1
|
Shabangu CS, Siphepho PY, Li CY, Cheng WC, Lu MY, Huang CF, Yeh ML, Dai CY, Huang JF, Chuang WL, Lin ZY, Yu ML, Wang SC. The Persistence of Hepatitis C Virus Infection in Hepatocytes Promotes Hepatocellular Carcinoma Progression by Pro-Inflammatory Interluekin-8 Expression. Biomedicines 2021; 9:1446. [PMID: 34680563 PMCID: PMC8533125 DOI: 10.3390/biomedicines9101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A large amount of epidemiological evidence indicates that persistent HCV infection is the main risk factor for HCC. We aimed to study the effects of persistent HCV infection on the interaction of the virus and host cell to identify cancer gene profiles. METHODS Next-generation sequencing (NGS) was used to identify differentially expressed genes between uninfected Huh7.5.1 control cells, short-term HCV (S-HCV), early long-term HCV (eL-HCV), and long-term HCV (L-HCV) infections, which were analyzed using different dynamic bioinformatics and analytic tools. mRNA expression was validated and quantified using q-PCR. One hundred ninety-six serum samples of HCV patients with IFN/RBV treatment were used to study chemokine levels. RESULTS S-HCV activates an inflammatory response and drives cell death and apoptosis through cell cycle arrest via MAPK signaling. L-HCV promotes cell growth and alters cell adhesion and chemokine signaling via CXCL8-mediated-SRC regulation. A total of 196 serum samples from the HCV and HCV-HCC cohorts demonstrated significantly upregulated pro-inflammatory CXCL8 in non-SVR (persistent HCV infection) patients in the HCV-HCC group. CONCLUSIONS Persistent infection with HCV induced pro-inflammatory CXCL8 and the oncogene SRC, thereby triggering and promoting hepatocarcinogenesis. CXCL8 may be a potential biomarker for monitoring HCV-related HCC progression.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (C.-Y.L.); (M.-Y.L.)
- Center for Cancer Research, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
| | - Phumelele Yvonne Siphepho
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (C.-Y.L.); (M.-Y.L.)
| | - Wei-Chung Cheng
- Research Center for Cancer Biology, Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan;
| | - Ming-Ying Lu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (C.-Y.L.); (M.-Y.L.)
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Center for Cancer Research, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
| | - Ming-Lung Yu
- Center for Cancer Research, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.); (C.-Y.D.); (W.-L.C.); (Z.-Y.L.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (C.-Y.L.); (M.-Y.L.)
- Center for Cancer Research, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
2
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Valgardson J, Cosbey R, Houser P, Rupp M, Van Bronkhorst R, Lee M, Jagodzinski F, Amacher JF. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity. Protein Sci 2019; 28:2127-2143. [PMID: 31599029 DOI: 10.1002/pro.3741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.
Collapse
Affiliation(s)
- Jordan Valgardson
- Department of Computer Science, Western Washington University, Bellingham, Washington.,Department of Chemistry, Western Washington University, Bellingham, Washington
| | - Robin Cosbey
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Paul Houser
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Milo Rupp
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Raiden Van Bronkhorst
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Michael Lee
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington
| |
Collapse
|
4
|
Dai C, Wang X, Wu Y, Xu Y, Zhuo S, Qi M, Ji W, Zhan L. Polarity Protein AF6 Controls Hepatic Glucose Homeostasis and Insulin Sensitivity by Modulating IRS1/AKT Insulin Pathway in an SHP2-Dependent Manner. Diabetes 2019; 68:1577-1590. [PMID: 31127058 DOI: 10.2337/db18-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major contributing factor in the development of metabolic disease. Although numerous functions of the polarity protein AF6 (afadin and MLLT4) have been identified, a direct effect on insulin sensitivity has not been previously described. We show that AF6 is elevated in the liver tissues of dietary and genetic mouse models of diabetes. We generated liver-specific AF6 knockout mice and show that these animals exhibit enhanced insulin sensitivity and liver glycogen storage, whereas overexpression of AF6 in wild-type mice by adenovirus-expressing AF6 led to the opposite phenotype. Similar observations were obtained from in vitro studies. In addition, we discovered that AF6 directly regulates IRS1/AKT kinase-mediated insulin signaling through its interaction with Src homology 2 domain-containing phosphatase 2 (SHP2) and its regulation of SHP2's tyrosine phosphatase activity. Finally, we show that knockdown of hepatic AF6 ameliorates hyperglycemia and insulin resistance in high-fat diet-fed or db/db diabetic mice. These results demonstrate a novel function for hepatic AF6 in the regulation of insulin sensitivity, providing important insights about the metabolic role of AF6.
Collapse
Affiliation(s)
- Cheng Dai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyan Qi
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Kock G, Dicks M, Yip KT, Kohl B, Pütz S, Heumann R, Erdmann KS, Stoll R. Molecular Basis of Class III Ligand Recognition by PDZ3 in Murine Protein Tyrosine Phosphatase PTPN13. J Mol Biol 2018; 430:4275-4292. [PMID: 30189200 DOI: 10.1016/j.jmb.2018.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold. PDZ3 of PTPN13 binds five carboxy-terminal amino acids of PRK2 via a groove located between the EB-strand and the DB-helix. The PRK2 peptide resides in the canonical PDZ3 binding cleft in an elongated manner and the amino acid side chains in position P0 and P-2, cysteine and aspartate, of the ligand face the groove between EB-strand and DB-helix, whereas the PRK2 side chains of tryptophan and alanine located in position P-1 and P-3 point away from the binding cleft. These structures are rare examples of selective class III ligand recognition by a PDZ domain and now provide a basis for the detailed structural investigation of the promiscuous interaction between the PDZ domains of PTPN13 and their ligands. They will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTPN13 and could ultimately contribute to low molecular weight antagonists that might even act on the PRK2 signaling pathway to modulate rearrangements of the actin cytoskeleton.
Collapse
Affiliation(s)
- Gerd Kock
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Markus Dicks
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - King Tuo Yip
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Bastian Kohl
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Stefanie Pütz
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Kai S Erdmann
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Raphael Stoll
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany.
| |
Collapse
|
6
|
Yu M, Mu Y, Qi Y, Qin S, Qiu Y, Cui R, Zhong M. Odontogenic ameloblast-associated protein (ODAM) inhibits human colorectal cancer growth by promoting PTEN elevation and inactivating PI3K/AKT signaling. Biomed Pharmacother 2016; 84:601-607. [DOI: 10.1016/j.biopha.2016.09.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
|
7
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Broecker F, Hardt C, Herwig R, Timmermann B, Kerick M, Wunderlich A, Schweiger MR, Borsig L, Heikenwalder M, Lehrach H, Moelling K. Transcriptional signature induced by a metastasis-promoting c-Src mutant in a human breast cell line. FEBS J 2016; 283:1669-88. [PMID: 26919036 DOI: 10.1111/febs.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Deletions at the C-terminus of the proto-oncogene protein c-Src kinase are found in the viral oncogene protein v-Src as well as in some advanced human colon cancers. They are associated with increased kinase activity and cellular invasiveness. Here, we analyzed the mRNA expression signature of a constitutively active C-terminal mutant of c-Src, c-Src(mt), in comparison with its wild-type protein, c-Src(wt), in the human non-transformed breast epithelial cell line MCF-10A. We demonstrated previously that the mutant altered migratory and metastatic properties. Genome-wide transcriptome analysis revealed that c-Src(mt) de-regulated the expression levels of approximately 430 mRNAs whose gene products are mainly involved in the cellular processes of migration and adhesion, apoptosis and protein synthesis. 82.9% of these genes have previously been linked to cellular migration, while the others play roles in RNA transport and splicing processes, for instance. Consistent with the transcriptome data, cells expressing c-Src(mt), but not those expressing c-Src(wt), showed the capacity to metastasize into the lungs of mice in vivo. The mRNA expression profile of c-Src(mt)-expressing cells shows significant overlap with that of various primary human tumor samples, possibly reflecting elevated Src activity in some cancerous cells. Expression of c-Src(mt) led to elevated migratory potential. We used this model system to analyze the transcriptional changes associated with an invasive cellular phenotype. These genes and pathways de-regulated by c-Src(mt) may provide suitable biomarkers or targets of therapeutic approaches for metastatic cells. DATABASE This project was submitted to the National Center for Biotechnology Information BioProject under ID PRJNA288540. The Illumina RNA-Seq reads are available in the National Center for Biotechnology Information Sequence Read Archive under study ID SRP060008 with accession numbers SRS977414 for MCF-10A cells, SRS977717 for mock cells, SRS978053 for c-Src(wt) cells and SRS978046 for c-Src(mt) cells.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Lubor Borsig
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Germany.,Institute of Virology, Helmholtz Zentrum Munich, Germany.,Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| |
Collapse
|
9
|
Differential tyrosine phosphorylation controls the function of CNK1 as a molecular switch in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2847-55. [PMID: 26319181 DOI: 10.1016/j.bbamcr.2015.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
Abstract
Scaffold proteins are multidomain proteins without enzymatic function that play a central role in coordinating signaling processes. The scaffold protein CNK1 interacts with pathway-specific signaling proteins and thereby regulates these respective pathways. Here, we revealed tyrosine phosphorylation as a critical regulation mechanism to control the function of CNK1. We identified Tyr 26 as a PDGF-induced and, additionally, Tyr 519 and Tyr 665 as SRC-induced tyrosine phosphorylation sites. Phosphomimetic mutants indicate that phosphorylation of Tyr 519 recruits CNK1 to the nucleus and additional phosphorylation of Tyr 26 enables CNK1 to promote SRE-dependent gene expression. Contrary, mutants preventing tyrosine phosphorylation promote matrix metalloproteinase MMP14 promoter activity. CNK1-driven cell proliferation partially depends on its tyrosine phosphorylation. Upon PDGF stimulation, CNK1 is recruited to the plasma membrane mediated by SRC. Knock down of CNK1 prevents PDGF-induced SRE-dependent gene expression, MMP14 promoter activity and cell proliferation. Thus, tyrosine phosphorylation is an important mechanism to control the subcellular localization of CNK1 and its distinct biological functions.
Collapse
|
10
|
Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, Nakagawa A, Oda M, Suzuki M, Sakisaka T, Takai Y, Hiroaki H. Crystal structure of afadin PDZ domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci 2015; 24:376-85. [PMID: 25534554 DOI: 10.1002/pro.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan; Global-COE (Center of Excellence) Program for Integrative Membrane Biology, Kobe University, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia. Blood 2014; 124:263-72. [PMID: 24695851 DOI: 10.1182/blood-2013-09-525741] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.
Collapse
|
12
|
Vargas C, Radziwill G, Krause G, Diehl A, Keller S, Kamdem N, Czekelius C, Kreuchwig A, Schmieder P, Doyle D, Moelling K, Hagen V, Schade M, Oschkinat H. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions. ChemMedChem 2014; 9:1458-62. [PMID: 24668962 DOI: 10.1002/cmdc.201300553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Indexed: 10/25/2022]
Abstract
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Collapse
Affiliation(s)
- Carolyn Vargas
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Current address: Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ahmed SM, Thériault BL, Uppalapati M, Chiu CWN, Gallie BL, Sidhu SS, Angers S. KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression. ACTA ACUST UNITED AC 2012; 199:951-67. [PMID: 23209302 PMCID: PMC3518219 DOI: 10.1083/jcb.201206051] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kinesin KIF14 associates with the PDZ domain of Radil and negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. The small GTPase Rap1 regulates inside-out integrin activation and thereby influences cell adhesion, migration, and polarity. Several Rap1 effectors have been described to mediate the cellular effects of Rap1 in a context-dependent manner. Radil is emerging as an important Rap effector implicated in cell spreading and migration, but the molecular mechanisms underlying its functions are unclear. We report here that the kinesin KIF14 associates with the PDZ domain of Radil and negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. The depletion of KIF14 led to increased cell spreading, altered focal adhesion dynamics, and inhibition of cell migration and invasion. We also show that Radil is important for breast cancer cell proliferation and for metastasis in mice. Our findings provide evidence that the concurrent up-regulation of Rap1 activity and increased KIF14 levels in several cancers is needed to reach optimal levels of Rap1–Radil signaling, integrin activation, and cell–matrix adhesiveness required for tumor progression.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Das SK, Bhutia SK, Sokhi UK, Azab B, Su ZZ, Boukerche H, Anwar T, Moen EL, Chatterjee D, Pellecchia M, Sarkar D, Fisher PB. Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma. Cancer Res 2012; 72:6217-26. [PMID: 23066033 DOI: 10.1158/0008-5472.can-12-0402] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma differentiation associated gene-9 (MDA-9), also known as syntenin, functions as a positive regulator of melanoma progression and metastasis. In contrast, the Raf kinase inhibitor, RKIP, a negative modulator of RAF-stimulated MEKK activation, is strongly downregulated in metastatic melanoma cells. In this study, we explored a hypothesized inverse relationship between MDA-9 and RKIP in melanoma. Tumor array and cell line analyses confirmed an inverse relationship between expression of MDA-9 and RKIP during melanoma progression. We found that MDA-9 transcriptionally downregulated RKIP in support of a suggested cross-talk between these two proteins. Furthermore, MDA-9 and RKIP physically interacted in a manner that correlated with a suppression of FAK and c-Src phosphorylation, crucial steps necessary for MDA-9 to promote FAK/c-Src complex formation and initiate signaling cascades that drive the MDA-9-mediated metastatic phenotype. Finally, ectopic RKIP expression in melanoma cells overrode MDA-9-mediated signaling, inhibiting cell invasion, anchorage-independent growth, and in vivo dissemination of tumor cells. Taken together, these findings establish RKIP as an inhibitor of MDA-9-dependent melanoma metastasis, with potential implications for targeting this process therapeutically.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Iwasawa N, Negishi M, Oinuma I. R-Ras controls axon branching through afadin in cortical neurons. Mol Biol Cell 2012; 23:2793-804. [PMID: 22593211 PMCID: PMC3395666 DOI: 10.1091/mbc.e12-02-0103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 01/06/2023] Open
Abstract
Regulation of axon growth, guidance, and branching is essential for constructing a correct neuronal network. R-Ras, a Ras-family small GTPase, has essential roles in axon formation and guidance. During axon formation, R-Ras activates a series of phosphatidylinositol 3-kinase signaling, inducing activation of a microtubule-assembly promoter-collapsin response mediator protein-2. However, signaling molecules linking R-Ras to actin cytoskeleton-regulating axonal morphology remain obscure. Here we identify afadin, an actin-binding protein harboring Ras association (RA) domains, as an effector of R-Ras inducing axon branching through F-actin reorganization. We observe endogenous interaction of afadin with R-Ras in cortical neurons during the stage of axonal development. Ectopic expression of afadin increases axon branch number, and the RA domains and the carboxyl-terminal F-actin binding domain are required for this action. RNA interference knockdown experiments reveal that knockdown of endogenous afadin suppressed both basal and R-Ras-mediated axon branching in cultured cortical neurons. Subcellular localization analysis shows that active R-Ras-induced translocation of afadin and its RA domains is responsible for afadin localizing to the membrane and inducing neurite development in Neuro2a cells. Overall, our findings demonstrate a novel signaling pathway downstream of R-Ras that controls axon branching.
Collapse
Affiliation(s)
- Nariaki Iwasawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Abstract
Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM–PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.
Collapse
|
17
|
Kestler DP, Foster JS, Bruker CT, Prenshaw JW, Kennel SJ, Wall JS, Weiss DT, Solomon A. ODAM Expression Inhibits Human Breast Cancer Tumorigenesis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:73-85. [PMID: 21603257 PMCID: PMC3091406 DOI: 10.4137/bcbcr.s6859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have posited that Odontogenic Ameloblast Associated Protein (ODAM) serves as a novel prognostic biomarker in breast cancer and now have investigated its potential role in regulating tumor growth and metastasis. Human breast cancer MDA-MB-231 cells were transfected with a recombinant ODAM plasmid construct (or, as a control, the plasmid vector alone). ODAM expression increased adhesion and apoptosis of the transfected MDA-MB-231 cells and suppressed their growth rate, migratory activity, and capability to invade extracellular matrix-coated membranes. Implantation of such cells into mouse mammary fat pads resulted in significantly smaller tumors than occurred in animals that received control cells; furthermore, ODAM-expressing cells, when injected intravenously into mice, failed to metastasize, whereas the control-transfected counterparts produced extensive lung lesions. Our finding that induction of ODAM expression in human breast cancer cells markedly inhibited their neoplastic properties provides further evidence for the regulatory role of this molecule in tumorigenesis and, consequently, is of potential clinical import.
Collapse
|
18
|
Fournier G, Cabaud O, Josselin E, Chaix A, Adélaïde J, Isnardon D, Restouin A, Castellano R, Dubreuil P, Chaffanet M, Birnbaum D, Lopez M. Loss of AF6/afadin, a marker of poor outcome in breast cancer, induces cell migration, invasiveness and tumor growth. Oncogene 2011; 30:3862-74. [DOI: 10.1038/onc.2011.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Hino N, Oyama M, Sato A, Mukai T, Iraha F, Hayashi A, Kozuka-Hata H, Yamamoto T, Yokoyama S, Sakamoto K. Genetic Incorporation of a Photo-Crosslinkable Amino Acid Reveals Novel Protein Complexes with GRB2 in Mammalian Cells. J Mol Biol 2011; 406:343-53. [PMID: 21185312 DOI: 10.1016/j.jmb.2010.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Nobumasa Hino
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rikitake Y, Takai Y. Directional Cell Migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:97-143. [DOI: 10.1016/b978-0-12-386043-9.00003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Fritz RD, Radziwill G. CNK1 Promotes Invasion of Cancer Cells through NF-κB–Dependent Signaling. Mol Cancer Res 2010; 8:395-406. [DOI: 10.1158/1541-7786.mcr-09-0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Baumgartner M, Weiss A, Fritzius T, Heinrich J, Moelling K. The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp Cell Res 2009; 315:2888-98. [PMID: 19665017 DOI: 10.1016/j.yexcr.2009.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 07/21/2009] [Accepted: 07/31/2009] [Indexed: 01/15/2023]
Abstract
c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.
Collapse
Affiliation(s)
- Martin Baumgartner
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Takai Y, Ikeda W, Ogita H, Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 2008; 24:309-42. [PMID: 18593353 DOI: 10.1146/annurev.cellbio.24.110707.175339] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectins are immunoglobulin-like cell adhesion molecules (CAMs) that compose a family of four members. Nectins homophilically and heterophilically interact in trans with each other to form cell-cell adhesions. In addition, they heterophilically interact in trans with other immunoglobulin-like CAMs. Nectins bind afadin, an actin filament (F-actin)-binding protein, at its cytoplasmic tail and associate with the actin cytoskeleton. Afadin additionally serves as an adaptor protein by further binding many scaffolding proteins and F-actin-binding proteins and contributes to the association of nectins with other cell-cell adhesion and intracellular signaling systems. Nectins and afadin play roles in the formation of a variety of cell-cell junctions cooperatively with, or independently of, cadherins. Cooperation between nectins and cadherins is required for the formation of cell-cell junctions; cadherins alone are not sufficient. Additionally, nectins regulate many other cellular activities (such as movement, proliferation, survival, differentiation, polarization, and the entry of viruses) in cooperation with other CAMs and cell surface membrane receptors.
Collapse
Affiliation(s)
- Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
24
|
Boisguerin P, Ay B, Radziwill G, Fritz RD, Moelling K, Volkmer R. Characterization of a putative phosphorylation switch: adaptation of SPOT synthesis to analyze PDZ domain regulation mechanisms. Chembiochem 2008; 8:2302-7. [PMID: 17973281 DOI: 10.1002/cbic.200700518] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transient macromolecular complexes are often formed by protein-protein interaction domains (e.g., PDZ, SH2, SH3, WW), which are often regulated (positively or negatively) by phosphorylation. To address the in vitro analysis of PDZ domain regulation by such phosphorylation, we improved the inverted peptide method. This method is based on standard SPOT synthesis, followed by inversion of the peptide under acidic conditions to generate the free C termini necessary for PDZ domain ligand recognition. The benefit of the newly introduced acidic conditions is the preservation of the incorporated phosphate group during peptide synthesis. Furthermore, the improved method is more robust and shows an increased signal-to-noise ratio. As representative examples, we used the AF6, ERBIN, and SNA1 (alpha-1-syntrophin) PDZ domains to analyze the influence of ligand-position-dependent phosphorylation. We could clearly demonstrate severe down-regulation by phosphorylation of the PDZ ligand position -2 (<50 %) and slightly less at position -1 ( approximately 50 %). These results are specific and reproducible for all three PDZ domains. Finally, we confirmed the influence of negative regulation by using the protein kinase BCR as the AF6 PDZ domain ligand. For the first time, this approach allows the SPOT synthesis technique to be used to screen large libraries of phosphorylated peptides in vitro. This should ultimately help in the identification of phosphorylation-dependent regulation mechanisms in vivo.
Collapse
Affiliation(s)
- Prisca Boisguerin
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Nakata S, Fujita N, Kitagawa Y, Okamoto R, Ogita H, Takai Y. Regulation of Platelet-derived Growth Factor Receptor Activation by Afadin through SHP-2. J Biol Chem 2007; 282:37815-25. [DOI: 10.1074/jbc.m707461200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
c-Src-mediated epithelial cell migration and invasion regulated by PDZ binding site. Mol Cell Biol 2007; 28:642-55. [PMID: 18039857 DOI: 10.1128/mcb.01024-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Src tyrosine kinase controls proliferation, cell adhesion, and cell migration and is highly regulated. A novel regulatory mechanism to control c-Src function that has recently been identified involves the C-terminal amino acid sequence Gly-Glu-Asn-Leu (GENL) of c-Src as ligand for PDZ domains. Herein, we determined the biological relevance of this c-Src regulation in human breast epithelial cells. The intact GENL sequence maintained c-Src in an inactive state in starved cells and restricted c-Src functions that might lead to metastatic transformation under normal growth conditions. c-Src with a C-terminal Leu/Ala mutation in GENL (Src-A) promoted the activation and translocation of cortactin and focal adhesion kinase and increased the motility and persistence of cell migration on the basement membrane. Src-A promoted increased extracellular proteolytic activity, and in acinar cultures, it led to the escape of cells through the basement membrane into the surrounding matrix. We ascribe the regulatory function of C-terminal Leu to the role of GENL in modulating c-Src activity downstream of cell matrix adhesion. We propose that the C terminus of c-Src via its GENL sequence presents a mechanism that restricts c-Src in epithelia and prevents progression toward an invasive phenotype.
Collapse
|
27
|
Weiss A, Baumgartner M, Radziwill G, Dennler J, Moelling K. c-Src is a PDZ interaction partner and substrate of the E3 ubiquitin ligase Ligand-of-Numb protein X1. FEBS Lett 2007; 581:5131-6. [DOI: 10.1016/j.febslet.2007.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/28/2022]
|