair system. Acta Naturae 2013; 5:17-34. [PMID: 24303200 PMCID: PMC3848065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review is focused on the general aspects of the DNA mismatch repair (MMR) process. The key proteins of the DNA mismatch repair system are MutS and MutL. To date, their main structural and functional characteristics have been thoroughly studied. However, different opinions exist about the initial stages of the mismatch repair process with the participation of these proteins. This review aims to summarize the data on the relationship between the two MutS functions, ATPase and DNA-binding, and to systematize various models of coordination between the mismatch site and the strand discrimination site in DNA. To test these models, novel techniques for the trapping of short-living complexes that appear at different MMR stages are to be developed.
Collapse
Affiliation(s)
- S. A. Perevoztchikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| | - E. A. Romanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| | - T. S. Oretskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, Moscow, Russia, 119991
| | - P. Friedhoff
- Institute of Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - E. A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| |
Collapse
|
19
|
Sedletska Y, Culard F, Midoux P, Malinge JM. Interaction studies of muts and mutl with DNA containing the major cisplatin lesion and its mismatched counterpart under equilibrium and nonequilibrium conditions. Biopolymers 2013; 99:636-47. [DOI: 10.1002/bip.22232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/04/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Affiliation(s)
| | - Françoise Culard
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| |
Collapse
|
20
|
Shin M, Lagda AC, Lee JW, Bhat A, Rhee JH, Kim JS, Takeyasu K, Choy HE. Gene silencing by H-NS from distal DNA site. Mol Microbiol 2012; 86:707-19. [PMID: 22924981 DOI: 10.1111/mmi.12012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/29/2022]
Abstract
In the modern concept of gene regulation, 'DNA looping' is the most common underlying mechanism in the interaction between RNA polymerase (RNAP) and transcription factors acting at a distance. This study demonstrates an additional mechanism by which DNA-bound proteins communicate with each other, by analysing the bacterial histone-like nucleoid-structuring protein (H-NS), a general transcriptional silencer. The LEE5 promoter (LEE5p) of enteropathogenic Escherichia coli was used as a model system to investigate the mechanism of H-NS-mediated transcription repression. We found that H-NS represses LEE5p by binding to a cluster of A tracks upstream of -114, followed by spreading to a site at the promoter through the oligomerization of H-NS molecules. At the promoter, the H-NS makes a specific contact with the carboxy terminal domain of the α subunit of RNAP, which prevents the processing of RNAP-promoter complexes into initiation-competent open promoter complexes, thereby regulating LEE5p from distance.
Collapse
Affiliation(s)
- Minsang Shin
- Center for Host Defense against Enteropathogenic Bacteria Infection, Kwangju, 501-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rahman KM, Rosado H, Moreira JB, Feuerbaum EA, Fox KR, Stecher E, Howard PW, Gregson SJ, James CH, de la Fuente M, Waldron DE, Thurston DE, Taylor PW. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates. J Antimicrob Chemother 2012; 67:1683-96. [PMID: 22547662 PMCID: PMC3370821 DOI: 10.1093/jac/dks127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA. Methods DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix. Results Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA. Conclusions PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.
Collapse
|
22
|
Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. EMBO J 2012; 31:2528-40. [PMID: 22505031 DOI: 10.1038/emboj.2012.95] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/21/2012] [Indexed: 12/18/2022] Open
Abstract
MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.
Collapse
|
23
|
Heinze RJ, Sekerina S, Winkler I, Biertümpfel C, Oretskaya TS, Kubareva E, Friedhoff P. Covalently trapping MutS on DNA to study DNA mismatch recognition and signaling. MOLECULAR BIOSYSTEMS 2012; 8:1861-4. [DOI: 10.1039/c2mb25086a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
The functions of MutL in mismatch repair: the power of multitasking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:41-70. [PMID: 22749142 DOI: 10.1016/b978-0-12-387665-2.00003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA mismatch repair enhances genomic stability by correcting errors that have escaped polymerase proofreading. One of the critical steps in DNA mismatch repair is discriminating the new from the parental DNA strand as only the former needs repair. In Escherichia coli, the latent endonuclease MutH carries out this function. However, most prokaryotes and all eukaryotes lack a mutH gene. MutL is a key component of this system that mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal. Hence, it had long been thought that the primary function of MutL was coordinating sequential mismatch repair steps. However, recent studies have revealed that most MutL homologs from organisms lacking MutH encode a conserved metal-binding motif associated with a weak endonuclease activity. As MutL homologs bearing this activity are found only in organisms relying on MutH-independent DNA mismatch repair, this finding unveils yet another crucial function of the MutL protein at the strand discrimination step. In this chapter, we review recent functional and structural work aimed at characterizing the multiple functions of MutL and discuss how the endonuclease activity of MutL is regulated by other repair factors.
Collapse
|
25
|
Law S, Feig M. Base-flipping mechanism in postmismatch recognition by MutS. Biophys J 2011; 101:2223-31. [PMID: 22067162 PMCID: PMC3207177 DOI: 10.1016/j.bpj.2011.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/15/2022] Open
Abstract
DNA mismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokaryotes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molecular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the DNA surrounding a G·T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further examined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of ~2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely leading to sliding-clamp formation.
Collapse
Affiliation(s)
- Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| |
Collapse
|
26
|
Wyman C, Lebbink J, Kanaar R. Mre11-Rad50 complex crystals suggest molecular calisthenics. DNA Repair (Amst) 2011; 10:1066-70. [PMID: 21893433 PMCID: PMC3185151 DOI: 10.1016/j.dnarep.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Recently published crystal structures of different Mre11 and Rad50 complexes show the arrangement of these proteins and imply dramatic ligand-induced rearrangements with important functional consequences.
Collapse
Affiliation(s)
- Claire Wyman
- Department of Radiation Oncology, Department of Genetics and Cancer, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Monti MC, Cohen SX, Fish A, Winterwerp HHK, Barendregt A, Friedhoff P, Perrakis A, Heck AJR, Sixma TK, van den Heuvel RHH, Lebbink JHG. Native mass spectrometry provides direct evidence for DNA mismatch-induced regulation of asymmetric nucleotide binding in mismatch repair protein MutS. Nucleic Acids Res 2011; 39:8052-64. [PMID: 21737427 PMCID: PMC3185415 DOI: 10.1093/nar/gkr498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates.
Collapse
Affiliation(s)
- Maria Chiara Monti
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Serge X. Cohen
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Fish
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Herrie H. K. Winterwerp
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Friedhoff
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anastassis Perrakis
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
- *To whom correspondence should be addressed. Tel: +31 10 7043604; Fax +31 10 7044747;
| | - Titia K. Sixma
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce H. G. Lebbink
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
- *To whom correspondence should be addressed. Tel: +31 10 7043604; Fax +31 10 7044747;
| |
Collapse
|
28
|
Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 2011; 286:17326-37. [PMID: 21454657 DOI: 10.1074/jbc.m110.187641] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.
Collapse
Affiliation(s)
- Ines Winkler
- Institute for Biochemistry, FB 08, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Germann MW, Johnson CN, Spring AM. Recognition of Damaged DNA: Structure and Dynamic Markers. Med Res Rev 2010; 32:659-83. [DOI: 10.1002/med.20226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Markus W. Germann
- Department of Chemistry; Georgia State University; Atlanta Georgia 30302
- Department of Biology and the Neuroscience Institute; Georgia State University; Atlanta Georgia 30302
| | | | | |
Collapse
|
30
|
Sass LE, Lanyi C, Weninger K, Erie DA. Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 2010; 49:3174-90. [PMID: 20180598 DOI: 10.1021/bi901871u] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step in DNA mismatch repair (MMR) is the recognition of DNA mismatches or nucleotide insertions/deletions (IDLs) by MutS and MutS homologues. To investigate the conformational properties of MutS-mismatch complexes, we used single-molecule fluorescence resonance energy transfer (smFRET) to examine the dynamics of MutS-induced DNA bending at a GT mismatch. The FRET measurements reveal that the MutS-GT mismatch recognition complex is highly dynamic, undergoing conformational transitions between many states with different degrees of DNA bending. Due to the complexity of the data, we developed an analysis approach, called FRET TACKLE, in which we combine direct analysis of FRET transitions with examination of kinetic lifetimes to identify all of the conformational states and characterize the kinetics of the binding and conformational equilibria. The data reveal that MutS-GT complexes can reside in six different conformations, which have lifetimes that differ by as much as 20-fold and exhibit rates of interconversion that vary by 2 orders of magnitude. To gain further insight into the dynamic properties of GT-MutS complexes and to bolster the validity of our analysis, we complemented our experimental data with Monte Carlo simulations. Taken together, our results suggest that the dynamics of the MutS-mismatch complex could govern the efficiency of repair of different DNA mismatches. Finally, in addition to revealing these important biological implications of MutS-DNA interactions, this FRET TACKLE method will enable the analysis of the complex dynamics of other biological systems.
Collapse
Affiliation(s)
- Lauryn E Sass
- Department of Chemistry, University of North Carolina, Chapel Hill,North Carolina 27599, USA
| | | | | | | |
Collapse
|
31
|
Lebbink JHG, Fish A, Reumer A, Natrajan G, Winterwerp HHK, Sixma TK. Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS. J Biol Chem 2010; 285:13131-41. [PMID: 20167596 PMCID: PMC2857095 DOI: 10.1074/jbc.m109.066001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The DNA mismatch repair protein MutS acts as a molecular switch. It toggles between ADP and ATP states and is regulated by mismatched DNA. This is analogous to G-protein switches and the regulation of their “on” and “off” states by guanine exchange factors. Although GDP release in monomeric GTPases is accelerated by guanine exchange factor-induced removal of magnesium from the catalytic site, we found that release of ADP from MutS is not influenced by the metal ion in this manner. Rather, ADP release is induced by the binding of mismatched DNA at the opposite end of the protein, a long-range allosteric response resembling the mechanism of activation of heterotrimeric GTPases. Magnesium influences switching in MutS by inducing faster and tighter ATP binding, allowing rapid downstream responses. MutS mutants with decreased affinity for the metal ion are impaired in fast switching and in vivo mismatch repair. Thus, the G-proteins and MutS conceptually employ the same efficient use of the high energy cofactor: slow hydrolysis in the absence of a signal and fast conversion to the active state when required.
Collapse
Affiliation(s)
- Joyce H G Lebbink
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Saccharomyces cerevisiae Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair. Proc Natl Acad Sci U S A 2009; 107:680-5. [PMID: 20080735 DOI: 10.1073/pnas.0908302107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA mismatch repair system (MMR) identifies replication errors and damaged bases in DNA and functions to preserve genomic integrity. MutS performs the task of locating mismatched base pairs, loops and lesions and initiating MMR, and the fundamental question of how this protein targets specific sites in DNA is unresolved. To address this question, we examined the interactions between Saccharomyces cerevisiae Msh2-Msh6, a eukaryotic MutS homolog, and DNA in real time. The reaction kinetics reveal that Msh2-Msh6 binds a variety of sites at similarly fast rates (k (ON) approximately 10(7) M(-1) s(-1)), and its selectivity manifests in differential dissociation rates; e.g., the protein releases a 2-Aminopurine:T base pair approximately 90-fold faster than a G:T mismatch. On releasing the 2-Ap:T site, Msh2-Msh6 is able to move laterally on DNA to locate a nearby G:T site. The long-lived Msh2-Msh6.G:T complex triggers the next step in MMR--formation of an ATP-bound clamp--more effectively than the short-lived Msh2-Msh6.2-Ap:T complex. Mutation of Glu in the conserved Phe-X-Glu DNA binding motif stabilizes Msh2-Msh6(E339A).2-Ap:T complex, and the mutant can signal 2-Ap:T repair as effectively as wild-type Msh2-Msh6 signals G:T repair. These findings suggest a targeting mechanism whereby Msh2-Msh6 scans DNA, interrogating base pairs by transient contacts and pausing at potential target sites, and the longer the pause the greater the likelihood of MMR.
Collapse
|
33
|
Mutations in the conserved glycine and serine of the MutS ABC signature motif affect nucleotide exchange, kinetics of sliding clamp release of mismatch and mismatch repair. Mutat Res 2009; 684:56-65. [PMID: 19954745 DOI: 10.1016/j.mrfmmm.2009.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 12/19/2022]
Abstract
The MutS protein controls genomic stability by coordinating recognition and repair of DNA mismatches with ATP utilization. The nature of this coordination is unclear. This study demonstrates the importance of a highly conserved flexible loop found in Escherichia coli MutS (residues 658-670) in DNA mismatch repair. This loop is speculated to be analogous to the ABC signature motif of drug transporters based on its proximity to the ATP catalytic site in crystal structures. Our studies show that amino acid residues G666 and S668 control MutS functions subsequent to mismatch recognition by MutS, i.e., nucleotide-mediated exchange and ATP-dependent dissociation from mismatch. G666V mutation affects mismatch-provoked ADP-ATP exchange and results in slower dissociation kinetics of MutS from the mismatch while S668A mutation affects stable clamp formation and dissociation kinetics but does not affect nucleotide exchange. Both mutants harbor defects in ATP hydrolysis and cause a significant mutator phenotype in vivo. The mutator effect of S668A is indistinguishable from that of a MutS-deficient background and is similar to that seen with G658A. Neither mutations affect protein stability or cause a dominant mutator effect. Together with our studies on G658, D661 and F670 [1], this study implicates the signature motif as a primary regulator of MutS function and suggests concerted action of the individual amino acid residues within this motif in mediating communication between the Walker and mismatch recognition domains.
Collapse
|
34
|
Mukherjee S, Law SM, Feig M. Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis. Biophys J 2009; 96:1707-20. [PMID: 19254532 DOI: 10.1016/j.bpj.2008.10.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/24/2008] [Indexed: 11/24/2022] Open
Abstract
Postreplication DNA mismatch repair is essential for maintaining the integrity of genomic information in prokaryotes and eukaryotes. The first step in mismatch repair is the recognition of base-base mismatches and insertions/deletions by bacterial MutS or eukaryotic MSH2-MSH6. Crystal structures of both proteins bound to mismatch DNA reveal a similar molecular architecture but provide limited insight into the detailed molecular mechanism of long-range allostery involved in mismatch recognition and repair initiation. This study describes normal-mode calculations of MutS and MSH2-MSH6 with and without DNA. The results reveal similar protein flexibilities and suggest common dynamic and functional characteristics. A strongly correlated motion is present between the lever domain and ATPase domains, which suggests a pathway for long-range allostery from the N-terminal DNA binding domain to the C-terminal ATPase domains, as indicated by experimental studies. A detailed analysis of individual low-frequency modes of both MutS and MSH2-MSH6 shows changes in the DNA-binding domains coupled to the ATPase sites, which are interpreted in the context of experimental data to arrive at a complete molecular-level mismatch recognition cycle. Distinct conformational states are proposed for DNA scanning, mismatch recognition, repair initiation, and sliding along DNA after mismatch recognition. Hypotheses based on the results presented here form the basis for further experimental and computational studies.
Collapse
Affiliation(s)
- Shayantani Mukherjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
35
|
Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA. Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 2008; 283:36646-54. [PMID: 18854319 DOI: 10.1074/jbc.m805712200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Nag N, Rao BJ, Krishnamoorthy G. Altered dynamics of DNA bases adjacent to a mismatch: a cue for mismatch recognition by MutS. J Mol Biol 2007; 374:39-53. [PMID: 17919654 DOI: 10.1016/j.jmb.2007.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The structural deviations as well as the alteration in the dynamics of DNA at mismatch sites are considered to have a crucial role in mismatch recognition followed by its repair utilizing mismatch repair family proteins. To compare the dynamics at a mismatch and a non-mismatch site, we incorporated 2-aminopurine, a fluorescent analogue of adenine next to a G.T mismatch, a C.C mismatch, or an unpaired T, and at several other non-mismatch positions. Rotational diffusion of 2-aminopurine at these locations, monitored by time-resolved fluorescence anisotropy, showed distinct differences in the dynamics. This alteration in the motional dynamics is largely confined to the normally matched base-pairs that are immediately adjacent to a mismatch/ unpaired base and could be used by MutS as a cue for mismatch-specific recognition. Interestingly, the enhanced dynamics associated with base-pairs adjacent to a mismatch are significantly restricted upon MutS binding, perhaps "resetting" the cues for downstream events that follow MutS binding. Recognition of such details of motional dynamics of DNA for the first time in the current study enabled us to propose a model that integrates the details of mismatch recognition by MutS as revealed by the high-resolution crystal structure with that of observed base dynamics, and unveils a minimal composite read-out involving the base mismatch and its adjacent normal base-pairs.
Collapse
Affiliation(s)
- Nabanita Nag
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | |
Collapse
|
39
|
Sedletska Y, Fourrier L, Malinge JM. Modulation of MutS ATP-dependent functional activities by DNA containing a cisplatin compound lesion (base damage and mismatch). J Mol Biol 2007; 369:27-40. [PMID: 17400248 DOI: 10.1016/j.jmb.2007.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/27/2022]
Abstract
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.
Collapse
Affiliation(s)
- Yuliya Sedletska
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
40
|
Lee SD, Surtees JA, Alani E. Saccharomyces cerevisiae MSH2–MSH3 and MSH2–MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition. J Mol Biol 2007; 366:53-66. [PMID: 17157869 PMCID: PMC1805781 DOI: 10.1016/j.jmb.2006.10.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/19/2022]
Abstract
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.
Collapse
Affiliation(s)
| | | | - Eric Alani
- *Corresponding author Dr. Eric Alani, Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY 14853-2703. Phone: 607-254-4811; Fax: 607-255-6249. E-mail:
| |
Collapse
|
41
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Jacobs-Palmer E, Hingorani MM. The effects of nucleotides on MutS-DNA binding kinetics clarify the role of MutS ATPase activity in mismatch repair. J Mol Biol 2006; 366:1087-98. [PMID: 17207499 PMCID: PMC1941710 DOI: 10.1016/j.jmb.2006.11.092] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/24/2006] [Accepted: 11/28/2006] [Indexed: 02/02/2023]
Abstract
MutS protein initiates mismatch repair with recognition of a non-Watson-Crick base-pair or base insertion/deletion site in DNA, and its interactions with DNA are modulated by ATPase activity. Here, we present a kinetic analysis of these interactions, including the effects of ATP binding and hydrolysis, reported directly from the mismatch site by 2-aminopurine fluorescence. When free of nucleotides, the Thermus aquaticus MutS dimer binds a mismatch rapidly (k(ON)=3 x 10(6) M(-1) s(-1)) and forms a stable complex with a half-life of 10 s (k(OFF)=0.07 s(-1)). When one or both nucleotide-binding sites on the MutS*mismatch complex are occupied by ATP, the complex remains fairly stable, with a half-life of 5-7 s (k(OFF)=0.1-0.14 s(-1)), although MutS(ATP) becomes incapable of (re-)binding the mismatch. When one or both nucleotide-binding sites on the MutS dimer are occupied by ADP, the MutS*mismatch complex forms rapidly (k(ON)=7.3 x 10(6) M(-1) s(-1)) and also dissociates rapidly, with a half-life of 0.4 s (k(OFF)=1.7 s(-1)). Integration of these MutS DNA-binding kinetics with previously described ATPase kinetics reveals that: (a) in the absence of a mismatch, MutS in the ADP-bound form engages in highly dynamic interactions with DNA, perhaps probing base-pairs for errors; (b) in the presence of a mismatch, MutS stabilized in the ATP-bound form releases the mismatch slowly, perhaps allowing for onsite interactions with downstream repair proteins; (c) ATP-bound MutS then moves off the mismatch, perhaps as a mobile clamp facilitating repair reactions at distant sites on DNA, until ATP is hydrolyzed (or dissociates) and the protein turns over.
Collapse
Affiliation(s)
| | - Manju M. Hingorani
- *Corresponding Author Contact information: Phone: (860) 685-2284, Fax: (860) 685-2141,
| |
Collapse
|
43
|
Holmes SF, Scarpinato KD, McCulloch SD, Schaaper RM, Kunkel TA. Specialized mismatch repair function of Glu339 in the Phe-X-Glu motif of yeast Msh6. DNA Repair (Amst) 2006; 6:293-303. [PMID: 17141577 PMCID: PMC1839834 DOI: 10.1016/j.dnarep.2006.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 01/23/2023]
Abstract
The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.
Collapse
Affiliation(s)
- Shannon F. Holmes
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | | | - Scott D. McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Corresponding author: Phone: 919-541-2644, Fax: 919-541-7613
| |
Collapse
|
44
|
Manelyte L, Urbanke C, Giron-Monzon L, Friedhoff P. Structural and functional analysis of the MutS C-terminal tetramerization domain. Nucleic Acids Res 2006; 34:5270-9. [PMID: 17012287 PMCID: PMC1636413 DOI: 10.1093/nar/gkl489] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutSCF/D835R is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutSCF/D835R has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR.
Collapse
Affiliation(s)
| | - Claus Urbanke
- Medizinische Hochschule, StrukturanalyseCarl Neuberg Strasse 1, D-30625 Hannover, Germany
| | | | - Peter Friedhoff
- To whom correspondence should be addressed: Tel: +49 641 99 35407; Fax: +49 641 99 35409;
| |
Collapse
|
45
|
Plotz G, Zeuzem S, Raedle J. DNA mismatch repair and Lynch syndrome. J Mol Histol 2006; 37:271-83. [PMID: 16821093 DOI: 10.1007/s10735-006-9038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/06/2006] [Indexed: 01/31/2023]
Abstract
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2-5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Kirrberger Strasse, Gebäude 41, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
46
|
Abstract
The molecular mechanisms of the DNA mismatch repair (MMR) system have been uncovered over the last decade, especially in prokaryotes. The results obtained for prokaryotic MMR proteins have provided a framework for the study of the MMR system in eukaryotic organisms, such as yeast, mouse and human, because the functions of MMR proteins have been conserved during evolution from bacteria to humans. However, mutations in eukaryotic MMR genes result in pleiotropic phenotypes in addition to MMR defects, suggesting that eukaryotic MMR proteins have evolved to gain more diverse and specific roles in multicellular organisms. Here, we summarize recent advances in the understanding of both prokaryotic and eukaryotic MMR systems and describe various new functions of MMR proteins that have been intensively researched during the last few years, including DNA damage surveillance and diversification of antibodies.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Chemistry and Division of Molecular & Life Science, Pohang University of Science and Technology, Korea
| | | | | |
Collapse
|