1
|
Mukai T, Vargas-Rodriguez O, Englert M, Tripp HJ, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. Transfer RNAs with novel cloverleaf structures. Nucleic Acids Res 2017; 45:2776-2785. [PMID: 28076288 PMCID: PMC5389517 DOI: 10.1093/nar/gkw898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023] Open
Abstract
We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | | | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
3
|
Nair N, Raff H, Islam MT, Feen M, Garofalo DM, Sheppard K. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn). J Mol Biol 2016; 428:618-630. [PMID: 26804570 DOI: 10.1016/j.jmb.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Collapse
Affiliation(s)
- Nilendra Nair
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - Melanie Feen
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Denise M Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
4
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter.
Collapse
|
5
|
Rogers TE, Ataide SF, Dare K, Katz A, Seveau S, Roy H, Ibba M. A pseudo-tRNA modulates antibiotic resistance in Bacillus cereus. PLoS One 2012; 7:e41248. [PMID: 22815980 PMCID: PMC3399842 DOI: 10.1371/journal.pone.0041248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/19/2012] [Indexed: 01/18/2023] Open
Abstract
Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNAOther, which does not function in translation. Deletion of tRNAOther led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNAOther. This suggested that tRNAOther might be expressed as part of a larger RNA, and RACE analysis subsequently confirmed the existence of several RNA species that significantly extend both the 3′ and 5′-ends of tRNAOther. tRNAOther expression levels were found to be responsive to changes in extracellular iron concentration, consistent with the presence of three putative ferric uptake regulator (Fur) binding sites in the 5′ leader region of one of these larger RNAs. Taken together with previous data, this study now suggests that tRNAOther may function by providing a tRNA-like structural element within a larger regulatory RNA. These findings illustrate that while integration of genomic islands often leaves tRNA genes intact and functional, in other instances inactivation may generate tRNA-like elements that are then recruited to other functions in the cell.
Collapse
Affiliation(s)
- Theresa E. Rogers
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Sandro F. Ataide
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Kiley Dare
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Stephanie Seveau
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Hervé Roy
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Janssen BD, Diner EJ, Hayes CS. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 905:291-309. [PMID: 22736012 DOI: 10.1007/978-1-61779-949-5_19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During protein synthesis, ribosomes translate the genetic information encoded within messenger RNAs into defined amino acid sequences. Transfer RNAs (tRNAs) are crucial adaptor molecules in this process, delivering amino acid residues to the ribosome and holding the nascent peptide chain as it is assembled. Here, we present methods for the analysis of aminoacyl- and peptidyl-tRNA species isolated from Escherichia coli. These approaches utilize denaturing gel electrophoresis at acidic pH to preserve the labile ester bonds that link amino acids to tRNA. Specific aminoacyl- and peptidyl-tRNAs are detected by Northern blot hybridization using probes for tRNA isoacceptors. Small peptidyl-tRNAs can be differentiated from aminoacyl-tRNA through selective deacylation of the latter with copper sulfate. Additionally, peptidyl-tRNAs can be detected through metabolic labeling of the nascent peptide. This approach is amenable to pulse-chase analysis to examine peptidyl-tRNA turnover in vivo. We have applied these methods to study programmed translational arrests and the kinetics of paused ribosome turnover.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | | |
Collapse
|
7
|
Foy N, Jester B, Conant GC, Devine KM. The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn. BMC Microbiol 2010; 10:196. [PMID: 20649968 PMCID: PMC2916919 DOI: 10.1186/1471-2180-10-196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression. RESULTS A global study of 891 completely sequenced bacterial genomes identified T box elements associated with control of LysRS expression in only four bacterial species: B. cereus, B. thuringiensis, Symbiobacterium thermophilum and Clostridium beijerinckii. Here we investigate the T box element found in the regulatory region of the lysK gene in B. cereus strain 14579. We show that this T box element is functional, responding in a canonical manner to an increased level of uncharged tRNALys but, unusually, also responding to an increased level of uncharged tRNAAsn. We also show that B. subtilis strains with T box regulated expression of the endogenous lysS or the heterologous lysK genes are viable. CONCLUSIONS The T box element controlling lysK (encoding LysRS1) expression in B. cereus strain 14579 is functional, but unusually responds to depletion of charged tRNALys and tRNAAsn. This may have the advantage of making LysRS1 expression responsive to a wider range of nutritional stresses. The viability of B. subtilis strains with a single LysRS1 or LysRS2, whose expression is controlled by this T box element, makes the rarity of the occurrence of such control of LysRS expression puzzling.
Collapse
Affiliation(s)
- Niall Foy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2. Ireland
| | - Brian Jester
- Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67 084 Strasbourg, France
| | - Gavin C Conant
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO 65211. USA
| | - Kevin M Devine
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2. Ireland
| |
Collapse
|
8
|
tRNAs: cellular barcodes for amino acids. FEBS Lett 2009; 584:387-95. [PMID: 19903480 DOI: 10.1016/j.febslet.2009.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
Abstract
The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis.
Collapse
|
9
|
Ataide SF, Rogers TE, Ibba M. The CCA anticodon specifies separate functions inside and outside translation in Bacillus cereus. RNA Biol 2009; 6:479-87. [PMID: 19667754 DOI: 10.4161/rna.6.4.9332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNA(Trp) and tRNA(Other). tRNA(Trp) was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNA(Trp) with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNA(Other) was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNA(Trp). Polysomes were found to contain tRNA(Trp), consistent with its role in translation, but not tRNA(Other) suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNA(Other) in this process was investigated. Deletion of tRNA(Other) led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
10
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
11
|
RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A 2008; 105:4667-72. [PMID: 18305156 DOI: 10.1073/pnas.0800006105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylation system to investigate the two phylogenetically distinct MprF paralogs (MprF1 and MprF2) found in the bacterial pathogen Clostridium perfringens. Although both forms of MprF aminoacylate PG, they do so with different amino acids; MprF1 is specific for Ala-tRNA(Ala), and MprF2 utilizes Lys-tRNA(Lys). This provides a mechanism by which the cell can fine tune the charge of the inner membrane by using the neutral amino acid alanine, potentially providing resistance to a broader range of antibiotics than offered by lysine modification alone. Mutation of tRNA(Ala) and tRNA(Lys) had little effect on either MprF activity, indicating that the aminoacyl moiety is the primary determinant for aminoacyl-tRNA recognition. The lack of discrimination of the tRNA is consistent with the role of MprF as a virulence factor, because species-specific differences in tRNA sequence would not present a barrier to horizontal gene transfer. Taken together, our findings reveal how the MprF proteins provide a potent virulence mechanism by which pathogens can readily acquire resistance to chemically diverse antibiotics.
Collapse
|
12
|
Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819-27. [PMID: 18154269 DOI: 10.1021/cb7002253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Collapse
Affiliation(s)
| | | | | | | | - Bappaditya Roy
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Rajat Banerjee
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Tina M. Henkin
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| | - Michael Ibba
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| |
Collapse
|
13
|
Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, Zhao G, Kang PT, Chan M, Gottschalk G, Metcalf WW, Krzycki JA. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp. Mol Microbiol 2007; 64:1306-18. [PMID: 17542922 DOI: 10.1111/j.1365-2958.2007.05740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Methanosarcina spp. begin methanogenesis from methylamines with methyltransferases made via the translation of UAG as pyrrolysine. In vitro evidence indicates two possible routes to pyrrolysyl-tRNA(Pyl). PylS ligates pyrrolysine to tRNA(Pyl). Alternatively, class I and class II lysyl-tRNA synthetases (LysRS1 and LysRS2) together form lysyl-tRNA(Pyl), a potential intermediate to pyrrolysyl-tRNA(Pyl). The unusual possession of both LysRS1 and LysRS2 by Methanosarcina spp. may also reflect differences in catalytic properties. Here we assessed the in vivo relevance of these hypotheses. The lysK and mtmB transcripts, encoding LysRS1 and monomethylamine methyltransferase, were detectable in Methanosarcina barkeri during early log growth on trimethylamine, but not methanol. In contrast, lysS transcript encoding LysRS2 was detectable during log phase with either substrate. Methanosarcina acetivorans strains bearing deletions of lysK or lysS grew normally on methanol and methylamines with wild-type levels of monomethylamine methyltransferase and aminoacyl-tRNA(Pyl). The lysK and lysS genes could not replace pylS in a recombinant system employing tRNA(Pyl) for UAG suppression. The results support an association of LysRS1 with growth on methylamine, but not an essential role for LysRS1/LysRS2 in the genetic encoding of pyrrolysine. However, decreased lysyl-tRNA(Lys) in the lysS mutant provides a possible rationale for stable transfer of the bacterial lysS gene to methanoarchaea.
Collapse
Affiliation(s)
- Anirban Mahapatra
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oshikane H, Sheppard K, Fukai S, Nakamura Y, Ishitani R, Numata T, Sherrer RL, Feng L, Schmitt E, Panvert M, Blanquet S, Mechulam Y, Söll D, Nureki O. Structural basis of RNA-dependent recruitment of glutamine to the genetic code. Science 2006; 312:1950-4. [PMID: 16809540 DOI: 10.1126/science.1128470] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.
Collapse
MESH Headings
- Acylation
- Adenosine Triphosphate/metabolism
- Ammonia/metabolism
- Anticodon
- Binding Sites
- Catalytic Domain
- Computer Simulation
- Crystallography, X-Ray
- Dimerization
- Genetic Code
- Glutamine/metabolism
- Hydrogen Bonding
- Magnesium/metabolism
- Methanobacteriaceae/enzymology
- Methanobacteriaceae/genetics
- Models, Molecular
- Mutation
- Nitrogenous Group Transferases/chemistry
- Nitrogenous Group Transferases/metabolism
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/metabolism
Collapse
Affiliation(s)
- Hiroyuki Oshikane
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang S, Prætorius-Ibba M, Ataide S, Roy H, Ibba M. Discrimination of cognate and noncognate substrates at the active site of class I lysyl-tRNA synthetase. Biochemistry 2006; 45:3646-52. [PMID: 16533047 PMCID: PMC2527480 DOI: 10.1021/bi0523005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoacyl-tRNA synthetases are divided into two unrelated structural classes, with lysyl-tRNA synthetase (LysRS) being the only enzyme represented in both classes. On the basis of the structure of l-lysine complexed with Pyrococcus horikoshii class I LysRS (LysRS1) and homology to glutamyl-tRNA synthetase (GluRS), residues implicated in amino acid recognition and noncognate substrate discrimination were systematically replaced in Borrelia burgdorferi LysRS1. The catalytic efficiency of steady-state aminoacylation (k(cat)/K(M)) with lysine by LysRS1 variants fell by 1-4 orders of magnitude compared to that of the wild type. Disruption of putative hydrogen bonding interactions through replacement of G29, T31, and Y269 caused up to 1500-fold reductions in k(cat)/K(M), similar to changes previously observed for comparable variants of class II LysRS (LysRS2). Replacements of W220 and H242, both of which are implicated in hydrophobic interactions with the side chain of lysine, resulted in more dramatic changes with up to 40000-fold reductions in k(cat)/K(M) observed. This indicates that the more compact LysRS1 active site employs both electrostatic and hydrophobic interactions during lysine discrimination, explaining the ability of LysRS1 to discriminate against noncognate substrates accepted by LysRS2. Several of the LysRS1 variants were found to be more specific than the wild type with respect to noncognate amino acid recognition but less efficient in cognate aminoacylation. This indicates that LysRS1 compromises between efficient catalysis and substrate discrimination, in contrast to LysRS2 which is considerably more effective in catalysis but is less specific than its class I counterpart.
Collapse
Affiliation(s)
- Shiming Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette Prætorius-Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sandro Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hervé Roy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Correspondence to: Dr. Michael Ibba, Department of Microbiology, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, Phone: 614-292-2120, Fax: 614-292-8120, e-mail:
| |
Collapse
|
16
|
Shaul S, Nussinov R, Pupko T. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms. BMC Evol Biol 2006; 6:22. [PMID: 16529662 PMCID: PMC1475646 DOI: 10.1186/1471-2148-6-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/12/2006] [Indexed: 11/15/2022] Open
Abstract
Background While the premise that lateral gene transfer (LGT) is a dominant evolutionary force is still in considerable dispute, the case for widespread LGT in the family of aminoacyl-tRNA synthetases (aaRS) is no longer contentious. aaRSs are ancient enzymes, guarding the fidelity of the genetic code. They are clustered in two structurally unrelated classes. Only lysine aminoacyl-tRNA synthetase (LysRS) is found both as a class 1 and a class 2 enzyme (LysRS1-2). Remarkably, in several extant prokaryotes both classes of the enzyme coexist, a unique phenomenon that has yet to receive its due attention. Results We applied a phylogenetic approach for determining the extent and origin of LGT in prokaryotic LysRS. Reconstructing species trees for Archaea and Bacteria, and inferring that their last common ancestors encoded LysRS1 and LysRS2, respectively, we studied the gains and losses of both classes. A complex pattern of LGT events emerged. In specific groups of organisms LysRS1 was replaced by LysRS2 (and vice versa). In one occasion, within the alpha proteobacteria, a LysRS2 to LysRS1 LGT was followed by reversal to LysRS2. After establishing the most likely LGT paths, we studied the possible origins of the laterally transferred genes. To this end, we reconstructed LysRS gene trees and evaluated the likely origins of the laterally transferred genes. While the sources of LysRS1 LGTs were readily identified, those for LysRS2 remain, for now, uncertain. The replacement of one LysRS by another apparently transits through a stage simultaneously coding for both synthetases, probably conferring a selective advantage to the affected organisms. Conclusion The family of LysRSs features complex LGT events. The currently available data were sufficient for identifying unambiguously the origins of LysRS1 but not of LysRS2 gene transfers. A selective advantage is suggested to organisms encoding simultaneously LysRS1-2.
Collapse
Affiliation(s)
- Shaul Shaul
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research, Nanobiology Program, NCI-Frederick Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Roy H, Ling J, Alfonzo J, Ibba M. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J Biol Chem 2005; 280:38186-92. [PMID: 16162501 DOI: 10.1074/jbc.m508281200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNA(Phe). Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNA(Phe), an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | |
Collapse
|