1
|
Mansour RM, El-Sayyad GS, Abulsoud AI, Hemdan M, Faraag AHI, Ali MA, Elsakka EGE, Abdelmaksoud NM, Abdallah AK, Mahdy A, Ashraf A, Zaki MB, Elrebehy MA, Mohammed OA, Abdel-Reheim MA, Abdel Mageed SS, Alam Eldein KM, Doghish AS. The role of miRNAs in pathogenesis, diagnosis, and therapy of Helicobacter pylori infection, gastric cancer-causing bacteria: Special highlights on nanotechnology-based therapy. Microb Pathog 2025; 205:107646. [PMID: 40348207 DOI: 10.1016/j.micpath.2025.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Helicobacter pylori (H. pylori) infection and consequent inflammation in the stomach are widely recognized as major contributors to gastric cancer (GC) development. Recent investigations have placed considerable emphasis on uncovering the controlling influence of small RNA molecules known as microRNAs (miRNAs) in H. pylori-related diseases, particularly gastric cancer. This review aims to offer a comprehensive understanding of the intricate roles fulfilled by miRNAs in conditions associated with H. pylori infection. Exploring miRNA biogenesis pathways reveals their intimate connection with H. pylori infection, shedding light on the underlying molecular mechanisms driving disease progression and identifying potential intervention targets. An examination of epidemiological data surrounding H. pylori infection, including prevalence, risk factors, and transmission routes, underscores the imperative for preventive measures and targeted interventions. Incorporating insights from miRNA-related research into these strategies holds promise for enhancing their efficacy in controlling H. pylori spread. The symptoms, underlying mechanisms, and virulent characteristics of the bacteria highlight the intricate relationship between H. pylori and host cells, influencing the course of diseases. Within this complex web, miRNAs play pivotal roles, regulating various facets of H. pylori's development. MicroRNAs intricately involved in directing the immune response against H. pylori infection serve as key players in molding host defense mechanisms and impacting the bacterium's evasion tactics. Utilizing this knowledge holds the potential to drive forward groundbreaking therapeutic strategies. The diagnostic and prognostic capabilities of miRNAs in H. pylori infection highlight their effectiveness as non-invasive indicators for identifying diseases and evaluating risk. Integration of miRNA signatures into diagnostic algorithms holds promise for enhancing early detection and management of H. pylori-related diseases. MiRNA-based therapeutics offer a promising avenue for combatting H. pylori-induced gastric cancer, targeting specific molecular pathways implicated in tumorigenesis. H. pylori infection induces dysregulation of several miRNAs that contribute to antibiotic resistance, inflammation, and gastric cancer progression, including downregulation of tumor-suppressive miR-7 and miR-153 and upregulation of oncogenic miR-671-5p and miR-155-5p, which promote carcinogenesis and inflammation. Additionally, H. pylori manipulates host immune responses by upregulating miRNAs such as let-7f-5p, let-7i-5p, miR-146b-5p, and miR-185-5p that suppress HLA class II expression and antigen presentation, facilitating immune evasion and chronic gastritis that predispose to gastric cancer. Future research endeavors should focus on refining these therapeutic modalities and identifying novel targets to optimize clinical outcomes. By elucidating the multifaceted roles of miRNAs in H. pylori infection, this review provides invaluable insights into disease pathogenesis, diagnostics, and therapeutics, and the role of some nanoparticles in combating the H. pylori infection. Continued research efforts are imperative for translating these insights into clinical practice and addressing the global burden of H. pylori-related diseases.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt; Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Gharieb S El-Sayyad
- Department of Medical Analysis Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt.
| | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt; Medical Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt.
| | - Asmaa K Abdallah
- Botany and Microbiology Department, Faculty of Science, Benha University, 13518 Benha, Egypt.
| | - Ahmed Mahdy
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt; Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt.
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Khaled M Alam Eldein
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Ahmed S Doghish
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
3
|
Culina S, Commère PH, Turc E, Jouy A, Pellegrini S, Roux T, Hasan M, Monot M, Michel F. MicroRNA signatures of CD4 + T cell subsets in healthy and multiple sclerosis subjects determined by small RNA-sequencing. J Neuroimmunol 2025; 401:578531. [PMID: 40010156 DOI: 10.1016/j.jneuroim.2025.578531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/28/2025]
Abstract
Diverse CD4+ T cell subsets with specialized functions operate at different phases of the immune response. Among these are phenotypically and functionally characterized naïve, central memory (CM), effector memory (EM), and regulatory (Treg) cells. Using small RNA-sequencing, we have profiled miRNAs in these cell subsets from healthy subjects and untreated patients with relapsing-remitting multiple sclerosis (RRMS). MiRNA genomic clustering and abundance were also investigated. From the 60 most differentially expressed miRNAs, broad and highly selective core signatures were determined for naïve and memory cells at homeostasis, while miR-146a-5p was strongly upregulated in Treg cells. In line with other studies, a 5-miRNA core was identified for naïve cells (miR-125b-5p, miR-99a-5p, miR-365a-3p, miR-365b-3p, miR-193b-3p). In memory cells, a number of identical miRNAs were more expressed in EM than CM cells, supporting the progressive T cell differentiation model. This was particularly the case for an 8-miRNA core (members from miR-23a∼27a∼24-2, miR-23b∼27b∼24-1, miR-221∼222 clusters, miR-22-3p, miR-181c-5p) and for the large ChrXq27.3 miR-506∼514 cluster. Interestingly, most of these miRNAs were reported to negatively regulate cell proliferation and survival. Finally, we found that the miRNA core signatures of naïve and memory CD4+ T cells were conserved in RRMS patients. Only few miRNAs were quantitatively modified and, among these, miR-1248 was validated to be downregulated in EM cells. Overall, this study expands and provides novel insights into miRNA profiling of CD4+ T cell subsets that may be useful for further investigations.
Collapse
Affiliation(s)
- Slobodan Culina
- Single Cell Biomarkers UTechS, Paris Cité University, Institut Pasteur, Paris, France
| | | | - Elodie Turc
- Biomics Technological Platform, Paris Cité University, Institut Pasteur, Paris, France
| | - Axel Jouy
- Paris Saclay University, Saclay, France; T cell activation and function DIO3 team, Department of Immunology, Paris Cité University, Institut Pasteur, Paris, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Inserm U1224, Paris Cité University, Institut Pasteur, Paris, France
| | - Thomas Roux
- CRC-SEP, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Milena Hasan
- Single Cell Biomarkers UTechS, Paris Cité University, Institut Pasteur, Paris, France
| | - Marc Monot
- Biomics Technological Platform, Paris Cité University, Institut Pasteur, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Inserm U1224, Paris Cité University, Institut Pasteur, Paris, France; T cell activation and function DIO3 team, Department of Immunology, Paris Cité University, Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
5
|
Feng Z, Liao M, Zhang L. Sex differences in disease: sex chromosome and immunity. J Transl Med 2024; 22:1150. [PMID: 39731171 DOI: 10.1186/s12967-024-05990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
Sex is a fundamental biological variable that influences immune system function, with sex chromosomes (X and Y) playing a central role in these differences. Despite substantial evidence of disparities in immune responses between males and females, biomedical research has historically overlooked sex as a critical factor. This oversight has contributed to the observed disparities in susceptibility to autoimmune diseases, infectious diseases, and malignancies between the sexes. In this review, we address the phenomena and mechanisms through which aberrant expression of sex chromosome-linked genes contributes to sex-based differences in immune responses. We specifically focus on the implications of X chromosome inactivation (XCI) escape and loss of Y chromosome (LOY). Our review aims to elucidate the molecular mechanisms driving these sex-based differences, with particular emphasis on the interactions between sex chromosome genes and immune cells in both males and females. Additionally, we discuss the potential impact of these differences on disease susceptibility and identify prospective therapeutic targets. As personalized and precision medicine advances, it is crucial to integrate sex differences into immunological research and clinical trials. We advocate for an increased focus on sex-based considerations in fundamental, translational, and clinical research to promote personalized, sex-specific healthcare.
Collapse
Affiliation(s)
- Zuxi Feng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China
| | - Minjing Liao
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Liansheng Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Critelli RM, Casari F, Borghi A, Serino G, Caporali C, Magistri P, Pecchi A, Shahini E, Milosa F, Di Marco L, Pivetti A, Lasagni S, Schepis F, De Maria N, Dituri F, Martínez-Chantar ML, Di Benedetto F, Giannelli G, Villa E. The Neoangiogenic Transcriptomic Signature Impacts Hepatocellular Carcinoma Prognosis and Can Be Triggered by Transarterial Chemoembolization Treatment. Cancers (Basel) 2024; 16:3549. [PMID: 39456643 PMCID: PMC11505901 DOI: 10.3390/cancers16203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: We evaluated the relationship between the neoangiogenic transcriptomic signature (nTS) and clinical symptoms, treatment outcomes, and survival in hepatocellular carcinoma (HCC) patients. Methods: This study prospectively followed 328 patients in the derivation and 256 in the validation cohort (with a median follow-up of 31 and 22 months, respectively). The nTS was associated with disease presentation, treatments administered, and overall survival rates. Additionally, this study investigated how multiple treatments influenced changes in nTS status and alterations in microRNA expression. Results: The nTS was identified in 27.4% of patients, linked to aggressive features like multifocality and elevated alpha-fetoprotein (AFP), a pattern consistent with that of the validation cohort. Most patients in both cohorts received treatment for HCC. nTS+ patients had limited access to, and benefited less from, liver transplantation or radiofrequency ablation (RFA) compared to nTS- patients. By the end, 78.9% had died, with nTS- patients showing better median survival and response to treatments than their nTS+ counterparts, who had lower survival across all treatment types. Among those who received transarterial chemoembolization (TACE), 31.2% (21/80 patients after the initial treatment and another four following a second TACE) transitioned from an nTS- to an nTS+ status. This shift was associated with lower survival and alterations in microRNA expressions related to oncogenic pathways. Conclusions: The nTS markedly influences treatment eligibility and survival in patients with HCC. Notably, the nTS can develop after repeated TACE procedures, significantly impacting patient survival and altering oncogenic microRNA expression patterns. These findings highlight the critical role of the nTS in guiding treatment decisions and prognostication in HCC management.
Collapse
Affiliation(s)
- Rosina Maria Critelli
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Federico Casari
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Alberto Borghi
- Internal Medicine, Ospedale di Faenza, 48018 Faenza, Italy;
| | - Grazia Serino
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Cristian Caporali
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Paolo Magistri
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annarita Pecchi
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Endrit Shahini
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Fabiola Milosa
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Lorenza Di Marco
- Clinical and Experimental Medicine PhD Program, 41125 Modena, Italy;
| | - Alessandra Pivetti
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Simone Lasagni
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Filippo Schepis
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Nicola De Maria
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Francesco Dituri
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), 28200 Madrid, Spain
| | - Fabrizio Di Benedetto
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Erica Villa
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
7
|
Lu YY, Li Y, Chen ZL, Xiong XH, Wang QY, Dong HL, Zhu C, Cui JZ, Hu A, Wang L, Song N, Liu G, Chen HP. Genetic switch selectively kills hepatocellular carcinoma cell based on microRNA and tissue-specific promoter. Mol Cell Probes 2024; 77:101981. [PMID: 39197503 DOI: 10.1016/j.mcp.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.
Collapse
Affiliation(s)
- Yuan-Yuan Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230000, China; Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, 100850, China; Center for Disease Control and Prevention in Northern Theater Command of the People's Liberation Army, Shenyang, 110031, China
| | - Zhi-Li Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiang-Hua Xiong
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Qing-Yang Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hao-Long Dong
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jia-Zhen Cui
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230000, China; Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lei Wang
- Department of Orthopedic Surgery, Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Na Song
- Department of Critical Care Medicine, People's Hospital of Laoling, Laoling, 253600, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hui-Peng Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
8
|
Roumelioti F, Tzaferis C, Konstantopoulos D, Papadopoulou D, Prados A, Sakkou M, Liakos A, Chouvardas P, Meletakos T, Pandis Y, Karagianni N, Denis MC, Fousteri M, Armaka M, Kollias G. Mir221/222 drive synovial hyperplasia and arthritis by targeting cell cycle inhibitors and chromatin remodeling components. eLife 2024; 13:e84698. [PMID: 39235454 PMCID: PMC11377061 DOI: 10.7554/elife.84698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1β but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.
Collapse
Grants
- 115142-2 BTCure Innovative Medicines Initiative
- MIS 5002135 ΙnfrafrontierGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
- MIS 6004752 Regional Operational Programme "ATTICA" (NSRF 2021-2027), ERDF, Greece/EU
- HFRI-FM17C3-3780, SingleOut Hellenic Foundation for Research and Innovation
- 10.3030/101055093 HORIZON EUROPE European Research Council
- MIS 5002802 pMedGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
Collapse
Affiliation(s)
- Fani Roumelioti
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Konstantopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasios Liakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Panagiotis Chouvardas
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Theodore Meletakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Yiannis Pandis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | | | | | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Maria Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
9
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Umapathy VR, Natarajan PM, Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review. Molecules 2024; 29:2402. [PMID: 38792263 PMCID: PMC11123887 DOI: 10.3390/molecules29102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, BIHER, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
11
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
12
|
Khalife H, Fayyad-Kazan M, Fayyad-Kazan H, Hadchity E, Borghol N, Hussein N, Badran B. Lipoic acid alters the microRNA signature in breast cancer cells. Pathol Res Pract 2024; 257:155321. [PMID: 38678851 DOI: 10.1016/j.prp.2024.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Breast cancer, the deadliest disease affecting women globally, exhibits heterogeneity with distinct molecular subtypes. Despite advances in cancer therapy, the persistence of high mortality rates due to chemotherapy resistance remains a major challenge. Lipoic acid (LA), a natural antioxidant, has proven potent anticancer properties. Yet, the impact of LA on microRNA (miRNA) expression profile in breast cancer remains unexplored. AIM The aim of this study was to unravel the effect of LA on miRNA expression profiles in different breast cancer cell lines. METHODS The MiRCURY LNA miRNA miRNome qPCR Panel was used to compare the miRNA signature in MDA-MB-231 and MCF-7 cells treated or not with LA. RESULTS We identified six upregulated and six downregulated miRNAs in LA-treated MDA-MB-231 cells and 14 upregulated and four downregulated miRNAs in LA-treated MCF-7 cells compared to control cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the deregulated miRNAs could alter different signaling cascades including FoxO, P53 and Hippo pathways. CONCLUSION The outcome of this study provides further insights into the molecular mechanisms underlying the therapeutic benefit of LA. This in turn could assist the amelioration of LA-based anticancer therapies.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Mohammad Fayyad-Kazan
- The American University of Iraq-Baghdad, School of Arts and Sciences, Department of Natural and Applied Sciences, Baghdad, Iraq
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Elie Hadchity
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nada Borghol
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nader Hussein
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon; Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon.
| |
Collapse
|
13
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
14
|
Wang H, Cheng W, Hu P, Ling T, Hu C, Chen Y, Zheng Y, Wang J, Zhao T, You Q. Integrative analysis identifies oxidative stress biomarkers in non-alcoholic fatty liver disease via machine learning and weighted gene co-expression network analysis. Front Immunol 2024; 15:1335112. [PMID: 38476236 PMCID: PMC10927810 DOI: 10.3389/fimmu.2024.1335112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the absence of effective treatments to halt its progression, novel molecular approaches to the NAFLD diagnosis and treatment are of paramount importance. Methods Firstly, we downloaded oxidative stress-related genes from the GeneCards database and retrieved NAFLD-related datasets from the GEO database. Using the Limma R package and WGCNA, we identified differentially expressed genes closely associated with NAFLD. In our study, we identified 31 intersection genes by analyzing the intersection among oxidative stress-related genes, NAFLD-related genes, and genes closely associated with NAFLD as identified through Weighted Gene Co-expression Network Analysis (WGCNA). In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we identified three hub genes using three machine learning algorithms: Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest. Subsequently, a nomogram was utilized to predict the incidence of NAFLD. The CIBERSORT algorithm was employed for immune infiltration analysis, single sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment analysis, and Protein-Protein Interaction (PPI) networks to explore the relationships between the three hub genes and other intersecting genes of NAFLD and OS. The distribution of these three hub genes across six cell clusters was determined using single-cell RNA sequencing. Finally, utilizing relevant data from the Attie Lab Diabetes Database, and liver tissues from NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further validated the significant roles of CDKN1B and TFAM in NAFLD. Results In the course of this research, we identified 31 genes with a strong association with oxidative stress in NAFLD. Subsequent machine learning analysis and external validation pinpointed two genes: CDKN1B and TFAM, as demonstrating the closest correlation to oxidative stress in NAFLD. Conclusion This investigation found two hub genes that hold potential as novel targets for the diagnosis and treatment of NAFLD, thereby offering innovative perspectives for its clinical management.
Collapse
Affiliation(s)
- Haining Wang
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ling
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Hu
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Zheng
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junqi Wang
- Department of Medical Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang You
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers (Basel) 2024; 16:836. [PMID: 38398227 PMCID: PMC10886501 DOI: 10.3390/cancers16040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a gynecological condition where endometrium-like tissue grows outside the uterus, posing challenges in understanding and treatment. This article delves into the deep cellular and molecular processes underlying endometriosis, with a focus on the crucial roles played by cyclins and cytoskeletal proteins in its pathogenesis, particularly in the context of Epithelial-Mesenchymal Transition (EMT). The investigation begins by examining the activities of cyclins, elucidating their diverse biological roles such as cell cycle control, proliferation, evasion of apoptosis, and angiogenesis among ectopic endometrial cells. A comprehensive analysis of cytoskeletal proteins follows, emphasizing their fundamental biological roles and their specific significance to endometriotic cell features. This review sheds light on the interconnected pathways through which cyclins and cytoskeletal proteins converge, contributing to the genesis and progression of endometriosis. Understanding these molecular complexities not only provides insight into the underlying causes of the disease but also holds promise for the development of specific therapeutic approaches, ushering in a new era in the management of this devastating disorder.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland;
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Mariola Głowacka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Małgorzata Soroka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| |
Collapse
|
16
|
Khosravi M, Behboudi E, Razavi-Nikoo H, Tabarraei A. Hepatitis B Virus X Protein Induces Expression Changes of miR-21, miR-22, miR-122, miR-132, and miR-222 in Huh-7 Cell Line. ARCHIVES OF RAZI INSTITUTE 2024; 79:111-119. [PMID: 39192965 PMCID: PMC11345482 DOI: 10.32592/ari.2024.79.1.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2024]
Abstract
Hepatitis B virus (HBV) X protein (HBx) plays a key role in hepatocellular carcinoma (HCC). HBx may alter the expression of multiple microRNAs (miRs), which are important in hepatocarcinogenesis. This study aimed to investigate the importance of HBx protein in the expression of miR-21, miR-22, miR-122, miR-132, and miR-222. A recombinant vector expressing HBx was developed. The Huh-7 cell line was transfected with the HBx-pcDNA3.1+ recombinant plasmid. A Real-Time Polymerase Chain Reaction was used to evaluate the expression of miR-21, miR-22, miR-122, miR-132, and miR-222 in the cell line. It was found that the expression of miR-21 and miR-222 was upregulated at all points of time after HBx transfection. The expression of miR-21 was 4.24-fold 72 h after transfection. The miR-22 had a 7.69-fold downregulation after 24 h, and the miR-122 had a significant downregulation after 48 h (10-fold). The miR-132 expression reached its lowest rate 12 h after HBx transfection (8.33-fold), and the miR-222 expression was upregulated in transfected cells but was not significantly different (1.18- to 2.45-fold). The significant downregulation of miR-22, miR-122, and miR-132 implicates their inhibitory roles in the progression of HBV-associated HCC. The expression of these microRNAs could be used as a prognostic marker for the progression of HBV-associated liver disease.
Collapse
Affiliation(s)
- M Khosravi
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - E Behboudi
- Department of Basic Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - H Razavi-Nikoo
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - A Tabarraei
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
18
|
Pandey C, Tiwari P. Differential microRNAs Expression during Cancer Development, and Chemoprevention by Natural Compounds: A Comprehensive Review. J Environ Pathol Toxicol Oncol 2024; 43:65-80. [PMID: 39016142 DOI: 10.1615/jenvironpatholtoxicoloncol.2024050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.
Collapse
Affiliation(s)
- Chhaya Pandey
- School of Environmental Biology, Awadhesh Pratap Singh University, Rewa-486001, Madhya Pradesh, India
| | | |
Collapse
|
19
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
20
|
Abudoubari S, Bu K, Mei Y, Maimaitiyiming A, An H, Tao N. Preliminary study on miRNA in prostate cancer. World J Surg Oncol 2023; 21:270. [PMID: 37641123 PMCID: PMC10464187 DOI: 10.1186/s12957-023-03151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE To screen for miRNAs differentially expressed in prostate cancer and prostate hyperplasia tissues and to validate their association with prostate cancer. METHODS Patients diagnosed by pathology in the Department of Urology of the First Affiliated Hospital of Xinjiang Medical University from October 2021 to June 2022 were selected, and their general clinical information, blood samples, and prostate tissue samples were collected. miRNA microarray technology was performed to obtain differentially expressed miRNAs in prostate cancer and hyperplasia tissues, and miRNAs to be studied were screened by microarray results and review of relevant literature. The detection of miRNA expression in the patients' blood and prostate tissue samples was measured. The miRNA-222-mimics were transfected into PC3 cells, and cell biology experiments such as CCK8, scratch, Transwell, and flow cytometry were performed to detect the effects of overexpressed miRNA-222 on the growth and proliferation, invasive ability, apoptotic ability, and metastatic ability of prostate cancer cells. RESULTS The results of the miRNA microarray showed that there were many differentially expressed miRNAs in prostate cancer and hyperplasia tissues, and four miRNAs, miRNA-144, miRNA-222, miRNA-1248, and miRNA-3651 were finally selected as the subjects by reviewing relevant literature. The results showed that the expression of miRNA-222 in prostate cancer tissues was lower than that in prostate hyperplasia tissues (P < 0.05). The expression of miRNA-222, miRNA-1248, and miRNA-3651 in blood samples of prostate cancer patients was lower than that in prostate hyperplasia patients (P < 0.05). The analysis results indicated that the f/t ratio and the relative expression of miRNA-222 and miRNA-1248 were independent influences of prostate cancer (P < 0.05), in which overexpression of miRNA-222 decreased the proliferative, invasive, and metastatic abilities of PC3 cells and enhanced the level of apoptosis of cancer cells. CONCLUSIONS Although there was no significant change in the overall incidence of prostate cancer in this study, significant changes occurred in the incidence of prostate cancer with different characteristics. In addition, the nomogram prediction model of prostate cancer-specific survival rate constructed based on four factors has a high reference value, which helps physicians to correctly assess the patient-specific survival rate and provides a reference basis for patient diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Saimaitikari Abudoubari
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, 844700, Xinjiang, China
| | - Ke Bu
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yujie Mei
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
- Xinjiang Clinical Research Center for Genitourinary System, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Xinjiang Clinical Research Center for Genitourinary System, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
21
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
22
|
Pei HZ, Peng Z, Zhuang X, Wang X, Lu B, Guo Y, Zhao Y, Zhang D, Xiao Y, Gao T, Yu L, He C, Wu S, Baek SH, Zhao ZJ, Xu X, Chen Y. miR-221/222 induce instability of p53 By downregulating deubiquitinase YOD1 in acute myeloid leukemia. Cell Death Discov 2023; 9:249. [PMID: 37454155 DOI: 10.1038/s41420-023-01537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs). Herein, we found that the expression of YOD1, among several DUBs, is substantially reduced in blood cells from AML patients. We identified that YOD1 deubiqutinated and stabilized p53 through interaction via N-terminus of p53 and OTU domain of YOD1. In addition, expression levels of YOD1 were suppressed by elevated miR-221/222 in AML cells through binding to the 3' untranslated region of YOD1, as verified by reporter gene assays. Treatment of cells with miR-221/222 mimics and inhibitors yielded the expected effects on YOD1 expressions, in agreement with the negative correlation observed between the expression levels of miR-221/222 and YOD1 in AML cells. Finally, overexpression of YOD1 stabilized p53, upregulated pro-apoptotic p53 downstream genes, and increased the sensitivity of AML cells to FLT3 inhibitors remarkably. Collectively, our study identified a pathway connecting miR-221/222, YOD1, and p53 in AML. Targeting miR-221/222 and stimulating YOD1 activity may improve the therapeutic effects of FLT3 inhibitors in patients with AML.
Collapse
Affiliation(s)
- Han Zhong Pei
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Xiaomei Zhuang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Dengyang Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yunjun Xiao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Tianshun Gao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chunxiao He
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea.
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK, 73104, USA.
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
23
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
24
|
Pekarek L, Torres-Carranza D, Fraile-Martinez O, García-Montero C, Pekarek T, Saez MA, Rueda-Correa F, Pimentel-Martinez C, Guijarro LG, Diaz-Pedrero R, Alvarez-Mon M, Ortega MA. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int J Mol Sci 2023; 24:ijms24087268. [PMID: 37108432 PMCID: PMC10139430 DOI: 10.3390/ijms24087268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the importance of epigenetic markers in the carcinogenesis of different malignant neoplasms has been demonstrated, also demonstrating their utility for understanding metastatic spread and tumor progression in cancer patients. Among the different biomarkers, microRNAs represent a set of non-coding RNAs that regulate gene expression, having been involved in a wide variety of neoplasia acting in different oncogenic pathways. Both the overexpression and downregulation of microRNAs represent a complex interaction with various genes whose ultimate consequence is increased cell proliferation, tumor invasion and interaction with various driver markers. It should be noted that in current clinical practice, even though the combination of different microRNAs has been shown to be useful by different authors at diagnostic and prognostic levels, there are no diagnostic kits that can be used for the initial approach or to assess recurrences of oncological diseases. Previous works have cited microRNAs as having a critical role in several carcinogenic mechanisms, ranging from cell cycle alterations to angiogenesis and mechanisms of distant metastatic dissemination. Indeed, the overexpression or downregulation of specific microRNAs seem to be tightly involved in the modulation of various components related to these processes. For instance, cyclins and cyclin-dependent kinases, transcription factors, signaling molecules and angiogenic/antiangiogenic products, among others, have been recognized as specific targets of microRNAs in different types of cancer. Therefore, the purpose of this article is to describe the main implications of different microRNAs in cell cycle alterations, metastasis and angiogenesis, trying to summarize their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Francisco Rueda-Correa
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Carolina Pimentel-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
25
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
La T, Chen S, Zhao XH, Zhou S, Xu R, Teng L, Zhang YY, Ye K, Xu L, Guo T, Jamaluddin MF, Feng YC, Tang HJ, Wang Y, Xu Q, Gu Y, Cao H, Liu T, Thorne RF, Shao F, Zhang XD, Jin L. LncRNA LIMp27 Regulates the DNA Damage Response through p27 in p53-Defective Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204599. [PMID: 36638271 PMCID: PMC9982580 DOI: 10.1002/advs.202204599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.
Collapse
Affiliation(s)
- Ting La
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
- National‐Local Joint Engineering Research Center of Biodiagnosis & BiotherapyThe Second Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Song Chen
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Institute of Medicinal BiotechnologyJiangsu College of NursingHuai'anJiangsu223300China
| | - Xiao Hong Zhao
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Shuai Zhou
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Ran Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Liu Teng
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Yuan Yuan Zhang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Kaihong Ye
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Liang Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Tao Guo
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Muhammad Fairuz Jamaluddin
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yu Chen Feng
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Hai Jie Tang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yanliang Wang
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Qin Xu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Yue Gu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Huixia Cao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical ResearchUniversity of New South WalesSydneyNew South Wales2750Australia
| | - Rick F. Thorne
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Feng‐Min Shao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Xu Dong Zhang
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Lei Jin
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| |
Collapse
|
27
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
28
|
Chan GCK, Than WH, Kwan BCH, Lai KB, Chan RCK, Teoh JYC, Ng JKC, Chow KM, Cheng PMS, Law MC, Leung CB, Li PKT, Szeto CC. Adipose and Plasma microRNAs miR-221 and 222 Associate with Obesity, Insulin Resistance, and New Onset Diabetes after Peritoneal Dialysis. Nutrients 2022; 14:nu14224889. [PMID: 36432575 PMCID: PMC9699429 DOI: 10.3390/nu14224889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The correlation between microRNA, obesity, and glycemic intolerance in patients on peritoneal dialysis (PD) is unknown. We aimed to measure the adipose and plasma miR-221 and -222 levels, and to evaluate their association with adiposity, glucose intolerance, and new onset diabetes mellitus (NODM) after the commencement of PD. METHODS We prospectively recruited incident adult PD patients. miR-221 and -222 were measured from adipose tissue and plasma obtained during PD catheter insertion. These patients were followed for 24 months, and the outcomes were changes in adiposity, insulin resistance, and NODM after PD. RESULTS One hundred and sixty-five patients were recruited. Patients with pre-existing DM had higher adipose miR-221 (1.1 ± 1.2 vs. 0.7 ± 0.9-fold, p = 0.02) and -222 (1.9 ± 2.0 vs. 1.2 ± 1.3-fold, p = 0.01). High adipose miR-221 and -222 levels were associated with a greater increase in waist circumference (miR-221: beta 1.82, 95% CI 0.57-3.07, p = 0.005; miR-222: beta 1.35, 95% CI 0.08-2.63, p = 0.038), Homeostatic Model Assessment for Insulin Resistance (HOMA) index (miR-221: beta 8.16, 95% CI 2.80-13.53, p = 0.003; miR-222: beta 6.59, 95% CI 1.13-12.05, p = 0.018), and insulin requirements (miR-221: beta 0.05, 95% CI 0.006-0.09, p = 0.02; miR-222: beta 0.06, 95% CI 0.02-0.11, p = 0.002) after PD. The plasma miR-222 level predicted the onset of NODM (OR 8.25, 95% CI 1.35-50.5, p = 0.02). CONCLUSION miR-221 and -222 are associated with the progression of obesity, insulin resistance, and NODM after PD.
Collapse
Affiliation(s)
- Gordon Chun Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3505-1729; Fax: +852-2637-3852
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bonnie Ching Ha Kwan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ka Bik Lai
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ronald Cheong Kin Chan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeremy Yuen Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jack Kit Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kai Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Phyllis Mei Shan Cheng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Man Ching Law
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chi Bon Leung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Philip Kam Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cheuk Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
29
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
30
|
A Novel-Defined Necroptosis-Related miRNA Signature for Forecasting the Prognosis of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9957604. [PMID: 36199758 PMCID: PMC9527403 DOI: 10.1155/2022/9957604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/24/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Background Increasing evidence has shown that necroptosis has enormous significance in the generation and deterioration of cancer, and miRNA molecular markers involved in necroptosis in low-grade gliomas (LGGs) have not been thoroughly reported. Methods Using the miRNA data of 512 samples from The Cancer Genome Atlas (TCGA), 689 miRNAs from LGG samples were split into high immunity score and low immunity score groups for analysis. The differential miRNAs related to necroptosis were analyzed by univariate Cox regression analysis. On the basis of the outcome of univariate Cox regression analysis, miRNAs with significant differences were selected to construct a multivariate Cox regression model and calculate the risk score. Then, we evaluated whether the risk score could be used as an unaided prognostic factor. Results Overall, six differential miRNAs were identified (hsa-miR-148a-3p, hsa-miR-141-3p, hsa-miR-223-3p, hsa-miR-7-5p, hsa-miR-500a-3p, and hsa-miR-200a-5p). Univariate and multivariate Cox regression analyses were performed, and the c index was 0.71. Then, by mixing the risk score with clinicopathological factors, univariate Cox regression (HR: 2.7146, 95% CI: 1.8402−4.0044, P < 0.0001) and multivariate Cox regression analyses (HR: 2.3280, 95% CI: 1.5692−3.4536, P < 0.001) were performed. The data suggested that the risk score is an unaided prognostic indicator, which is markedly related with the overall survival time of LGG sufferers. Thus, a lower risk score is correlated with better prediction of LGG. Conclusion In order to achieve the ultimate goal of improving the living conditions of patients, we established prognostic risk model using 6 miRNAs related to necroptosis, which has the ability to predict the prognosis of LGG. It is possible to further enrich the therapeutic targets for LGG and provide clinical guidance for the treatment of LGG in the future.
Collapse
|
31
|
Nguyen THN, Nguyen TTN, Nguyen TTM, Nguyen LHM, Huynh LH, Phan HN, Nguyen HT. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2022; 196:1-15. [DOI: 10.1007/s10549-022-06728-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
32
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
33
|
Ashrafi Dehkordi K, Asadi-Samani M, Shojaeian A, Mahmoudian-Sani MR. Decreased cell proliferation and induced apoptosis in human B-chronic lymphocytic leukemia following miR-221 inhibition through modulation of p27 expression. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the effects of the miR-221 inhibition on the human B-chronic lymphocytic leukemia (B-CLL) cell viability and the p27 gene expression, to introduce a new treatment approach for this type of cancer. In this context, the cyclin-dependent kinase (Cdk) inhibitor 1B (p27Kip1) is considered as an enzyme inhibitor that encodes a protein belonging to the Cip/Kip family of the Cdk inhibitor proteins.
Methods
The affected miR-221 inhibition in the B-CLL cell viability was initially assessed. The inhibition of miR-221 in the B-CLL cell line (183-E95) was thus performed using locked nucleic acid (LNA) as an antagomir. After the LNA-anti-miR-221 transfection, the miR-221 quantification, cell viability, and apoptosis assays were evaluated at different intervals by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry (FC), respectively. The qRT-PCR was also completed for the p27 gene. The data were subsequently analyzed by independent-samples t-test and one-way analysis of variance (ANOVA).
Results
A gradual reduction was observed in the B-CLL cell viability, and consequently the transfected LNA-anti-miR cell viability reached below 55% of the untreated cells after 72 h of transfection. A statistically significant difference was found in the cell viability between the LNA-anti-miR-treated and control groups (p-value ≤ 0.043). The downregulation of miR-221 in the B-CLL (183-E95) cells was further conducted by LNA-anti-miR-221.
Conclusion
The miR-221 inhibition significantly decreases cell viability through augmenting the p27 gene expression and inducing apoptosis. Moreover, the findings demonstrated that the inhibition of miR-221 might be a new treatment approach for B-CLL, although more confirmation is needed by investigating appropriate animal models.
Collapse
|
34
|
Stieg DC, Wang Y, Liu LZ, Jiang BH. ROS and miRNA Dysregulation in Ovarian Cancer Development, Angiogenesis and Therapeutic Resistance. Int J Mol Sci 2022; 23:ijms23126702. [PMID: 35743145 PMCID: PMC9223852 DOI: 10.3390/ijms23126702] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
The diverse repertoires of cellular mechanisms that progress certain cancer types are being uncovered by recent research and leading to more effective treatment options. Ovarian cancer (OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in tumorigenesis through the alteration of a multitude of molecular processes. The development of OC can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor (HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays an important role in inducing endogenous ROS production in OC. This review will discuss several important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting the effective therapeutic potential of OC through these mechanisms.
Collapse
Affiliation(s)
- David C. Stieg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Yifang Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
35
|
Sgubin M, Pegoraro S, Pellarin I, Ros G, Sgarra R, Piazza S, Baldassarre G, Belletti B, Manfioletti G. HMGA1 positively regulates the microtubule-destabilizing protein stathmin promoting motility in TNBC cells and decreasing tumour sensitivity to paclitaxel. Cell Death Dis 2022; 13:429. [PMID: 35504904 PMCID: PMC9065117 DOI: 10.1038/s41419-022-04843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients. We demonstrate that HMGA1 depletion leads to a downregulation of stathmin expression and activity on microtubules resulting in decreased TNBC cell motility. We show that this pathway is mediated by the cyclin-dependent kinase inhibitor p27kip1 (p27). Indeed, the silencing of HMGA1 expression in TNBC cells results both in an increased p27 protein stability and p27-stathmin binding. When the expression of both HMGA1 and p27 is silenced, we observe a significant rescue in cell motility. These data, obtained in cellular models, were validated in BC patients. In fact, we find that patients with high levels of both HMGA1 and stathmin and low levels of p27 have a statistically significant lower survival probability in terms of relapse-free survival (RFS) and distant metastasis-free survival (DMFS) with respect to the patient group with low HMGA1, low stathmin, and high p27 expression levels. Finally, we show in an in vivo xenograft model that depletion of HMGA1 chemo-sensitizes tumour cells to paclitaxel, a drug that is commonly used in TNBC treatments. This study unveils a new interaction among HMGA1, p27, and stathmin that is critical in BC cell migration. Moreover, our data suggest that taxol-based treatments may be more effective in reducing the tumour burden when tumour cells express low levels of HMGA1.
Collapse
Affiliation(s)
- Michela Sgubin
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Pegoraro
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Pellarin
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gloria Ros
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: International School for Advanced Studies (SISSA), Area of Neuroscience Trieste, Trieste, Italy
| | - Riccardo Sgarra
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Guidalberto Manfioletti
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
36
|
Ravi S, Alencar AM, Arakelyan J, Xu W, Stauber R, Wang CCI, Papyan R, Ghazaryan N, Pereira RM. An Update to Hallmarks of Cancer. Cureus 2022; 14:e24803. [PMID: 35686268 PMCID: PMC9169686 DOI: 10.7759/cureus.24803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
In the last decade, there has been remarkable progress in research toward understanding and refining the hallmarks of cancer. In this review, we propose a new hallmark - "pro-survival autophagy." The importance of pro-survival autophagy is well established in tumorigenesis, as it is related to multiple steps in cancer progression and vital for some cancers. Autophagy is a potential anti-cancer therapeutic target. For this reason, autophagy is a good candidate as a new hallmark of cancer. We describe two enabling characteristics that play a major role in enabling cells to acquire the hallmarks of cancer - "tumor-promoting microenvironment and macroenvironment" and "cancer epigenetics, genome instability and mutation." We also discuss the recent updates, therapeutic and prognostic implications of the eight hallmarks of cancer described by Hanahan et al. in 2011. Understanding these hallmarks and enabling characteristics is key not only to developing new ways to treat cancer efficiently but also to exploring options to overcome cancer resistance to treatment.
Collapse
Affiliation(s)
- Swapna Ravi
- Department of Medicine, St. Luke's Hospital, Duluth, USA
| | - Antonio M Alencar
- Department of Medical Oncology, Hospital Universitário da Universidade Federal do Maranhão, Hospital São Domingos, São Luís, BRA
| | - Jemma Arakelyan
- Department of Oncology/Solid Tumors, Yerevan State Medical University, Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Weihao Xu
- Department of Business Development, Harbour BioMed, Boston, USA
| | - Roberta Stauber
- Department of Oncology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | - Cheng-Chi I Wang
- Department of Research and Development, Beltie Bio, Inc, San Diego, USA
| | - Ruzanna Papyan
- Department of Pediatric Oncology and Hematology, Yerevan State Medical University, Pediatric Center and Blood Disorders Center of Armenia, Yerevan, ARM
| | - Narine Ghazaryan
- Department of Molecular Biology, L.A. Orbeli Institute of Physiology National Academy of Sciences, Republic of Armenia (NAS RA) Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Rosalina M Pereira
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
37
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
38
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Zhou Y, Ng DY, Richards AM, Wang P. Loss of full-length pumilio 1 abrogates miRNA-221-induced gene p27 silencing-mediated cell proliferation in the heart. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:456-470. [PMID: 35036057 PMCID: PMC8728526 DOI: 10.1016/j.omtn.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022]
Abstract
Upregulated expression of microRNA (miR)-221 is associated with downregulation of p27 and subsequent increased cell proliferation in a variety of human cancers. It is unknown whether miR-221 mimics could trigger neoplastic cellular proliferation. In vitro, we demonstrated miR-221 significantly downregulates the expression of P27 and increases proliferation of H9c2 and cardiac fibroblasts. The knockdown of PUM1 but not PUM2 abolished such effects by miR-221, as verified by RT-qPCR and western blot, direct binding of p27 3′ UTR by luciferase reporter assay and cell proliferation by Ki67. In vivo expression of P27 in the rat liver, heart, kidney, spleen, and muscle were not affected by miR-221 at 1 and 4 mg/kg and concurrently full-length (FL) PUM1 (140 kDa) was not detected. Instead, isoforms of 105 and 90 kDa were observed and generated through alternative RNA slicing verified by cDNA cloning and sequencing and cathepsin K cleavage confirmed by studies with the inhibitor odanacatib. This is the first study to address the possible pro-proliferative effects of miR-221 mimic therapeutics in cardiovascular applications. Loss of FL PUM1 expression is a key factor abrogating miR-221-mediated p27 regulation, although other concurrent mechanisms cannot be excluded. Our findings provide essential insights into the context-dependent nature of miRNA functionality.
Collapse
|
40
|
Doghish AS, Ismail A, El-Mahdy HA, Elkady MA, Elrebehy MA, Sallam AAM. A review of the biological role of miRNAs in prostate cancer suppression and progression. Int J Biol Macromol 2022; 197:141-156. [PMID: 34968539 DOI: 10.1016/j.ijbiomac.2021.12.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PC) is the third-leading cause of cancer-related deaths worldwide. Although the current treatment strategies are progressing rapidly, PC is still representing a substantial medical problem for affected patients. Several factors are involved in PC initiation, progression, and treatments failure including microRNAs (miRNAs). The miRNAs are endogenous short non-coding RNA sequence negatively regulating target mRNA expression via degradation or translation repression. miRNAs play a pivotal role in PC pathogenesis through its ability to initiate the induction of cancer stem cells (CSCs) and proliferation, as well as sustained cell cycle, evading apoptosis, invasion, angiogenesis, and metastasis. Furthermore, miRNAs regulate major molecular pathways affecting PC such as the androgen receptor (AR) pathway, p53 pathway, PTEN/PI3K/AKT pathway, and Wnt/β-catenin pathway. Furthermore, miRNAs alter PC therapeutic response towards the androgen deprivation therapy (ADT), chemotherapy and radiation therapy (RT). Thus, the understanding and profiling of the altered miRNAs expression in PC could be utilized as a non-invasive biomarker for the early diagnosis as well as for patient sub-grouping with different prognoses for individualized treatment. Accordingly, in the current review, we summarized in updated form the roles of various oncogenic and tumor suppressor (TS) miRNAs in PC, revealing their underlying molecular mechanisms in PC initiation and progression.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
41
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
42
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Jiang Y, Ghias K, Gupta S, Gupta A. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors. Life (Basel) 2021; 11:1439. [PMID: 34947970 PMCID: PMC8707107 DOI: 10.3390/life11121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Expression and functions of microRNAs (miRNAs) have been widely investigated in cancer treatment-induced complications and as a response to physical activity, respectively, but few studies focus on the application of miRNAs as biomarkers in exercise-based cancer rehabilitation. Research has shown that certain miRNA expression is altered substantially due to tissue damage caused by cancer treatment and chronic inflammation. MiRNAs are released from the damaged tissue and can be easily detected in blood plasma. Levels of the miRNA present in peripheral circulation can therefore be used to measure the extent of tissue damage. Moreover, damage to tissues such as cardiac and skeletal muscle significantly affects the individual's health-related fitness, which can be determined using physiologic functional assessments. These physiologic parameters are a measure of tissue health and function and can therefore be correlated with the levels of circulating miRNAs. In this paper, we reviewed miRNAs whose expression is altered during cancer treatment and may correlate to physiological, physical, and psychological changes that significantly impact the quality of life of cancer survivors and their role in response to physical activity. We aim to identify potential miRNAs that can not only be used for monitoring changes that occur in health-related fitness during cancer treatment but can also be used to evaluate response to exercise-based rehabilitation and monitor individual progress through the rehabilitation programme.
Collapse
Affiliation(s)
| | | | | | - Ananya Gupta
- Department of Physiology, National University of Ireland, H91 TK33 Galway, Ireland; (Y.J.); (K.G.); (S.G.)
| |
Collapse
|
44
|
Lahooti B, Poudel S, Mikelis CM, Mattheolabakis G. MiRNAs as Anti-Angiogenic Adjuvant Therapy in Cancer: Synopsis and Potential. Front Oncol 2021; 11:705634. [PMID: 34956857 PMCID: PMC8695604 DOI: 10.3389/fonc.2021.705634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a key mechanism for tumor growth and metastasis and has been a therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant with the rapidly proliferating tumor cell population and tumor outgrowth. Current angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range of downstream signaling molecules provide clinical benefit, but not without significant side effects. miRNAs are important post-transcriptional regulators of gene expression, and their dysregulation has been associated with tumor progression, metastasis, resistance, and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief overview of the current anti-angiogenic approaches, their molecular targets, and side effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we highlight specific miRNAs, based on their activity on endothelial or cancer cells, we discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the importance of angiogenesis being evaluated in such combinatorial approaches.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- Department of Pharmacy, University of Patras, Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
45
|
Said MN, Muawia S, Helal A, Fawzy A, Allam RM, Shafik NF. Regulation of CDK inhibitor p27 by microRNA 222 in breast cancer patients. Exp Mol Pathol 2021; 123:104718. [PMID: 34752733 DOI: 10.1016/j.yexmp.2021.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common of all cancers and the second leading cause of cancer-related deaths among women worldwide. MicroRNAs regulate at least 60% of the human genes, including tumor suppressor genes and oncogenes, and can thereby affect cancer risk. In this study, the prognostic values of the CDK inhibitor p27 and miR-222 as biomarkers for breast cancer were evaluated. METHODS The real-time quantitative polymerase chain reaction method was employed to measure the expression level of miR-222, whereas the serum levels of the CDK inhibitor p27 were measured via enzyme-linked immunosorbent assay. The levels were determined in sera from 110 participants representing three different groups. RESULTS Patients with breast cancer exhibited significantly higher expression levels of miR-222 and lower levels of CDK inhibitor p27 than the control group. In addition, a statistically significant inverse correlation between miR-222 and the CDK inhibitor p27 was observed. The receiver operating characteristic curves plotted for serum p27 and miR-222 helped in significantly differentiating between breast cancer patients and controls but could not discriminate between those with stage II and stage III cancer. CONCLUSION Thus, a significant upregulation in the serum miR-222 levels was observed in cancer patients, and a significant inverse correlation was noted between the miR-222 and CDK inhibitor p27 expression levels. These findings indicate that miR-222 may be used as a useful noninvasive screening biomarker for human breast cancer. MICROABSTRACT Novel biomarkers for prognosis, prediction, and therapeutic purposes are essential as the prognosis and therapeutic targets of breast cancer are dependent on traditional markers, such as the tumor stage and hormonal receptor status. This study aimed to evaluate the diagnostic and prognostic values of the CDK inhibitor p27 and miR-222 in breast cancer. Our results indicated that miR-222 and the CDK inhibitor p27 may be used as noninvasive biomarkers to screen for human breast cancer but cannot discriminate between patients with early breast cancer and patients with advanced breast cancer.
Collapse
Affiliation(s)
- Michael Nabil Said
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat city, Egypt
| | - Shaden Muawia
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat city, Egypt
| | - Amany Helal
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Amal Fawzy
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology & Biostatistics Department, National Cancer Institute, Cairo University, Egypt
| | - Nevine F Shafik
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt.
| |
Collapse
|
46
|
Han S, Li G, Jia M, Zhao Y, He C, Huang M, Jiang L, Wu M, Yang J, Ji X, Liu X, Chen C, Chu X. Delivery of Anti-miRNA-221 for Colorectal Carcinoma Therapy Using Modified Cord Blood Mesenchymal Stem Cells-Derived Exosomes. Front Mol Biosci 2021; 8:743013. [PMID: 34616773 PMCID: PMC8488275 DOI: 10.3389/fmolb.2021.743013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Exosomes, as natural intercellular information carriers, have great potential in the field of drug delivery. Many studies have focused on modifying exosome surface proteins to allow drugs to specifically target cancer cells. Methods: In this study, human cord blood mesenchymal stromal cell-derived exosomes were used in the delivery of anti-miRNA oligonucleotides so as to be specifically ingested by tumor cells to perform anti-tumor functions. Mesenchymal stem cells modified by the fusion gene iRGD-Lamp2b were constructed to separate and purify exosomes, and the anti-miRNA-221 oligonucleotide (AMO) was loaded into the exosomes by electroporation. Results: The AMO-loaded exosomes (AMO-Exos) effectively inhibited the proliferation and clonal formation of colon cancer cells in vitro, and it was further found that AMO-Exos was taken up by tumor cells through interaction with the NRP-1 protein. The results of a xenograft tumor model also showed that iRGD-modified exosomes were obviously enriched in tumor sites, exerting excellent anti-tumor efficacy. In vivo imaging showed that exosomes were mainly distributed in liver, spleen, and lung tissues. Conclusion: Our results suggest that genetically modified exosomes could be an ideal natural nanostructure for anti-miRNA oligonucleotide delivery.
Collapse
Affiliation(s)
- Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Jia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yulu Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Chenglong He
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Longwei Jiang
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoqin Ji
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G 0/G 1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel) 2021; 10:antiox10101559. [PMID: 34679694 PMCID: PMC8533466 DOI: 10.3390/antiox10101559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. The cytotoxicity of various WU extracts was evaluated with HeLa (cervical cancer), HepG2 (liver cancer), HT-29 (colorectal cancer), and A549 (non-small cell lung cancer) cells by means of Sulforhodamine B (SRB) assay. Therein, the dimethyl carbonate extract of WU (WUD) was tested with the most potent anti-proliferative activity against the four cancer cell lines, and its effects on cell viability, cell cycle progression, DNA damage, intracellular reactive oxygen species (ROS), and expression levels of G0/G1-related proteins in A549 cells were further examined. First, it was found that WUD inhibited the proliferation of A549 cells in a time- and dose-dependent manner. In addition, WUD induced G0/G1 phase arrest and modulated the expression of G0/G1 phase-associated proteins Cyclin D1, Cyclin E1, and P27 in A549 cells. Furthermore, WUD increased the protein abundance of P27 by inhibiting FOXO3A/SKP2 axis-mediated protein degradation and also significantly induced the γH2AX expression and intracellular ROS generation of A549 cells. It was also found that the inhibitory effect of WUD on the proliferation and G0/G1 cell cycle progression of A549 cells could be attenuated by NAC, a ROS scavenger. On the other hand, phytochemical analysis of WUD with UPLC-QTOF-MS/MS indicated 10 sesquiterpenoid compounds. In conclusion, WUD exhibited remarkable anti-proliferative effects on A549 cells by improving the intracellular ROS level and by subsequently modulating the cell proliferation and G0/G1 cell cycle progression of A549 cells. These findings proved the good therapeutic potential of WU for the treatment of NSCLC.
Collapse
|
48
|
Ramorola BR, Goolam-Hoosen T, Alves de Souza Rios L, Mowla S. Modulation of Cellular MicroRNA by HIV-1 in Burkitt Lymphoma Cells-A Pathway to Promoting Oncogenesis. Genes (Basel) 2021; 12:genes12091302. [PMID: 34573283 PMCID: PMC8468732 DOI: 10.3390/genes12091302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses and viral components have been shown to manipulate the expression of host microRNAs (miRNAs) to their advantage, and in some cases to play essential roles in cancer pathogenesis. Burkitt lymphoma (BL), a highly aggressive B-cell derived cancer, is significantly over-represented among people infected with HIV. This study adds to accumulating evidence demonstrating that the virus plays a direct role in promoting oncogenesis. A custom miRNA PCR was used to identify 32 miRNAs that were differently expressed in Burkitt lymphoma cells exposed to HIV-1, with a majority of these being associated with oncogenic processes. Of those, hsa-miR-200c-3p, a miRNA that plays a crucial role in cancer cell migration, was found to be significantly downregulated in both the array and in single-tube validation assays. Using an in vitro transwell system we found that this downregulation correlated with significantly enhanced migration of BL cells exposed to HIV-1. Furthermore, the expression of the ZEB1 and ZEB2 transcription factors, which are promotors of tumour invasion and metastasis, and which are direct targets of hsa-miR-200c-3p, were found to be enhanced in these cells. This study therefore identifies novel miRNAs as role players in the development of HIV-associated BL, with one of these miRNAs, hsa-miR-200c-3p, being a candidate for further clinical studies as a potential biomarker for prognosis in patients with Burkitt lymphoma, who are HIV positive.
Collapse
|
49
|
Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel) 2021; 13:cancers13164114. [PMID: 34439268 PMCID: PMC8391635 DOI: 10.3390/cancers13164114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are endogenous non-coding 20–22 nucleotide long RNAs that play a fundamental role in the post-transcriptional control of gene expression. Consequently, microRNAs are involved in multiple biological processes of cancer and could be used as biomarkers with prognostic and predictive significance. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have become a mainstay of treatment for patients with advanced hormone receptor-positive (HR) breast cancer. Despite the initial high response rates, approximately 10% of patients demonstrate primary resistance to CDK4/6 inhibitors while acquired resistance is almost inevitable. Considering the fundamental role of miRNAs in tumorigenesis, we aimed to explore the potential involvement of microRNAs in response to CDK4/6 inhibition in solid tumors. A number of microRNAs were shown to confer resistance or sensitivity to CDK4/6 inhibitors in preclinical studies, although this remains to be proved in human studies. Abstract Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as novel treatment options in the management of advanced or metastatic breast cancer. MicroRNAs are endogenous non-coding 19–22-nucleotide-long RNAs that regulate gene expression in development and tumorigenesis. Herein, we systematically review all microRNAs associated with response to CDK4/6 inhibitors in solid tumors and hematological malignancies. Eligible articles were identified by a search of the MEDLINE and ClinicalTrials.gov databases for the period up to1 January 2021; the algorithm consisted of a predefined combination of the words “microRNAs”, “cancer” and “CDK 4/6 inhibitors”. Overall, 15 studies were retrieved. Six microRNAs (miR-126, miR-326, miR3613-3p, miR-29b-3p, miR-497 and miR-17-92) were associated with sensitivity to CDK4/6 inhibitors. Conversely, six microRNAs (miR-193b, miR-432-5p, miR-200a, miR-223, Let-7a and miR-21) conferred resistance to treatment with CDK4/6 inhibitors. An additional number of microRNAs (miR-124a, miR9, miR200b and miR-106b) were shown to mediate cellular response to CDK4/6 inhibitors without affecting sensitivity to treatment. Collectively, our review provides evidence that microRNAs could serve as predictive biomarkers for treatment with CDK4/6 inhibitors. Moreover, microRNA-targeted therapy could potentially maximize sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Almog Shalit
- Medical School, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
- Correspondence: ; Tel.: +30-21-0338-1554; Fax: +30-21-3216-2511
| |
Collapse
|
50
|
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11:8771-8796. [PMID: 34522211 PMCID: PMC8419061 DOI: 10.7150/thno.62642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.
Collapse
Affiliation(s)
- Peipei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Yue Zhou
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Arthur M. Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand
| |
Collapse
|