1
|
Romerio F. Origin and functional role of antisense transcription in endogenous and exogenous retroviruses. Retrovirology 2023; 20:6. [PMID: 37194028 DOI: 10.1186/s12977-023-00622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.
Collapse
Affiliation(s)
- Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Douville RN, Nath A. Human endogenous retroviruses and the nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:465-85. [PMID: 25015500 DOI: 10.1016/b978-0-444-53488-0.00022-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Renée N Douville
- Department of Microbiology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 2011; 6:e26099. [PMID: 22022525 PMCID: PMC3192792 DOI: 10.1371/journal.pone.0026099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/19/2011] [Indexed: 12/30/2022] Open
Abstract
Background Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. Methodology/Principal Findings Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. Conclusions/Significance Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.
Collapse
Affiliation(s)
- Kristel Kaer
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Anni Hallikma
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Pilvi Nigumann
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mart Speek
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
5
|
Hoeksema F, Hamer K, Siep M, Verhees JA, Otte AP. Placing the RPL32 Promoter Upstream of a Second Promoter Results in a Strongly Increased Number of Stably Transfected Mammalian Cell Lines That Display High Protein Expression Levels. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2010; 2011:492875. [PMID: 21350661 PMCID: PMC3039411 DOI: 10.4061/2011/492875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/04/2010] [Indexed: 11/20/2022]
Abstract
The use of high stringency selection systems commonly results in a strongly diminished number of stably transfected mammalian cell lines. Here we placed twelve different promoters upstream of an adjacent primary promoter and tested whether this might result in an increased number of colonies; this is in the context of a stringent selection system. We found that only the promoter of the human ribosomal protein, RPL32, induced a high number of colonies in CHO-DG44 cells. This phenomenon was observed when the RPL32 promoter was combined with the CMV, SV40, EF1-α, and the β-actin promoters. In addition, these colonies displayed high protein expression levels. The RPL32 promoter had to be functionally intact, since the deletion of a small region upstream of the transcription start site demolished its positive action. We conclude that adding the RPL32 promoter to an expression cassette in cis may be a powerful tool to augment gene expression levels.
Collapse
Affiliation(s)
- F Hoeksema
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Spigoni G, Gedressi C, Mallamaci A. Regulation of Emx2 expression by antisense transcripts in murine cortico-cerebral precursors. PLoS One 2010; 5:e8658. [PMID: 20066053 PMCID: PMC2799550 DOI: 10.1371/journal.pone.0008658] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Emx2 encodes for a transcription factor expressed in the embryonic intermediate mesoderm and central nervous system (CNS). It is implicated in several aspects of cerebral cortex development, including morphogenetic field specification, arealization, precursor proliferation and lamination. Four Emx2-associated antisense transcripts have been found in the urogenital system; one of them, Emx2OS, has been also detected in the adult brain. Until now, however, nothing is known about expression and function of Emx2OS in the developing CNS. Methodology/Principal Findings By quantitative RT-PCR and in situ hybridization, we reconstructed the Emx2OS expression profile in the embryonic CNS, paying special attention to the developing cerebral cortex. Emx2OS was observed in a number of CNS structures expressing also Emx2. Within the cortex, Emx2OS was detectable in periventricular precursors, expressing the sense transcript, and peaked in newly born post-mitotic neurons not expressing such transcript. By integrating lentiviral gene delivery, RNAi, TetON technology, morpholino-mediated gene knock-down, drug-induced perturbation of gene expression, and quantitative RT-PCR, we addressed possible roles of Ex2 antisense RNA in Emx2 regulation, in primary CNS precursor cultures. We found that, in both cortical precursors and their neuronal progenies, Emx2 antisense RNA contributes to post-transcriptional down-regulation of its sense partner, possibly by a Dicer-promoted mechanism. The same RNA, when delivered to rhombo-spinal precursors, stimulates ectopic expression of Emx2, whereas Emx2 knock-out dramatically impairs Emx2OS transcription. This suggests that, within the developing CNS, a reciprocal Emx2/Emx2OS regulatory loop may normally sustain transcription at the Emx2 locus. Conclusions/Significance This study shows that antisense transcripts may contribute to developmental regulation of a key transcription factor gene implicated in CNS patterning, possibly by complex and multilevel mechanisms. The activation of Emx2 by a short antisense transcript may be a prototype of a method for overexpressing single specific genes, without introducing additional copies of them into the genome.
Collapse
Affiliation(s)
- Giulia Spigoni
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Chiara Gedressi
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Antonello Mallamaci
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
- * E-mail:
| |
Collapse
|
7
|
Benachenhou F, Jern P, Oja M, Sperber G, Blikstad V, Somervuo P, Kaski S, Blomberg J. Evolutionary conservation of orthoretroviral long terminal repeats (LTRs) and ab initio detection of single LTRs in genomic data. PLoS One 2009; 4:e5179. [PMID: 19365549 PMCID: PMC2664473 DOI: 10.1371/journal.pone.0005179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/10/2009] [Indexed: 01/06/2023] Open
Abstract
Background Retroviral LTRs, paired or single, influence the transcription of both retroviral and non-retroviral genomic sequences. Vertebrate genomes contain many thousand endogenous retroviruses (ERVs) and their LTRs. Single LTRs are difficult to detect from genomic sequences without recourse to repetitiveness or presence in a proviral structure. Understanding of LTR structure increases understanding of LTR function, and of functional genomics. Here we develop models of orthoretroviral LTRs useful for detection in genomes and for structural analysis. Principal Findings Although mutated, ERV LTRs are more numerous and diverse than exogenous retroviral (XRV) LTRs. Hidden Markov models (HMMs), and alignments based on them, were created for HML- (human MMTV-like), general-beta-, gamma- and lentiretroviruslike LTRs, plus a general-vertebrate LTR model. Training sets were XRV LTRs and RepBase LTR consensuses. The HML HMM was most sensitive and detected 87% of the HML LTRs in human chromosome 19 at 96% specificity. By combining all HMMs with a low cutoff, for screening, 71% of all LTRs found by RepeatMasker in chromosome 19 were found. HMM consensus sequences had a conserved modular LTR structure. Target site duplications (TG-CA), TATA (occasionally absent), an AATAAA box and a T-rich region were prominent features. Most of the conservation was located in, or adjacent to, R and U5, with evidence for stem loops. Several of the long HML LTRs contained long ORFs inserted after the second A rich module. HMM consensus alignment allowed comparison of functional features like transcriptional start sites (sense and antisense) between XRVs and ERVs. Conclusion The modular conserved and redundant orthoretroviral LTR structure with three A-rich regions is reminiscent of structurally relaxed Giardia promoters. The five HMMs provided a novel broad range, repeat-independent, ab initio LTR detection, with prospects for greater generalisation, and insight into LTR structure, which may aid development of LTR-targeted pharmaceuticals.
Collapse
Affiliation(s)
- Farid Benachenhou
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patric Jern
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Merja Oja
- Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki and Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki, Finland
| | - Göran Sperber
- Unit of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vidar Blikstad
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Panu Somervuo
- Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki and Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki, Finland
| | - Samuel Kaski
- Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki and Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki, Finland
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
8
|
Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT. EBV LMP-2A employs a novel mechanism to transactivate the HERV-K18 superantigen through its ITAM. Virology 2008; 385:261-6. [PMID: 19070345 DOI: 10.1016/j.virol.2008.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 01/31/2023]
Abstract
EBV encodes latent membrane protein (LMP)-2A that functions as a homologue of the activated BCR. We have previously shown that LMP-2A transactivates a human endogenous retrovirus, HERV-K18, in infected B-lymphocytes. The Env protein of HERV-K18 encodes a superantigen that strongly stimulates a large number of T cells. To delineate the mechanism through which LMP-2A transactivates HERV-K18 env, we tested a panel of tyrosine mutants of LMP-2A in a murine B lymphoma that stably harbors HERV-K18. Our analysis revealed that the immunoreceptor tyrosine-based activation motif (ITAM) of LMP-2A is important for HERV-K18 env transactivation. ITAM contains 2 tyrosines that initiate signaling cascades when both residues are phosphorylated. However, in our study, single-tyrosine mutants of ITAM still retained full induction of HERV-K18 env. After truncating 25 kb of genomic sequence downstream of HERV-K18, LMP-2A failed to transactivate HERV-K18 env. Thus, an LMP-2A-inducible element is located downstream of HERV-K18.
Collapse
Affiliation(s)
- Francis C Hsiao
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
9
|
Franck E, Hulsen T, Huynen MA, de Jong WW, Lubsen NH, Madsen O. Evolution of closely linked gene pairs in vertebrate genomes. Mol Biol Evol 2008; 25:1909-1921. [PMID: 18566020 DOI: 10.1093/molbev/msn136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of intergenic DNA (gene duos). We show here that a lack of head-to-tail (h2t) gene duos is an even more distinctive characteristic of mammalian genomes, with the platypus genome as the only exception. In nonmammalian vertebrate and in nonvertebrate genomes, the frequency of h2h, h2t, and tail-to-tail (t2t) gene duos is close to random. In tetrapod genomes, the h2t and t2t gene duos are more likely to be part of a larger gene cluster of closely spaced genes than h2h gene duos; in fish and urochordate genomes, the reverse is seen. In human and mouse tissues, the expression profiles of gene duos were skewed toward positive coexpression, irrespective of orientation. The organization of orthologs of both members of about 40% of the human gene duos could be traced in other species, enabling a prediction of the organization at the branch points of gnathostomes, tetrapods, amniotes, and euarchontoglires. The accumulation of h2h gene duos started in tetrapods, whereas that of h2t and t2t gene duos only started in amniotes. The apparent lack of evolutionary conservation of h2t and t2t gene duos relative to that of h2h gene duos is thus a result of their relatively late origin in the lineage leading to mammals; we show that once they are formed h2t and t2t gene duos are as stable as h2h gene duos.
Collapse
Affiliation(s)
- Erik Franck
- Biomolecular Chemistry, 271 Nijmegen Center of Molecular Life Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 2008; 4:134-46. [PMID: 18692773 PMCID: PMC2604135 DOI: 10.1016/j.chom.2008.06.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/09/2008] [Accepted: 05/23/2008] [Indexed: 12/11/2022]
Abstract
Integrated HIV-1 genomes are found within actively transcribed host genes in latently infected CD4(+) T cells. Readthrough transcription of the host gene might therefore suppress HIV-1 gene expression and promote the latent infection that allows viral persistence in patients on therapy. To address the effect of host gene readthrough, we used homologous recombination to insert HIV-1 genomes in either orientation into an identical position within an intron of an actively transcribed host gene, hypoxanthine-guanine phosphoribosyltransferase (HPRT). Constructs were engineered to permit or block readthrough transcription of HPRT. Readthrough transcription inhibited HIV-1 gene expression for convergently orientated provirus but enhanced HIV-1 gene expression when HIV-1 was in the same orientation as the host gene. Orientation had a >10-fold effect on HIV-1 gene expression. Due to the nature of HIV-1 integration sites in vivo, this orientation-dependent regulation can influence the vast majority of infected cells and adds complexity to the maintenance of latency.
Collapse
Affiliation(s)
- Yefei Han
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Ph.D. Program in Biochemistry, Cell and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Yijie B. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Wenfeng An
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | | | - Hung-Chih Yang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Karen O'Connell
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Dominic Dordai
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Jef D. Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Howard Hughes Medical Institute, Baltimore MD 21205
| |
Collapse
|
11
|
Carninci P, Yasuda J, Hayashizaki Y. Multifaceted mammalian transcriptome. Curr Opin Cell Biol 2008; 20:274-80. [PMID: 18468878 DOI: 10.1016/j.ceb.2008.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/20/2008] [Indexed: 02/03/2023]
Abstract
Despite surprisingly a small number of protein-coding gene in mammalian genomes, a large variety of different RNAs is being produced. These RNAs are amazingly different in their number, size, cell localization, and mechanism of actions. Although new classes of short RNAs (sRNAs) are being continuously discovered, it is not yet obvious how many of the sRNAs are originated. Altogether, the research in the recent few years has identified an unexpectedly rich variety of mechanisms by which noncoding RNAs act, suggesting that we have identified probably only few of the many potential functional mechanism and more investigation will be needed to comprehensively understand the complex nature and biology of mammalian RNAome. Here, we focus on various aspects of the diversity of the biological role of these nonprotein-coding RNAs (ncRNAs), with emphasis on functional mechanisms recently elucidated.
Collapse
Affiliation(s)
- Piero Carninci
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|