1
|
Culberson EJ, Shields KC, Glynn RA, Allyn BM, Hayer KE, Bassing CH. The Cyclin D3 Protein Enforces Monogenic TCRβ Expression by Mediating TCRβ Protein-Signaled Feedback Inhibition of Vβ Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:534-540. [PMID: 38117277 PMCID: PMC10872516 DOI: 10.4049/jimmunol.2300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vβ-to-DβJβ rearrangements in noncycling double-negative thymocytes, TCRβ protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αβ T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αβ T cells that express TCRβ proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRβ expression, we used our mouse lines with enhanced rearrangement of specific Vβ segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αβ T cells that display proteins from RSS-augmented Vβ segments on both alleles. By assaying mature αβ T cells, we find that cyclin D3 deficiency increases the levels of Vβ rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRβ protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRβ expression and resulting uniform specificity of individual αβ T cells.
Collapse
Affiliation(s)
- Erica J. Culberson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kymberle C. Shields
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rebecca A. Glynn
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brittney M. Allyn
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA 19104
| | - Craig H. Bassing
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Krangel MS. RSSs set the odds for exclusion. J Exp Med 2020; 217:e20200831. [PMID: 32793983 PMCID: PMC7478726 DOI: 10.1084/jem.20200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this issue of JEM, Wu et al. (https://doi.org/10.1084/jem.20200412) provide new insights into allelic exclusion. They demonstrate that Vβ-to-DβJβ rearrangement occurs stochastically on two competing Tcrb alleles, with suboptimal Vβ recombination signal sequences limiting synchronous rearrangements and essential for allelic exclusion.
Collapse
|
3
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
4
|
Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci U S A 2013; 110:E4628-37. [PMID: 24218622 DOI: 10.1073/pnas.1310846110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.
Collapse
|
5
|
Introduction of exogenous T-cell receptors into human hematopoietic progenitors results in exclusion of endogenous T-cell receptor expression. Mol Ther 2013; 21:1055-63. [PMID: 23481324 DOI: 10.1038/mt.2013.28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current tumor immunotherapy approaches include the genetic modification of peripheral T cells to express tumor antigen-specific T-cell receptors (TCRs). The approach, tested in melanoma, has led to some limited success of tumor regression in patients. Yet, the introduction of exogenous TCRs into mature T cells entails an underlying risk; the generation of autoreactive clones due to potential TCR mispairing, and the lack of effective negative selection, as these peripheral cells do not undergo thymic selection following introduction of the exogenous TCR. We have successfully generated MART-1-specific CD8 T cells from genetically modified human hematopoietic stem cells (hHSC) in a humanized mouse model. The advantages of this approach include a long-term source of antigen specific T cells and proper T-cell selection due to thymopoiesis following expression of the TCR. In this report, we examine the molecular processes occurring on endogenous TCR expression and demonstrate that this approach results in exclusive cell surface expression of the newly introduced TCR, and the exclusion of endogenous TCR cell surface expression. This suggests that this stem cell based approach can provide a potentially safer approach for anticancer immunotherapy due to the involvement of thymic selection.
Collapse
|
6
|
McCurley N, Hirano M, Das S, Cooper MD. Immune related genes underpin the evolution of adaptive immunity in jawless vertebrates. Curr Genomics 2012; 13:86-94. [PMID: 23024600 PMCID: PMC3308329 DOI: 10.2174/138920212799860670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.
Collapse
Affiliation(s)
- Nathanael McCurley
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
7
|
Kondilis-Mangum HD, Shih HY, Mahowald G, Sleckman BP, Krangel MS. Regulation of TCRβ allelic exclusion by gene segment proximity and accessibility. THE JOURNAL OF IMMUNOLOGY 2011; 187:6374-81. [PMID: 22079986 DOI: 10.4049/jimmunol.1102611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ag receptor loci are regulated to promote allelic exclusion, but the mechanisms are not well understood. Assembly of a functional TCR β-chain gene triggers feedback inhibition of V(β)-to-DJ(β) recombination in double-positive (DP) thymocytes, which correlates with reduced V(β) chromatin accessibility and a locus conformational change that separates V(β) from DJ(β) gene segments. We previously generated a Tcrb allele that maintained V(β) accessibility but was still subject to feedback inhibition in DP thymocytes. We have now further analyzed the contributions of chromatin accessibility and locus conformation to feedback inhibition using two novel TCR alleles. We show that reduced V(β) accessibility and increased distance between V(β) and DJ(β) gene segments both enforce feedback inhibition in DP thymocytes.
Collapse
|
8
|
Del Blanco B, García V, García-Mariscal A, Hernández-Munain C. Control of V(D)J Recombination through Transcriptional Elongation and Changes in Locus Chromatin Structure and Nuclear Organization. GENETICS RESEARCH INTERNATIONAL 2011; 2011:970968. [PMID: 22567371 PMCID: PMC3335570 DOI: 10.4061/2011/970968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/29/2011] [Indexed: 01/29/2023]
Abstract
V(D)J recombination is the assembly of gene segments at the antigen receptor loci to
generate antigen receptor diversity in T and B lymphocytes. This process is regulated,
according to defined developmental programs, by the action of a single specific
recombinase complex formed by the recombination antigen gene (RAG-1/2) proteins
that are expressed in immature lymphocytes. V(D)J recombination is strictly controlled
by RAG-1/2 accessibility to specific recombination signal sequences in chromatin at
several levels: cellular lineage, temporal regulation, gene segment order, and allelic
exclusion. DNA cleavage by RAG-1/2 is regulated by the chromatin structure,
transcriptional elongation, and three-dimensional architecture and position of the
antigen receptor loci in the nucleus. Cis-elements specifically direct transcription and
V(D)J recombination at these loci through interactions with transacting factors that form
molecular machines that mediate a sequence of structural events. These events open
chromatin to activate transcriptional elongation and to permit the access of RAG-1/2 to
their recombination signal sequences to drive the juxtaposition of the V, D, and J
segments and the recombination reaction itself. This chapter summarizes the advances
in this area and the important role of the structure and position of antigen receptor loci
within the nucleus to control this process.
Collapse
Affiliation(s)
- Beatriz Del Blanco
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n. 18100 Armilla, Spain
| | | | | | | |
Collapse
|
9
|
Jones ME, Zhuang Y. Stage-specific functions of E-proteins at the β-selection and T-cell receptor checkpoints during thymocyte development. Immunol Res 2011; 49:202-15. [PMID: 21128008 DOI: 10.1007/s12026-010-8182-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The E-protein transcription factors E2A and HEB function in a lineage- and stage-specific manner to orchestrate many critical events throughout lymphocyte development. The function of E-proteins in both B- and T-lymphocyte development has been extensively studied through the use of single-gene knockout animals. Unlike B cells, which rely primarily on E2A alone, T cells are regulated by the combinatorial expression of both E2A and HEB. Therefore, many of the roles of E-proteins during T-cell development may be masked in single-gene knockout studies due to the compensatory function of E2A and HEB. More recently, our laboratory has established double-conditional knockout models to eliminate both E2A and HEB in a stage-specific manner throughout T-cell development. These models, in combination with other complimentary genetic approaches, have identified new E-protein functions at each of the two major T-cell developmental checkpoints. Here, we will discuss how E-proteins function to regulate the expression of T-cell receptor components and cell cycle at the β-selection checkpoint, and how they control positive selection, survival, and lineage-specific gene expression at the subsequent T-cell receptor checkpoint.
Collapse
Affiliation(s)
- Mary Elizabeth Jones
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA.
| | | |
Collapse
|
10
|
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251-63. [PMID: 21394103 DOI: 10.1038/nri2941] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are regulated by the chromatin structure and architecture of antigen receptor genes. These advances suggest novel mechanisms for both the targeting and the mistargeting of V(D)J recombination, and have implications for how these events contribute to genome instability and lymphoid malignancy.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
11
|
Abstract
Vertebrate development requires the formation of multiple cell types from a single genetic blueprint, an extraordinary feat that is guided by the dynamic and finely tuned reprogramming of gene expression. The sophisticated orchestration of gene expression programs is driven primarily by changes in the patterns of covalent chromatin modifications. These epigenetic changes are directed by cis elements, positioned across the genome, which provide docking sites for transcription factors and associated chromatin modifiers. Epigenetic changes impact all aspects of gene regulation, governing association with the machinery that drives transcription, replication, repair and recombination, a regulatory relationship that is dramatically illustrated in developing lymphocytes. The program of somatic rearrangements that assemble antigen receptor genes in precursor B and T cells has proven to be a fertile system for elucidating relationships between the genetic and epigenetic components of gene regulation. This chapter describes our current understanding of the cross-talk between key genetic elements and epigenetic programs during recombination of the Tcrb locus in developing T cells, how each contributes to the regulation of chromatin accessibility at individual DNA targets for recombination, and potential mechanisms that coordinate their actions.
Collapse
|
12
|
Brady BL, Steinel NC, Bassing CH. Antigen receptor allelic exclusion: an update and reappraisal. THE JOURNAL OF IMMUNOLOGY 2010; 185:3801-8. [PMID: 20858891 DOI: 10.4049/jimmunol.1001158] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most lymphocytes express cell surface Ag receptor chains from single alleles of distinct Ig or TCR loci. Since the identification of Ag receptor allelic exclusion, the importance of this process and the precise molecular mechanisms by which it is achieved have remained enigmatic. This brief review summarizes current knowledge of the extent to which Ig and TCR loci are subject to allelic exclusion. Recent progress in studying and defining mechanistic steps and molecules that may control the monoallelic initiation and subsequent inhibition of V-to-(D)-J recombination is outlined using the mouse TCRβ locus as a model with frequent comparisons to the mouse IgH and Igκ loci. Potential consequences of defects in mechanisms that control Ag receptor allelic exclusion and a reappraisal of the physiologic relevance of this immunologic process also are discussed.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
13
|
Abstract
V(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated.
Collapse
|
14
|
Brady BL, Oropallo MA, Yang-Iott KS, Serwold T, Hochedlinger K, Jaenisch R, Weissman IL, Bassing CH. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3564-73. [PMID: 20709953 DOI: 10.4049/jimmunol.0903098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Farcot E, Bonnet M, Jaeger S, Spicuglia S, Fernandez B, Ferrier P. TCR beta allelic exclusion in dynamical models of V(D)J recombination based on allele independence. THE JOURNAL OF IMMUNOLOGY 2010; 185:1622-32. [PMID: 20585038 DOI: 10.4049/jimmunol.0904182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allelic exclusion represents a major aspect of TCRbeta gene assembly by V(D)J recombination in developing T lymphocytes. Despite recent progress, its comprehension remains problematic when confronted with experimental data. Existing models fall short in terms of incorporating into a unique distribution all the cell subsets emerging from the TCRbeta assembly process. To revise this issue, we propose dynamical, continuous-time Markov chain-based modeling whereby essential steps in the biological procedure (D-J and V-DJ rearrangements and feedback inhibition) evolve independently on the two TCRbeta alleles in every single cell while displaying random modes of initiation and duration. By selecting parameters via fitting procedures, we demonstrate the capacity of the model to offer accurate fractions of all distinct TCRbeta genotypes observed in studies using developing and mature T cells from wild-type or mutant mice. Selected parameters in turn afford relative duration for each given step, hence updating TCRbeta recombination distinctive timings. Overall, our dynamical modeling integrating allele independence and noise in recombination and feedback-inhibition events illustrates how the combination of these ingredients alone may enforce allelic exclusion at the TCRbeta locus.
Collapse
Affiliation(s)
- Etienne Farcot
- Centre de Physique Théorique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6207, Université de la Méditerranée-Université de Provence-Université Sud Toulon Var, Centre National de la Recherche Scientifique Luminy Case 907, France
| | | | | | | | | | | |
Collapse
|
16
|
Yang-Iott KS, Carpenter AC, Rowh MAW, Steinel N, Brady BL, Hochedlinger K, Jaenisch R, Bassing CH. TCR beta feedback signals inhibit the coupling of recombinationally accessible V beta 14 segments with DJ beta complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1369-78. [PMID: 20042591 PMCID: PMC2873682 DOI: 10.4049/jimmunol.0900723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ag receptor allelic exclusion is thought to occur through monoallelic initiation and subsequent feedback inhibition of recombinational accessibility. However, our previous analysis of mice containing a V(D)J recombination reporter inserted into Vbeta14 (Vbeta14(Rep)) indicated that Vbeta14 chromatin accessibility is biallelic. To determine whether Vbeta14 recombinational accessibility is subject to feedback inhibition, we analyzed TCRbeta rearrangements in Vbeta14(Rep) mice containing a preassembled in-frame transgenic Vbeta8.2Dbeta1Jbeta1.1 or an endogenous Vbeta14Dbeta1Jbeta1.4 rearrangement on the homologous chromosome. Expression of either preassembled VbetaDJbetaC beta-chain accelerated thymocyte development because of enhanced cellular selection, demonstrating that the rate-limiting step in early alphabeta T cell development is the assembly of an in-frame VbetaDJbeta rearrangement. Expression of these preassembled VbetaDJbeta rearrangements inhibited endogenous Vbeta14-to-DJbeta rearrangements as expected. However, in contrast to results predicted by the accepted model of TCRbeta feedback inhibition, we found that expression of these preassembled TCR beta-chains did not downregulate recombinational accessibility of Vbeta14 chromatin. Our findings suggest that TCRbeta-mediated feedback inhibition of Vbeta14 rearrangements depends on inherent properties of Vbeta14, Dbeta, and Jbeta recombination signal sequences.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromatin/physiology
- Feedback, Physiological/physiology
- Gene Expression Regulation, Developmental/immunology
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Reporter/immunology
- Germ-Line Mutation/immunology
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Loss of Heterozygosity/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Katherine S. Yang-Iott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Andrea C. Carpenter
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Marta A. W. Rowh
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Natalie Steinel
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Brenna L. Brady
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Konrad Hochedlinger
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Cancer Center and Center for Regenerative Medicine, Boston, MA 02114
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Craig H. Bassing
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| |
Collapse
|
17
|
Jhunjhunwala S, van Zelm MC, Peak MM, Murre C. Chromatin architecture and the generation of antigen receptor diversity. Cell 2009; 138:435-48. [PMID: 19665968 PMCID: PMC2726833 DOI: 10.1016/j.cell.2009.07.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The adaptive immune system generates a specific response to a vast spectrum of antigens. This remarkable property is achieved by lymphocytes that each express single and unique antigen receptors. During lymphocyte development, antigen receptor coding elements are assembled from widely dispersed gene segments. The assembly of antigen receptors is controlled at multiple levels, including epigenetic marking, nuclear location, and chromatin topology. Here, we review recently uncovered mechanisms that underpin long-range genomic interactions and the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Suchit Jhunjhunwala
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
18
|
Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol 2009; 21:133-9. [PMID: 19362456 DOI: 10.1016/j.coi.2009.03.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
The four T cell receptor genes (Tcra, Tcrb, Tcrg, Tcrd) are assembled by V(D)J recombination according to distinct programs during intrathymic T cell development. These programs depend on genetic factors, including gene segment order and recombination signal sequences. They also depend on epigenetic factors. Regulated changes in chromatin structure, directed by enhancers and promoter, can modify the availability of recombination signal sequences to the RAG recombinase. Regulated changes in locus conformation may control the synapsis of distant recombination signal sequences, and regulated changes in subnuclear positioning may influence locus recombination events by unknown mechanisms. Together these influences may explain the ordered activation and inactivation of T cell receptor locus recombination events and the phenomenon of Tcrb allelic exclusion.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Abarrategui I, Krangel MS. Germline transcription: a key regulator of accessibility and recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:93-102. [PMID: 19731804 DOI: 10.1007/978-1-4419-0296-2_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental control of V(D)J recombination is imposed at the level of chromatin accessibility of recombination signal sequences (RSSs) to the recombinase machinery. Cis-acting transcriptional regulatory elements such as promoters and enhancers play a central role in the control of accessibility in vivo. However, the molecular mechanisms by which these elements influence accessibility are still under investigation. Although accessibility for V(D)J recombination is usually accompanied by germline transcription at antigen receptor loci, the functional significance of this transcription in directing RSS accessibility has been elusive. In this chapter, we review past studies outlining the complex relationship between V(D)J recombination and transcription as well as our current understanding on how chromatin structure is regulated during gene expression. We then summarize recent work that directly addresses the functional role of transcription in V(D)J recombination.
Collapse
Affiliation(s)
- Iratxe Abarrategui
- Centre for Epigenetics, Biotech Research and Innovation Centre, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Molecular Genetics at the T-Cell Receptor β Locus: Insights into the Regulation of V(D)J Recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:116-32. [DOI: 10.1007/978-1-4419-0296-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Jia J, Dai M, Zhuang Y. E proteins are required to activate germline transcription of the TCR Vbeta8.2 gene. Eur J Immunol 2008; 38:2806-20. [PMID: 18958875 DOI: 10.1002/eji.200838144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Each TCR Vbeta gene is regulated by an individual Vbeta promoter, which becomes active prior to V(D) J recombination and drives germline transcription. It has been shown that Vbeta gene locus activation and recombination are dependent on the Vbeta promoter. However, transcription factors that regulate Vbeta germline transcription remain largely undefined. A major challenge in studying Vbeta gene germline transcription is the quantitative assessment of relatively low-level transcripts in T-cell progenitors. Here we used the established Vbeta8.2(CD2) knock-in mouse model to assess functions of E-protein transcription factors in Vbeta8.2 germline transcription. We show that E proteins are required for the activation but not the maintenance of the Vbeta8.2 germline transcription during thymocyte development. The activation of Vbeta8.2 germline transcription depends more on the E proteins encoded by the E2A gene than by the HEB gene. We further show that IL-7 receptor (IL-7R)-mediated signals are essential for Vbeta8.2 germline transcription. We provide evidence that IL-7R expression is only partially controlled by E2A, suggesting a role for E2A in driving Vbeta8.2 germline transcription independent of IL-7R activation.
Collapse
Affiliation(s)
- Jingquan Jia
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
22
|
Cedar H, Bergman Y. Choreography of Ig allelic exclusion. Curr Opin Immunol 2008; 20:308-17. [PMID: 18400481 DOI: 10.1016/j.coi.2008.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 12/24/2022]
Abstract
Allelic exclusion guarantees that each B or T cell only produces a single antigen receptor, and in this way contributes to immune diversity. This process is actually initiated in the early embryo when the immune receptor loci become asynchronously replicating in a stochastic manner with one early and one late allele in each cell. This distinct differential replication timing feature then serves an instructive mark that directs a series of allele-specific epigenetic events in the immune system, including programmed histone modification, nuclear localization and DNA demethylation that ultimately bring about preferred rearrangement on a single allele, and this decision is temporally stabilized by feedback mechanisms that inhibit recombination on the second allele. In principle, these same molecular components are also used for controlling monoallelic expression at other genomic loci, such as those carrying interleukins and olfactory receptor genes that require the choice of one gene out of a large array. Thus, allelic exclusion appears to represent a general epigenetic phenomenon that is modeled on the same basis as X chromosome inactivation.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Cellular Biochemistry and Human Genetics, Hebrew University Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
23
|
Abstract
T lymphocyte development is directed by a gene-expression program that occurs in the complex nucleoprotein environment of chromatin. This review examines basic principles of chromatin regulation and evaluates ongoing progress toward understanding how the chromatin template is manipulated to control gene expression and gene recombination in developing thymocytes. Special attention is devoted to the loci encoding T cell receptors alpha and beta, T cell coreceptors CD4 and CD8, and the enzyme terminal deoxynucleotidyl transferase. The properties of SATB1, a notable organizer of thymocyte chromatin, are also addressed.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 USA.
| |
Collapse
|