1
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
2
|
Day M, Tetik B, Parlak M, Almeida-Hernández Y, Räschle M, Kaschani F, Siegert H, Marko A, Sanchez-Garcia E, Kaiser M, Barker IA, Pearl LH, Oliver AW, Boos D. TopBP1 utilises a bipartite GINS binding mode to support genome replication. Nat Commun 2024; 15:1797. [PMID: 38413589 PMCID: PMC10899662 DOI: 10.1038/s41467-024-45946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.
Collapse
Affiliation(s)
- Matthew Day
- School of Biological and Behavioural Sciences, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Bilal Tetik
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Milena Parlak
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Räschle
- Molecular Genetics, Technical University Kaiserslautern, Paul-Ehrlich Straße 24, 67663, Kaiserslautern, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Heike Siegert
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Anika Marko
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Kaiser
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Isabel A Barker
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK.
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Dominik Boos
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany.
| |
Collapse
|
3
|
Kingsley G, Skagia A, Passaretti P, Fernandez-Cuesta C, Reynolds-Winczura A, Koscielniak K, Gambus A. DONSON facilitates Cdc45 and GINS chromatin association and is essential for DNA replication initiation. Nucleic Acids Res 2023; 51:9748-9763. [PMID: 37638758 PMCID: PMC10570026 DOI: 10.1093/nar/gkad694] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.
Collapse
Affiliation(s)
- Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| |
Collapse
|
4
|
Hashimoto Y, Sadano K, Miyata N, Ito H, Tanaka H. Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation. EMBO J 2023; 42:e114131. [PMID: 37458194 PMCID: PMC10476173 DOI: 10.15252/embj.2023114131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kota Sadano
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Nene Miyata
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Haruka Ito
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hirofumi Tanaka
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
5
|
Dephosphorylation of the pre-initiation complex is critical for origin firing. Mol Cell 2023; 83:12-25.e10. [PMID: 36543171 DOI: 10.1016/j.molcel.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/13/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
In eukaryotes, cyclin-dependent kinase (CDK) ensures that the genome is duplicated exactly once by inhibiting helicase loading factors before activating origin firing. CDK activates origin firing by phosphorylating two substrates, Sld2 and Sld3, forming a transient and limiting intermediate-the pre-initiation complex (pre-IC). Here, we show in the budding yeast Saccharomyces cerevisiae that the CDK phosphorylations of Sld3 and Sld2 are rapidly turned over during S phase by the PP2A and PP4 phosphatases. PP2ARts1 targets Sld3 specifically through an Rts1-interaction motif, and this targeted dephosphorylation is important for origin firing genome-wide, for formation of the pre-IC at origins and for ensuring that Sld3 is dephosphorylated in G1 phase. PP2ARts1 promotes replication in vitro, and we show that targeted Sld3 dephosphorylation is critical for viability. Together, these studies demonstrate that phosphatases enforce the correct ordering of replication factor phosphorylation and in addition to kinases are also key drivers of replication initiation.
Collapse
|
6
|
Reusswig KU, Bittmann J, Peritore M, Courtes M, Pardo B, Wierer M, Mann M, Pfander B. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat Commun 2022; 13:7014. [PMID: 36400763 PMCID: PMC9674678 DOI: 10.1038/s41467-022-34379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.
Collapse
Affiliation(s)
- Karl-Uwe Reusswig
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Julia Bittmann
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martina Peritore
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mathilde Courtes
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Benjamin Pardo
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Michael Wierer
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.5254.60000 0001 0674 042XPresent Address: Proteomics Research Infrastructure, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany ,grid.6190.e0000 0000 8580 3777Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
7
|
JENKINSON F, ZEGERMAN P. Roles of phosphatases in eukaryotic DNA replication initiation control. DNA Repair (Amst) 2022; 118:103384. [DOI: 10.1016/j.dnarep.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
|
8
|
Tanaka S, Ogawa S. Dimerization of Firing Factors for Replication Origin Activation in Eukaryotes: A Crucial Process for Simultaneous Assembly of Bidirectional Replication Forks? BIOLOGY 2022; 11:928. [PMID: 35741449 PMCID: PMC9219616 DOI: 10.3390/biology11060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Controlling the activity of the heterohexameric Mcm2-7 replicative helicase is crucial for regulation of replication origin activity in eukaryotes. Because bidirectional replication forks are generated from every replication origin, when origins are licensed for replication in the first step of DNA replication, two inactive Mcm2-7 heterohexiameric complexes are loaded around double stranded DNA as a head-to-head double hexamer. The helicases are subsequently activated via a 'firing' reaction, in which the Mcm2-7 double hexamer is converted into two active helicase units, the CMG complex, by firing factors. Dimerization of firing factors may contribute to this process by allowing simultaneous activation of two sets of helicases and thus efficient assembly of bidirectional replication forks. An example of this is dimerization of the firing factor Sld3/Treslin/Ticrr via its binding partner, Sld7/MTBP. In organisms in which no Sld7 ortholog has been identified, such as the fission yeast Schizosaccharomyces pombe, Sld3 itself has a dimerization domain, and it has been suggested that this self-interaction is crucial for the firing reaction in this organism. Dimerization induces a conformational change in Sdl3 that appears to be critical for the firing reaction. Moreover, Mcm10 also seems to be regulated by self-interaction in yeasts. Although it is not yet clear to what extent dimerization of firing factors contributes to the firing reaction in eukaryotes, we discuss the possible roles of firing factor dimerization in simultaneous helicase activation.
Collapse
Affiliation(s)
- Seiji Tanaka
- School of Environmental Science and Engineering, Kochi University of Technology, Kami 782-8502, Japan;
| | | |
Collapse
|
9
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
10
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
11
|
Day M, Oliver AW, Pearl LH. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair (Amst) 2021; 108:103232. [PMID: 34678589 PMCID: PMC8651625 DOI: 10.1016/j.dnarep.2021.103232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
12
|
Tannous EA, Burgers PM. Novel insights into the mechanism of cell cycle kinases Mec1(ATR) and Tel1(ATM). Crit Rev Biochem Mol Biol 2021; 56:441-454. [PMID: 34151669 DOI: 10.1080/10409238.2021.1925218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication is a highly precise process which usually functions in a perfect rhythm with cell cycle progression. However, cells are constantly faced with various kinds of obstacles such as blocks in DNA replication, lack of availability of precursors and improper chromosome alignment. When these problems are not addressed, they may lead to chromosome instability and the accumulation of mutations, and even cell death. Therefore, the cell has developed response mechanisms to keep most of these situations under control. Of the many factors that participate in this DNA damage response, members of the family of phosphatidylinositol 3-kinase-related protein kinases (PIKKs) orchestrate the response landscape. Our understanding of two members of the PIKK family, human ATR (yeast Mec1) and ATM (yeast Tel1), and their associated partner proteins, has shown substantial progress through recent biochemical and structural studies. Emerging structural information of these unique kinases show common features that reveal the mechanism of kinase activity.
Collapse
Affiliation(s)
- Elias A Tannous
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
13
|
Pirincci Ercan D, Chrétien F, Chakravarty P, Flynn HR, Snijders AP, Uhlmann F. Budding yeast relies on G 1 cyclin specificity to couple cell cycle progression with morphogenetic development. SCIENCE ADVANCES 2021; 7:eabg0007. [PMID: 34088668 PMCID: PMC8177710 DOI: 10.1126/sciadv.abg0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.
Collapse
Affiliation(s)
| | - Florine Chrétien
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
14
|
Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. EMBO J 2021; 40:e104566. [PMID: 33764556 DOI: 10.15252/embj.2020104566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stephanie C Vega
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Robert Gnügge
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Detection of Multisite Phosphorylation of Intrinsically Disordered Proteins Using Quantitative Mass-Spectrometry. Methods Mol Biol 2021; 2141:819-833. [PMID: 32696391 DOI: 10.1007/978-1-0716-0524-0_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) within proteins have attracted considerable attention in recent years. Several important biological signaling mechanisms including protein-protein interactions and post-translational modifications can be easily mediated by IDPs and IDRs due to their flexible structure. These regions can encode linear sequences that are indispensable in cell-signaling networks and circuits. For example, the linear multisite phosphorylation networks encoded in disordered protein sequences play a key role in cell-cycle regulation where the phosphorylation of proteins controls the orchestration of all major mechanisms. While elucidating a systems-level understanding of this process and other multisite phosphorylation processes, we extensively used mass-spectrometry and found it to be an ideal tool to identify, characterize, and quantify phosphorylation dynamics within IDPs. Here, we describe a quantitative proteomics method, together with a detailed protocol to analyze dynamic multisite phosphorylation processes within IDPs using an in vitro protein phosphorylation assay with "light" gamma-16O ATP and "heavy" gamma-18O ATP, combined with liquid chromatography mass spectrometry.
Collapse
|
16
|
Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair (Amst) 2021; 98:103047. [PMID: 33454524 DOI: 10.1016/j.dnarep.2021.103047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Our genome bears tens of thousands of harms and devastations per day; In this regard, numerous sophisticated and complicated mechanisms are embedded by our cells in furtherance of remitting an unchanged and stable genome to their next generation. These mechanisms, that are collectively called DDR, have the duty of detecting the lesions and repairing them. it's necessary for the viability of any living cell that sustain the integrity and stability of its genetic content and this highlights the role of mediators that transduce the signals of DNA damage to the cell cycle in order to prevent the replication of a defective DNA. In this paper, we review the signaling pathways that lie between these processes and define how different ingredients of DDR are also able to affect the checkpoint signaling.
Collapse
|
17
|
Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie 2019; 163:117-127. [PMID: 31194995 DOI: 10.1016/j.biochi.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is one of the main mechanisms by which signals are transmitted in eukaryotic cells, and it plays a crucial regulatory role in almost all cellular processes. In yeast, more than half of the proteins are phosphorylated in at least one site, and over 20,000 phosphopeptides have been experimentally verified. However, the functional consequences of these phosphorylation events for most of the identified phosphosites are unknown. A family of protein interaction domains selectively recognises phosphorylated motifs to recruit regulatory proteins and activate signalling pathways. Nine classes of dedicated modules are coded by the yeast genome: 14-3-3, FHA, WD40, BRCT, WW, PBD, and SH2. The recognition specificity relies on a few residues on the target protein and has coevolved with kinase specificity. In the present study, we review the current knowledge concerning yeast phospho-binding domains and their networks. We emphasise the relevance of both positive and negative amino acid selection to orchestrate the highly regulated outcomes of inter- and intra-molecular interactions. Finally, we hypothesise that only a small fraction of yeast phosphorylation events leads to the creation of a docking site on the target molecule, while many have a direct effect on the protein or, as has been proposed, have no function at all.
Collapse
|
18
|
Münzner U, Klipp E, Krantz M. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae. Nat Commun 2019; 10:1308. [PMID: 30899000 PMCID: PMC6428898 DOI: 10.1038/s41467-019-08903-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Understanding how cellular functions emerge from the underlying molecular mechanisms is a key challenge in biology. This will require computational models, whose predictive power is expected to increase with coverage and precision of formulation. Genome-scale models revolutionised the metabolic field and made the first whole-cell model possible. However, the lack of genome-scale models of signalling networks blocks the development of eukaryotic whole-cell models. Here, we present a comprehensive mechanistic model of the molecular network that controls the cell division cycle in Saccharomyces cerevisiae. We use rxncon, the reaction-contingency language, to neutralise the scalability issues preventing formulation, visualisation and simulation of signalling networks at the genome-scale. We use parameter-free modelling to validate the network and to predict genotype-to-phenotype relationships down to residue resolution. This mechanistic genome-scale model offers a new perspective on eukaryotic cell cycle control, and opens up for similar models-and eventually whole-cell models-of human cells.
Collapse
Affiliation(s)
- Ulrike Münzner
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Edda Klipp
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
| | - Marcus Krantz
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany.
| |
Collapse
|
19
|
Köhler K, Sanchez-Pulido L, Höfer V, Marko A, Ponting CP, Snijders AP, Feederle R, Schepers A, Boos D. The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7. PLoS Biol 2019; 17:e2006767. [PMID: 30695077 PMCID: PMC6377148 DOI: 10.1371/journal.pbio.2006767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/15/2019] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)-interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.
Collapse
Affiliation(s)
- Kerstin Köhler
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Verena Höfer
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Anika Marko
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany.,Department of Gene Vectors, Helmholtz Zentrum München GmbH, Munich, Germany
| | - Dominik Boos
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
21
|
Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. TOPBP1 Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1 Rad9. J Cell Biol 2017; 216:623-639. [PMID: 28228534 PMCID: PMC5350513 DOI: 10.1083/jcb.201607031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
The scaffold protein TOPBP1Dpb11 has been implicated in homologous recombination DNA repair, but its function and mechanism of action remain unclear. Liu et al. define a conserved role for TOPBP1Dpb11 in recombination control through regulated, opposing interactions with pro- and anti-resection factors. Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1–TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.
Collapse
Affiliation(s)
- Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - José Renato Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jennie Rae Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Shyam Twayana
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Federica Marini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
22
|
Bruck I, Dhingra N, Kaplan DL. A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase. J Biol Chem 2017; 292:3062-3073. [PMID: 28082681 DOI: 10.1074/jbc.m116.772368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (GG-Ichi-Nii-San) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Nalini Dhingra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
23
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Perez-Arnaiz P, Kaplan DL. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation. J Mol Biol 2016; 428:4608-4625. [PMID: 27751725 DOI: 10.1016/j.jmb.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
Abstract
Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
25
|
Reusswig KU, Zimmermann F, Galanti L, Pfander B. Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2. Cell Rep 2016; 17:556-569. [DOI: 10.1016/j.celrep.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
|
26
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
27
|
Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, Hardiman KM, Wang TD, Dame MK, Varani J, Brenner D, Fearon ER, Shah YM. Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. Cell Metab 2016; 24:447-461. [PMID: 27546461 PMCID: PMC5023486 DOI: 10.1016/j.cmet.2016.07.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia-inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analyses identified an iron-regulated signaling axis mediated by cyclin-dependent kinase 1 (CDK1), JAK1, and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin Weisz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liwei Xie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Durga Attili
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asha Pant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest 1117, Hungary; 2nd Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary
| | - Mingkun Zhan
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Christin Carter-Su
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karin M Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas D Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael K Dame
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Varani
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dean Brenner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric R Fearon
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Wan B, Hang LE, Zhao X. Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 2016; 15:2561-2570. [PMID: 27580271 DOI: 10.1080/15384101.2016.1218102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome maintenance requires coordinated actions of diverse DNA metabolism processes. Scaffolding proteins, such as those containing multiple BRCT domains, can influence these processes by collaborating with numerous partners. The best-studied examples of multi-BRCT scaffolds are the budding yeast Dpb11 and its homologues in other organisms, which regulate DNA replication, repair, and damage checkpoints. Recent studies have shed light on another group of multi-BRCT scaffolds, including Rtt107 in budding yeast and related proteins in other organisms. These proteins also influence several DNA metabolism pathways, though they use strategies unlike those employed by the Dpb11 family of proteins. Yet, at the same time, these 2 classes of multi-BRCT proteins can collaborate under specific situations. This review summarizes recent advances in our understanding of how these multi-BRCT proteins function in distinct manners and how they collaborate, with a focus on Dpb11 and Rtt107.
Collapse
Affiliation(s)
- Bingbing Wan
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Lisa E Hang
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Xiaolan Zhao
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
29
|
Lössl P, Brunner AM, Liu F, Leney AC, Yamashita M, Scheltema RA, Heck AJR. Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System. ACS CENTRAL SCIENCE 2016; 2:445-55. [PMID: 27504491 PMCID: PMC4965854 DOI: 10.1021/acscentsci.6b00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 05/11/2023]
Abstract
Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking-MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry-MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Andrea M. Brunner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Fan Liu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Aneika C. Leney
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Masami Yamashita
- Department
of Structural Cell Biology, Max Planck Institute
of Biochemistry, Am Klopferspitz
18, 82152 Martinsried, Germany
| | - Richard A. Scheltema
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
30
|
Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-8. [PMID: 26305950 DOI: 10.1073/pnas.1509608112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Collapse
|
31
|
Cussiol JR, Jablonowski CM, Yimit A, Brown GW, Smolka MB. Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions. EMBO J 2015; 34:1704-17. [PMID: 25896509 DOI: 10.15252/embj.201490834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/27/2015] [Indexed: 11/09/2022] Open
Abstract
In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down-regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase-independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4-Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi-BRCT-domain (MBD) module that recapitulates the action of Slx4-Rtt107 in checkpoint down-regulation. MBD mimics the damage-induced Dpb11-Slx4-Rtt107 complex by synergistically interacting with lesion-specific phospho-sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11-Slx4-Rtt107 or MBD via a cooperative 'two-site-docking' mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio-temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT-domains interactions.
Collapse
Affiliation(s)
- José R Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Carolyn M Jablonowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Askar Yimit
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Sansam CG, Goins D, Siefert JC, Clowdus EA, Sansam CL. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation. Genes Dev 2015; 29:555-66. [PMID: 25737283 PMCID: PMC4358407 DOI: 10.1101/gad.246827.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/23/2015] [Indexed: 12/22/2022]
Abstract
S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled.
Collapse
Affiliation(s)
- Courtney G Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA;
| | - Duane Goins
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Emily A Clowdus
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Christopher L Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
33
|
Dhingra N, Bruck I, Smith S, Ning B, Kaplan DL. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. J Biol Chem 2015; 290:7586-601. [PMID: 25659432 DOI: 10.1074/jbc.m115.640383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Nalini Dhingra
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Irina Bruck
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Skye Smith
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Boting Ning
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Daniel L Kaplan
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| |
Collapse
|
34
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
35
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
36
|
Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 2014; 22:165-74. [PMID: 25087188 DOI: 10.1016/j.dnarep.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Human TopBP1 contains nine BRCT domains and functions in DNA replication initiation, checkpoint signalling, DNA repair and influences transcriptional control. TopBP1 and its homologues have been the subject of numerous scientific publications since the last comprehensive review in 2005, emerging as a key scaffold protein that links crucial components within these distinct cellular processes. This review focuses on recently published work, with particular emphasis on structural insights into TopBP1 function and the binding partners identified for DNA replication initiation, DNA-dependent checkpoints, DNA repair and transcription. We further summarise what is known about TopBP1 and links to human disease.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK.
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| |
Collapse
|
37
|
Method for identifying phosphorylated substrates of specific cyclin/cyclin-dependent kinase complexes. Proc Natl Acad Sci U S A 2014; 111:11323-8. [PMID: 25049391 DOI: 10.1073/pnas.1409666111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In eukaryotes, cell cycle progression is controlled by cyclin/cyclin-dependent kinase (CDK) pairs. To better understand the details of this process, it is necessary to dissect the CDK's substrate pool in a cyclin- and cell cycle stage-specific way. Here, we report a mass spectrometry-based method that couples rapid isolation of native kinase-substrate complexes to on-bead phosphorylation with heavy-labeled ATP (ATP-γ-(18)O4). This combined in vivo/in vitro method was developed for identifying cyclin/CDK substrates together with their sites of phosphorylation. We used the method to identify Clb5 (S-cyclin)/Cdc28 and Cln2 (G1/S-cyclin)/Cdc28 substrates during S phase in Saccharomyces cerevisiae (Cdc28 is the master CDK in budding yeast). During the work, we discovered that Clb5/Cdc28 specifically phosphorylates S429 in the disordered tail of Cdc14, an essential phosphatase antagonist of Cdc28. This phosphorylation severely decreases the activity of Cdc14, providing a means for modulating the balance of CDK and phosphatase activity.
Collapse
|
38
|
Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. ACTA ACUST UNITED AC 2014; 204:507-22. [PMID: 24535824 PMCID: PMC3926958 DOI: 10.1083/jcb.201310083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Timely phosphorylation of SLD-2 by CDK is essential for proper replication initiation and cell proliferation in the germline of C. elegans. Cyclin-dependent kinase (CDK) plays a vital role in proliferation control across eukaryotes. Despite this, how CDK mediates cell cycle and developmental transitions in metazoa is poorly understood. In this paper, we identify orthologues of Sld2, a CDK target that is important for DNA replication in yeast, and characterize SLD-2 in the nematode worm Caenorhabditis elegans. We demonstrate that SLD-2 is required for replication initiation and the nuclear retention of a critical component of the replicative helicase CDC-45 in embryos. SLD-2 is a CDK target in vivo, and phosphorylation regulates the interaction with another replication factor, MUS-101. By mutation of the CDK sites in sld-2, we show that CDK phosphorylation of SLD-2 is essential in C. elegans. Finally, using a phosphomimicking sld-2 mutant, we demonstrate that timely CDK phosphorylation of SLD-2 is an important control mechanism to allow normal proliferation in the germline. These results determine an essential function of CDK in metazoa and identify a developmental role for regulated SLD-2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, 2 Department of Genetics, and 3 Department of Zoology, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | | | | | | | | | |
Collapse
|
39
|
Belal ASF, Sell BR, Hoi H, Davidson MW, Campbell RE. Optimization of a genetically encoded biosensor for cyclin B1-cyclin dependent kinase 1. ACTA ACUST UNITED AC 2014; 10:191-5. [DOI: 10.1039/c3mb70402e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem 2013; 289:1948-59. [PMID: 24307213 DOI: 10.1074/jbc.m113.532085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | | |
Collapse
|
41
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
42
|
Koltovaya NA. Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol 2013; 33:2614-22. [PMID: 23629628 DOI: 10.1128/mcb.00431-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dpb11/Cut5/TopBP1 is evolutionarily conserved and is essential for the initiation of DNA replication in eukaryotes. The Dpb11 of the budding yeast Saccharomyces cerevisiae has four BRCT domains (BRCT1 to -4). The N-terminal pair (BRCT1 and -2) and the C-terminal pair (BRCT3 and -4) bind to cyclin-dependent kinase (CDK)-phosphorylated Sld3 and Sld2, respectively. These phosphorylation-dependent interactions trigger the initiation of DNA replication. BRCT1 and -2 and BRCT3 and -4 of Dpb11 are separated by a short stretch of ~100 amino acids. It is unknown whether this inter-BRCT region functions in DNA replication. Here, we showed that the inter-BRCT region is a GINS interaction domain that is essential for cell growth and that mutations in this domain cause replication defects in budding yeast. We found the corresponding region in the vertebrate ortholog, TopBP1, and showed that the corresponding region also interacts with GINS and is required for efficient DNA replication. We propose that the inter-BRCT region of Dpb11 is a functionally conserved GINS interaction domain that is important for the initiation of DNA replication in eukaryotes.
Collapse
|
44
|
Marino F, Vindigni A, Onesti S. Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle. Biophys Chem 2013; 177-178:34-9. [PMID: 23624328 DOI: 10.1016/j.bpc.2013.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 01/10/2023]
Abstract
RecQ helicases play essential roles in the maintenance of genome stability and contain a highly conserved helicase region generally followed by a characteristic RecQ-C-terminal (RQC) domain, plus a number of variable associated domains. Notable exceptions are the RecQ4 helicases, where none of these additional regions have been described. Particularly striking was the fact that no RQC domain had been reported, considering that the RQC domain had been shown to play an essential role in the catalytic mechanism of most RecQ family members. Here we present the results of detailed bioinformatic analyses of RecQ4 proteins that identify, for the first time, the presence of a putative RQC domain, including some of the key residues involved in DNA binding and unwinding. We also describe the presence of a novel "Zn knuckle" domain, as well as an additional Sld2-homology region, providing new insights into the architecture, function and evolution of these enzymes.
Collapse
Affiliation(s)
- Francesca Marino
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste SCpA, Area Science Park, Basovizza, Trieste, Italy.
| | | | | |
Collapse
|
45
|
Matsuzaki K, Terasawa M, Iwasaki D, Higashide M, Shinohara M. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection. Genes Cells 2012; 17:473-93. [PMID: 22563681 DOI: 10.1111/j.1365-2443.2012.01602.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired by two distinct pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ). NHEJ includes two pathways, that is, precise and imprecise end joining. We found that Lif1, a component of the DNA ligase IV complex in Saccharomyces cerevisiae, was phosphorylated by cyclin-dependent kinase (CDK) at Ser261 during the S to G2 phase but not during G1 phase. This phosphorylation was required for efficient NHEJ in G2/M cells, rather than in G1 cells. It also promotes the stable binding of Lif1 protein to DSBs, specifically in G2/M-arrested cells, which shows the resection of DSB ends. Thus, Lif1 phosphorylation plays a critical role in a certain type of imprecise NHEJ accompanied by DSB end resection and micro-homology. Lif1 phosphorylation at Ser261 is probably involved in micro-homology-dependent end joining associated with producing single-stranded DSB ends that are formed by Sae2 as early intermediates in the HR pathway. CDK-dependent modification of the NHEJ pathway might make DSB ends compatible for NHEJ and thus prevent competition between HR and NHEJ in hierarchy on the choice of DSB repair pathways.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- Department of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
46
|
Mok J, Zhu X, Snyder M. Dissecting phosphorylation networks: lessons learned from yeast. Expert Rev Proteomics 2012; 8:775-86. [PMID: 22087660 DOI: 10.1586/epr.11.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation continues to be regarded as one of the most important post-translational modifications found in eukaryotes and has been implicated in key roles in the development of a number of human diseases. In order to elucidate roles for the 518 human kinases, phosphorylation has routinely been studied using the budding yeast Saccharomyces cerevisiae as a model system. In recent years, a number of technologies have emerged to globally map phosphorylation in yeast. In this article, we review these technologies and discuss how these phosphorylation mapping efforts have shed light on our understanding of kinase signaling pathways and eukaryotic proteomic networks in general.
Collapse
Affiliation(s)
- Janine Mok
- Stanford Genome Technology Center, Department of Biochemistry, Stanford School of Medicine, 855 S. California Avenue, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
47
|
Araki H. Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation. Genes Genet Syst 2012; 86:141-9. [PMID: 21952204 DOI: 10.1266/ggs.86.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosomal DNA replication is a fundamental process in the transmission of genetic information through generations. While the molecular mechanism of DNA replication has been studied for a long time, knowledge regarding this process in eukaryotic cells has advanced rapidly in the past 20 years. Yeast genetics contributed profoundly to this rapid advancement. Reverse genetics and genetic screenings identified all genes encoding replication proteins in budding yeast. Moreover, the genetic interactions that were used in screenings and analyses provided an insight into the molecular mechanism of chromosomal DNA replication. Further studies showed that complicated but sophisticated mechanisms govern chromosomal DNA replication. The retrospective view of the genetic approaches used to elucidate DNA replication in eukaryotes, together with current knowledge, tell us the reasons why some of the genetic screenings are successful, and also provide ideas for future directions.
Collapse
Affiliation(s)
- Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Department of Genetics, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
48
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
49
|
Abstract
Eukaryotic chromosomal DNA replication is controlled by a highly ordered series of steps involving multiple proteins at replication origins. The eukaryotic GINS complex is essential for the establishment of DNA replication forks and replisome progression. GINS is one of the core components of the eukaryotic replicative helicase, the CMG (Cdc45-MCM-GINS) complex, which unwinds duplex DNA ahead of the moving replication fork. Eukaryotic GINS also links with other key proteins at the fork to maintain an active replisome progression complex. Archaeal GINS homologues play a central role in chromosome replication by associating with other replisome components. This chapter focuses on the molecular events related with DNA replication initiation, and summarizes our current understanding of the function, structure and evolution of the GINS complex in eukaryotes and archaea.
Collapse
Affiliation(s)
- Katsuhiko Kamada
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,
| |
Collapse
|
50
|
Navadgi-Patil VM, Kumar S, Burgers PM. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. J Biol Chem 2011; 286:40999-1007. [PMID: 21956112 DOI: 10.1074/jbc.m111.283994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.
Collapse
Affiliation(s)
- Vasundhara M Navadgi-Patil
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|