1
|
Alcover S, Ramos-Regalado L, Girón G, Muñoz-García N, Vilahur G. HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome. Antioxidants (Basel) 2025; 14:434. [PMID: 40298782 PMCID: PMC12024175 DOI: 10.3390/antiox14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic syndrome (MetS) is a complex cluster of interrelated metabolic disorders that significantly elevate the risk of cardiovascular disease, making it a pressing public health concern worldwide. Among the key features of MetS, dyslipidemia-characterized by altered levels of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)-plays a crucial role in the disorder's progression. This review aims to elucidate the intricate interplay between HDL-C and TG within the context of lipid metabolism and cardiovascular health, while also addressing the detrimental impact of various cardiovascular risk factors and associated comorbidities. The dynamics of HDL-C and TG are explored, highlighting their reciprocal relationship and respective contributions to the pathophysiology of MetS. Elevated levels of TGs are consistently associated with reduced concentrations of HDL-C, resulting in a lipid profile that promotes the development of vascular disease. Specifically, as TG levels rise, the protective cardiovascular effects of HDL-C are diminished, leading to the increased accumulation of pro-atherogenic TG-rich lipoproteins and low-density lipoprotein particles within the vascular wall, contributing to the progression of atheromas, which can ultimately result in significant ischemic cardiovascular events. Ultimately, this paper underscores the significance of HDL and TG as essential targets for therapeutic intervention, emphasizing their potential in effectively managing MetS and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sebastià Alcover
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lisaidy Ramos-Regalado
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela Girón
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Natàlia Muñoz-García
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Albrecht FB, Schick A, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2025; 25:e2400320. [PMID: 39450850 PMCID: PMC11904394 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B. Albrecht
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
- Faculty of Natural ScienceUniversity of HohenheimSchloss Hohenheim 170599StuttgartGermany
| | - Ann‐Kathrin Schick
- Faculty of ScienceEnergy and Building ServicesEsslingen UniversityKanalstraße 3373728EsslingenGermany
| | - Annemarie Klatt
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Freia F. Schmidt
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Svenja Nellinger
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Petra J. Kluger
- School of Life SciencesReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| |
Collapse
|
3
|
Afzal NU, Kabir ME, Barman H, Sharmah B, Roy MK, Kalita J, Manna P. The role of lipid-soluble vitamins on glucose transporter. VITAMINS AND HORMONES 2024; 128:123-153. [PMID: 40097248 DOI: 10.1016/bs.vh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose is the primary source of energy for most of the cells and essential for basic functionalities of life's biochemical processes. Transportation of glucose via biological membranes is essential for life mediated by glucose transporters (GLUT) through facilitated diffusion. Glucose transporters perform a crucial role in maintaining normal health as they transfer the most essential molecules of life, glucose. There are 14 various types of glucose transporters that transport primarily glucose and fructose. GUTTs are trans-membrane proteins expressed in the plasma membrane that facilitate the entry of carbohydrate molecules inside the cells. These transporters provide the passage for the carbohydrate molecules, which undergo oxidation inside the cells and provide essential energy in the form of ATPs. Lipid-soluble vitamins, namely A, D, E, and K have been reported to play a key role in stimulating several glucose transporters. Supplementation of lipid-soluble vitamins stimulates the expression of glucose transporters, most importantly GLUT4, GLUT2, GLUT1, and GLUT3, which play a critical role in regulating glucose metabolism in muscle, liver, brain, and RBCs. For their ability to increase the expression of GLUTs, the lipid-soluble vitamins can be the potential micronutrient for combating various non-communicable diseases. The present article discusses the essential role of lipid-soluble vitamins in the regulation of glucose transporters.
Collapse
Affiliation(s)
- Nazim Uddin Afzal
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Mir Ekbal Kabir
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Hiranmoy Barman
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Bhaben Sharmah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Monojit Kumar Roy
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
4
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
6
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
7
|
Norman NJ, Ghali J, Radzyukevich TL, Heiny JA, Landero-Figueroa J. Glucose uptake in mammalian cells measured by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
9
|
Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022; 18:524-537. [DOI: 10.1038/s41581-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
|
10
|
Role of puerarin in pathological cardiac remodeling: A review. Pharmacol Res 2022; 178:106152. [DOI: 10.1016/j.phrs.2022.106152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
|
11
|
Liao W, Xu N, Zhang H, Liao W, Wang Y, Wang S, Zhang S, Jiang Y, Xie W, Zhang Y. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Clin Transl Med 2022; 12:e699. [PMID: 35184403 PMCID: PMC8858623 DOI: 10.1002/ctm2.699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Persistent hyperglycemia decreases the sensitivity of insulin-sensitive organs to insulin, owing to which cells fail to take up and utilize glucose, which exacerbates the progression of type 2 diabetes mellitus (T2DM). lncRNAs' abnormal expression is reported to be associated with the progression of diabetes and plays a significant role in glucose metabolism. Herein, we study the detailed mechanism underlying the functions of lncRNA EPB41L4A-AS1in T2DM. METHODS Data from GEO datasets were used to analyze the expression of EPB41L4A-AS1 between insulin resistance or type 2 diabetes patients and the healthy people. Gene expression was evaluated by qRT-PCR and western blotting. Glucose uptake was measured by Glucose Uptake Fluorometric Assay Kit. Glucose tolerance of mice was detected by Intraperitoneal glucose tolerance tests. Cell viability was assessed by CCK-8 assay. The interaction between EPB41L4A-AS1 and GCN5 was explored by RNA immunoprecipitation, RNA pull-down and RNA-FISH combined immunofluorescence. Oxygen consumption rate was tested by Seahorse XF Mito Stress Test. RESULTS EPB41L4A-AS1 was abnormally increased in the liver of patients with T2DM and upregulated in the muscle cells of patients with insulin resistance and in T2DM cell models. The upregulation was associated with increased TP53 expression and reduced glucose uptake. Mechanistically, through interaction with GCN5, EPB41L4A-AS1 regulated histone H3K27 crotonylation in the GLUT4 promoter region and nonhistone PGC1β acetylation, which inhibited GLUT4 transcription and suppressed glucose uptake by muscle cells. In contrast, EPB41L4A-AS1 binding to GCN5 enhanced H3K27 and H3K14 acetylation in the TXNIP promoter region, which activated transcription by promoting the recruitment of the transcriptional activator MLXIP. This enhanced GLUT4/2 endocytosis and further suppressed glucose uptake. CONCLUSION Our study first showed that the EPB41L4A-AS1/GCN5 complex repressed glucose uptake via targeting GLUT4/2 and TXNIP by regulating histone and nonhistone acetylation or crotonylation. Since a weaker glucose uptake ability is one of the major clinical features of T2DM, the inhibition of EPB41L4A-AS1 expression seems to be a potentially effective strategy for drug development in T2DM treatment.
Collapse
Affiliation(s)
- Weijie Liao
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Weifang Liao
- College of life science and technologyWuhan Polytechnic UniversityWuhanP. R. China
| | - Yanzhi Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Songmao Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Shikuan Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
| | - Weidong Xie
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Yaou Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| |
Collapse
|
12
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
13
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
14
|
Xing P, Hong L, Yan G, Tan B, Qiao J, Wang S, Li Z, JieYang, Zheng E, Cai G, Wu Z, Gu T. Neuronatin gene expression levels affect foetal growth and development by regulating glucose transport in porcine placenta. Gene 2021; 809:146051. [PMID: 34756962 DOI: 10.1016/j.gene.2021.146051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022]
Abstract
Imprinted genes play important regulatory roles in the growth and development of placentas and foetuses during pregnancy. In a previous study, we found that the imprinted gene Neuronatin (NNAT) is involved in foetal development; NNAT expression was significantly lower in the placentas of piglets that died neonatally compared to the placentas of surviving piglets. However, the function and mechanism of NNAT in regulating porcine placental development is still unknown. In this study, we collected the placentas of high- and low-weight foetuses at gestational day (GD 65, 90), (n = 4-5 litters/GD) to investigate the role of NNAT in regulating foetal growth and development. We found that the mRNA and protein levels of NNAT were significantly higher in the placentas of high-weight than low-weight foetuses. We then overexpressed NNAT in porcine placental trophoblast cell lines (pTr2) and demonstrated that NNAT activated the PI3K-AKT pathway, and further promoted the expression of glucose transporter 1 (GLUT1) and increased cellular calcium ion levels, which improved glucose transport in placental trophoblast cells in vitro. To conclude, our study suggests that NNAT expression impacts porcine foetal development by regulating placental glucose transport.
Collapse
Affiliation(s)
- Pingping Xing
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanhao Yan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - JieYang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
15
|
Abstract
The molecular mechanisms of cellular insulin action have been the focus of much investigation since the discovery of the hormone 100 years ago. Insulin action is impaired in metabolic syndrome, a condition known as insulin resistance. The actions of the hormone are initiated by binding to its receptor on the surface of target cells. The receptor is an α2β2 heterodimer that binds to insulin with high affinity, resulting in the activation of its tyrosine kinase activity. Once activated, the receptor can phosphorylate a number of intracellular substrates that initiate discrete signaling pathways. The tyrosine phosphorylation of some substrates activates phosphatidylinositol-3-kinase (PI3K), which produces polyphosphoinositides that interact with protein kinases, leading to activation of the kinase Akt. Phosphorylation of Shc leads to activation of the Ras/MAP kinase pathway. Phosphorylation of SH2B2 and of Cbl initiates activation of G proteins such as TC10. Activation of Akt and other protein kinases produces phosphorylation of a variety of substrates, including transcription factors, GTPase-activating proteins, and other kinases that control key metabolic events. Among the cellular processes controlled by insulin are vesicle trafficking, activities of metabolic enzymes, transcriptional factors, and degradation of insulin itself. Together these complex processes are coordinated to ensure glucose homeostasis.
Collapse
|
16
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
17
|
The Metabolic Role of GRK2 in Insulin Resistance and Associated Conditions. Cells 2021; 10:cells10010167. [PMID: 33467677 PMCID: PMC7830135 DOI: 10.3390/cells10010167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IRES) is a pathophysiological condition characterized by the reduced response to insulin of several tissues, including myocardial and skeletal muscle. IRES is associated with obesity, glucose intolerance, dyslipidemia, and hypertension, evolves toward type 2 diabetes, and increases the risk of developing cardiovascular diseases. Several studies designed to explore the mechanisms involved in IRES allowed the identification of a multitude of potential molecular targets. Among the most promising, G Protein Coupled Receptor Kinase type 2 (GRK2) appears to be a suitable one given its functional implications in many cellular processes. In this review, we will discuss the metabolic role of GRK2 in those conditions that are characterized by insulin resistance (diabetes, hypertension, heart failure), and the potentiality of its inhibition as a therapeutic strategy to revert both insulin resistance and its associated phenotypes.
Collapse
|
18
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
19
|
Park E, Hong K, Kwon BM, Kim Y, Kim JH. Jaceosidin Ameliorates Insulin Resistance and Kidney Dysfunction by Enhancing Insulin Receptor Signaling and the Antioxidant Defense System in Type 2 Diabetic Mice. J Med Food 2020; 23:1083-1092. [PMID: 32780673 DOI: 10.1089/jmf.2020.4739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence has shown that flavonoids extracted from Artemisia have beneficial effects on metabolic disorders. However, whether and how jaceosidin ameliorates insulin resistance and diabetic nephropathy in type 2 diabetes mellitus is largely unknown. For 8 weeks, db/db diabetic mice were fed with or without jaceosidin. Oral jaceosidin supplementation reduced fasting blood glucose levels and insulin resistance through the upregulation of insulin receptor downstream pathways in the liver and skeletal muscles. While jaceosidin did not noticeably alter kidney filtration function, this dietary intervention contributed to attenuating the accumulation of advanced glycation end products in diabetic kidneys. The levels of VEGF-a (vascular endothelial growth factor-a) proteins in the diabetic kidneys were markedly diminished by jaceosidin treatments, which increased the expression and activity of Cu (copper) and Zn-SOD (zinc-superoxide dismutase). Therefore, it is suggested that jaceosidin supplementation elicits antidiabetic effects and treats diabetic nephropathy by augmenting insulin signaling, suppressing fibrosis, and enhancing antioxidant activity.
Collapse
Affiliation(s)
- Eunkyo Park
- Department of Home Economics Education, College of Education, Chung-Ang University, Seoul, Korea
| | - Kwangseok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| | - Byoung-Mog Kwon
- Division of Biomedical Convergent, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Home Economics Education, College of Education, Chung-Ang University, Seoul, Korea.,Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| |
Collapse
|
20
|
Pereno V, Lei J, Carugo D, Stride E. Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6388-6398. [PMID: 32407094 DOI: 10.1021/acs.langmuir.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 μm/s, which increased to 8.5 ± 3.8 μm/s in the presence of microbubbles compared to 12 ± 0.12 μm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.
Collapse
Affiliation(s)
- Valerio Pereno
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences and Institute for Life Sciences, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
21
|
Adaptations in GLUT4 Expression in Response to Exercise Detraining Linked to Downregulation of Insulin-Dependent Pathways in Cardiac but not in Skeletal Muscle Tissue. Int J Sport Nutr Exerc Metab 2020; 30:272-279. [PMID: 32454459 DOI: 10.1123/ijsnem.2019-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
Insulin resistance is associated with cardiometabolic risk factors, and exercise training can improve insulin-mediated glucose uptake. However, few studies have demonstrated the reversibility of exercise-induced benefits. Thus, the authors examine the time-response effects of exercise training and detraining on glucose transporter 4 (GLUT4) content, insulin-dependent and insulin-independent pathways in cardiac and gastrocnemius muscle tissues of spontaneously hypertensive rats. Thirty-two male spontaneously hypertensive rats, 4 months old, were assigned to (n = 8/group): T (exercise training: 10-week treadmill exercise, 50-70% maximum effort capacity, 1 hr/day, 5 days/week); D2 (exercise training + 2-day detraining), D4 (exercise training + 4-day detraining); and S (no exercise). The authors evaluated insulin resistance, maximum effort capacity, GLUT4 content, p-IRS-1Tyr1179, p-AS160Ser588, p-AMPKα1Thr172, and p-CaMKIIThr286 in cardiac and gastrocnemius muscle tissues (Western blot). In response to exercise training, there were improvements in insulin resistance (15.4%; p = .010), increased GLUT4 content (microsomal, 29.4%; p = .012; plasma membrane, 27.1%; p < .001), p-IRS-1 (42.2%; p < .001), p-AS160 (60.0%; p < .001) in cardiac tissue, and increased GLUT4 content (microsomal, 29.4%; p = .009; plasma membrane, 55.5%; p < .001), p-IRS-1 (28.1%; p = .018), p-AS160 (76.0%; p < .001), p-AMPK-α1 (37.5%; p = .026), and p-CaMKII (30.0%; p = .040) in the gastrocnemius tissue. In D4 group, the exercise-induced increase in GLUT4 was reversed (plasma membrane, -21.3%; p = .027), p-IRS1 (-37.1%; p = .008), and p-AS160 (-82.6%; p < .001) in the cardiac tissue; p-AS160 expression (-35.7%; p = .034) was reduced in the gastrocnemius. In conclusion, the cardiac tissue is more susceptible to exercise adaptations in the GLUT4 content and signaling pathways than the gastrocnemius muscle. This finding may be explained by particular characteristics of insulin-dependent and insulin-independent pathways in the muscle tissues studied.
Collapse
|
22
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|
23
|
Transcriptome Changes of Skeletal Muscle RNA-Seq Speculates the Mechanism of Postprandial Hyperglycemia in Diabetic Goto-Kakizaki Rats During the Early Stage of T2D. Genes (Basel) 2019; 10:genes10060406. [PMID: 31141985 PMCID: PMC6627578 DOI: 10.3390/genes10060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
To address how skeletal muscle contributes to postprandial hyperglycemia, we performed skeletal muscle transcriptome analysis of diabetic Goto-Kakizaki (GK) and control Wistar rats by RNA sequencing (RNA-Seq). We obtained 600 and 1785 differentially expressed genes in GK rats compared to those Wistar rats at three and four weeks of age, respectively. Specifically, Tbc1d4, involved in glucose uptake, was significantly downregulated in the skeletal muscle of GK aged both three and four weeks compared to those of age-matched Wistar rats. Pdk4, related to glucose uptake and oxidation, was significantly upregulated in the skeletal muscle of GK aged both three and four weeks compared to that of age-matched Wistar rats. Genes (Acadl, Acsl1 and Fabp4) implicated in fatty acid oxidation were significantly upregulated in the skeletal muscle of GK aged four weeks compared to those of age-matched Wistar rats. The overexpression or knockout of Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4 has been reported to change glucose uptake and fatty acid oxidation directly in rodents. By taking the results of previous studies into consideration, we speculated that dysregulation of key dysregulated genes (Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4) may lead to a decrease in glucose uptake and oxidation, and an increase in fatty acid oxidation in GK skeletal muscle at three and four weeks, which may, in turn, contribute to postprandial hyperglycemia. Our research revealed transcriptome changes in GK skeletal muscle at three and four weeks. Tbc1d4, Acadl, Acsl1 and Fabp4 were found to be associated with early diabetes in GK rats for the first time, which may provide a new scope for pathogenesis of postprandial hyperglycemia.
Collapse
|
24
|
Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep 2019; 9:1350. [PMID: 30718702 PMCID: PMC6362284 DOI: 10.1038/s41598-018-38014-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Therapeutic interventions that increase plasma high density lipoprotein (HDL) and apolipoprotein (apo) A-I levels have been reported to reduce plasma glucose levels and attenuate insulin resistance. The present study asks if this is a direct effect of increased glucose uptake by skeletal muscle. Incubation of primary human skeletal muscle cells (HSKMCs) with apoA-I increased insulin-dependent and insulin–independent glucose uptake in a time- and concentration-dependent manner. The increased glucose uptake was accompanied by enhanced phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), the serine/threonine kinase Akt and Akt substrate of 160 kDa (AS160). Cell surface levels of the glucose transporter type 4, GLUT4, were also increased. The apoA-I-mediated increase in glucose uptake by HSKMCs was dependent on phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, the ATP binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-B1). Taken together, these results establish that apoA-I increases glucose disposal in skeletal muscle by activating the IR/IRS-1/PI3K/Akt/AS160 signal transduction pathway. The findings suggest that therapeutic agents that increase apoA-I levels may improve glycemic control in people with type 2 diabetes.
Collapse
|
25
|
Nicholson T, Church C, Tsintzas K, Jones R, Breen L, Davis ET, Baker DJ, Jones SW. Vaspin promotes insulin sensitivity of elderly muscle and is upregulated in obesity. J Endocrinol 2019; 241:JOE-18-0528.R3. [PMID: 30721136 DOI: 10.1530/joe-18-0528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 02/02/2023]
Abstract
Adipokines have emerged as central mediators of insulin sensitivity and metabolism, in part due to the known association of obesity with metabolic syndrome disorders such as type 2 diabetes. Recent studies in rodents have identified the novel adipokine vaspin, as playing a protective role in inflammatory metabolic diseases by functioning to promote insulin sensitivity during metabolic stress. However, at present the skeletal muscle and adipose tissue expression of vaspin in humans is poorly characterised. Furthermore, the functional role of vaspin in skeletal muscle insulin sensitivity has not been studied. Since skeletal muscle is the major tissue for insulin-stimulated glucose uptake understanding the functional role of vaspin in human muscle insulin signalling is critical in determining its role in glucose homeostasis. The objective of this study was to profile the skeletal muscle and subcutaneous adipose tissue expression of vaspin in humans of varying adiposity and to determine the functional role of vaspin in mediating insulin signalling and glucose uptake in human skeletal muscle. Our data shows that vaspin is secreted from both human subcutaneous adipose tissue and skeletal muscle, and is more highly expressed in obese older individuals compared to lean older individuals. Furthermore, we demonstrate that vaspin induces activation of the PI3K/AKT axis, independent of insulin receptor activation, promotes GLUT4 expression and translocation and sensitises older obese human skeletal muscle to insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Tom Nicholson
- T Nicholson, Institute of Inflammation and Ageing, University of Birmingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Chris Church
- C Church, Cardiovascular and Metabolic Disease, MedImmune, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Kostas Tsintzas
- K Tsintzas, School of Life Sciences, University of Nottingham, Nottingham, NG82AB, United Kingdom of Great Britain and Northern Ireland
| | - Robert Jones
- R Jones, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Leigh Breen
- L Breen, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland
| | - Edward T Davis
- E Davis, Research and Development, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom of Great Britain and Northern Ireland
| | - David J Baker
- D Baker, Cardiovascular and Metabolic Disease, MedImmune, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Simon W Jones
- S Jones, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2WB, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
26
|
Burgos-Ramos E, Canelles S, Rodríguez A, Frago LM, Gómez-Ambrosi J, Chowen JA, Frühbeck G, Argente J, Barrios V. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Mol Cell Endocrinol 2018; 470:48-59. [PMID: 28962893 DOI: 10.1016/j.mce.2017.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Insulin potentiates leptin effects on muscle accrual and glucose homeostasis. However, the relationship between leptin's central effects on peripheral insulin sensitivity and the associated structural changes remain unclear. We hypothesized that central leptin infusion modifies muscle size through activation of insulin signaling. Muscle insulin signaling, enzymes of fatty acid metabolism, mitochondrial respiratory chain complexes, proliferating cell nuclear antigen (PCNA) and fiber area were analyzed in the gastrocnemius of chronic central infused (L), pair-fed (PF) and control rats. PCNA-positive nuclei, fiber area, GLUT4 and glycogen levels and activation of Akt and mechanistic target of rapamycin were increased in L, with no changes in PF. Acetyl-CoA carboxylase-β mRNA levels and non-esterified fatty acid and triglyceride content were reduced and carnitine palmitoyltransferase-1b expression and mitochondrial complexes augmented in L. These results suggest that leptin promotes an increase in muscle size associated with improved insulin signaling favored by lipid profile.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, Universidad Castilla-La Mancha, E-45071, Toledo, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain; IMDEA Food Institute, CEI UAM + CSIC, E-28049, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain.
| |
Collapse
|
27
|
Jaldin-Fincati JR, Bilan PJ, Klip A. GLUT4 Translocation in Single Muscle Cells in Culture: Epitope Detection by Immunofluorescence. Methods Mol Biol 2018; 1713:175-192. [PMID: 29218526 DOI: 10.1007/978-1-4939-7507-5_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
GLUT4 is the major glucose transporter in skeletal muscle. GLUT4 cycles to and from the plasma membrane and its exocytic rate is accelerated by insulin and muscle contraction to achieve a new steady state with more GLUT4 proteins at the muscle cell surface. To gain a better understanding of the molecular and cellular mechanisms that govern GLUT4 protein recycling, we developed an in vitro model in which myc-epitope-tagged GLUT4 or GLUT4-GFP is expressed in L6 skeletal muscle cells. The myc-epitope is inserted into an exofacial domain that is accessible to anti-myc antibodies from the outside of non-permeabilized cells, allowing one to count the number of transporters at the cell surface. This enables one to perform single-cell analysis using confocal fluorescence microscopy to quantify cell surface GLUT4myc or GLUT4myc-GFP in cells co-transfected with diverse cDNA constructs, treated with siRNAs, or co-stained with antibodies for other proteins of interest. Herein, we describe the methodology to perform these experimental approaches in insulin-stimulated L6 muscle cells.
Collapse
Affiliation(s)
- Javier R Jaldin-Fincati
- Cell Biology Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, PGCRL, Room 19.9709, Toronto, ON, Canada, M5G 0A4
| | - Philip J Bilan
- Cell Biology Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, PGCRL, Room 19.9709, Toronto, ON, Canada, M5G 0A4
| | - Amira Klip
- Cell Biology Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, PGCRL, Room 19.9709, Toronto, ON, Canada, M5G 0A4.
| |
Collapse
|
28
|
Li R, Tian JZ, Wang MR, Zhu LN, Sun JS. EsGLUT4 and CHHBP are involved in the regulation of glucose homeostasis in the crustacean Eriocheir sinensis. Biol Open 2017; 6:1279-1289. [PMID: 28751307 PMCID: PMC5612244 DOI: 10.1242/bio.027532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucose is an essential energy source for both vertebrates and invertebrates. In mammals, glucose uptake is mediated primarily by glucose transporters (GLUTs), members of the major facilitator superfamily (MFS) of passive transporters. Among the GLUTs, GLUT4 is the main glucose transporter in muscles and adipocytes. In skeletal muscle cells, GLUT4 interacts with the lipid raft protein flotillin to transport glucose upon stimulation by insulin. Although several studies have examined GLUT4 function in mammals, few have been performed in crustaceans, which also use glucose as their main energy source. Crustacean hyperglycemic hormone (CHH) is a multifunctional neurohormone found only in arthropods, and one of its roles is to regulate glucose homeostasis. However, the molecular mechanism that underlies CHH regulation and whether GLUT4 is involved in its regulation in crustaceans remain unclear. In the present study, we identified a full-length GLUT4 cDNA sequence (defined herein as EsGLUT4) from the Chinese mitten crab Eriocheir sinensis and analyzed its tissue distribution and cellular localization. By the ForteBio Octet system, two large hydrophilic regions within EsGLUT4 were found to interact with the CHH binding protein (CHHBP), an E. sinensis flotillin-like protein. Interestingly, live-cell imaging indicated that EsGLUT4 and CHHBP responded simultaneously upon stimulation by CHH, resulting in glucose release. In contrast to insulin-dependent GLUT4, however, EsGLUT4 and CHHBP were present within cytoplasmic vesicles, both translocating to the plasma membrane upon CHH stimulation. In conclusion, our results provide new evidence for the involvement of EsGLUT4 and CHHBP in the regulation of glucose homeostasis in crustacean carbohydrate metabolism. Summary: Here we identified that Glucose transporter 4 (GLUT4) could interact with CHH binding protein (CHHBP) to regulate CHH-stimulated glucose release in Eriocheir sinensis.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jin-Ze Tian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Mo-Ran Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Department of Fisheries Science, Tianjin Agricultural University, Tianjin 300384, People's Republic of China
| | - Li-Na Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jin-Sheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China .,Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin 300221, People's Republic of China
| |
Collapse
|
29
|
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol Metab 2017; 28:597-611. [PMID: 28602209 DOI: 10.1016/j.tem.2017.05.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Glucose transport is rate limiting for dietary glucose utilization by muscle and fat. The glucose transporter GLUT4 is dynamically sorted and retained intracellularly and redistributes to the plasma membrane (PM) by insulin-regulated vesicular traffic, or 'GLUT4 translocation'. Here we emphasize recent findings in GLUT4 translocation research. The application of total internal reflection fluorescence microscopy (TIRFM) has increased our understanding of insulin-regulated events beneath the PM, such as vesicle tethering and membrane fusion. We describe recent findings on Akt-targeted Rab GTPase-activating proteins (GAPs) (TBC1D1, TBC1D4, TBC1D13) and downstream Rab GTPases (Rab8a, Rab10, Rab13, Rab14, and their effectors) along with the input of Rac1 and actin filaments, molecular motors [myosinVa (MyoVa), myosin1c (Myo1c), myosinIIA (MyoIIA)], and membrane fusion regulators (syntaxin4, munc18c, Doc2b). Collectively these findings reveal novel events in insulin-regulated GLUT4 traffic.
Collapse
Affiliation(s)
| | - Martin Pavarotti
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza 5500, Argentina
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Woo JR, Kim SJ, Kim KY, Jang H, Shoelson SE, Park S. The carboxy-terminal region of the TBC1D4 (AS160) RabGAP mediates protein homodimerization. Int J Biol Macromol 2017; 103:965-971. [PMID: 28545963 DOI: 10.1016/j.ijbiomac.2017.05.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/18/2023]
Abstract
TBC1D4 (also known as AS160) is a Rab·GTPase-activating protein (RabGAP) which functions in insulin signaling. TBC1D4 is critical for translocation of glucose transporter 4 (GLUT4), from an inactive, intracellular, vesicle-bound site to the plasma membrane, where it promotes glucose entry into cells. The TBC1D4 protein is structurally subdivided into two N-terminal phosphotyrosine-binding (PTB) domains, a C-terminal catalytic RabGAP domain, and a disordered segment in between containing potential Akt phosphorylation sites. Structural predictions further suggest that a region C-terminal to the RabGAP domain adopts a coiled-coil motif. We show that C-terminal region (CTR) region is largely α-helical and mediates TBC1D4 RabGAP dimerization. RabGAP catalytic activity and thermal stability appear to be independent of CTR-mediated dimerization.
Collapse
Affiliation(s)
- Ju Rang Woo
- Division of Development and Optimization, New Drug Development Center, KBIO Health, Chungbuk 28160, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam 58554, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Steven E Shoelson
- Joslin Diabetes Center & Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| |
Collapse
|
31
|
Chawla B, Hedman AC, Sayedyahossein S, Erdemir HH, Li Z, Sacks DB. Absence of IQGAP1 Protein Leads to Insulin Resistance. J Biol Chem 2017; 292:3273-3289. [PMID: 28082684 DOI: 10.1074/jbc.m116.752642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
Insulin binds to the insulin receptor (IR) and induces tyrosine phosphorylation of the receptor and insulin receptor substrate-1 (IRS-1), leading to activation of the PKB/Akt and MAPK/ERK pathways. IQGAP1 is a scaffold protein that interacts with multiple binding partners and integrates diverse signaling cascades. Here we show that IQGAP1 associates with both IR and IRS-1 and influences insulin action. In vitro analysis with pure proteins revealed that the IQ region of IQGAP1 binds directly to the intracellular domain of IR. Similarly, the phosphotyrosine-binding domain of IRS-1 mediates a direct interaction with the C-terminal tail of IQGAP1. Consistent with these observations, both IR and IRS-1 co-immunoprecipitated with IQGAP1 from cells. Investigation of the functional effects of the interactions revealed that in the absence of IQGAP1, insulin-stimulated phosphorylation of Akt and ERK, as well as the association of phosphatidylinositol 3-kinase with IRS-1, were significantly decreased. Importantly, loss of IQGAP1 results in impaired insulin signaling and glucose homeostasis in vivo Collectively, these data reveal that IQGAP1 is a scaffold for IR and IRS-1 and implicate IQGAP1 as a participant in insulin signaling.
Collapse
Affiliation(s)
- Bhavna Chawla
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Huseyin H Erdemir
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
32
|
Caruso ME, Jenna S, Baillie DL, Bossé R, Simpson JC, Chevet E, Taouji S. Systematic functional analysis of the Ras GTPase family unveils a conserved network required for anterograde protein trafficking. Proteomics 2016; 17. [PMID: 27957805 DOI: 10.1002/pmic.201600302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 11/05/2022]
Abstract
Phylogeny is often used to compare entire families of genes/proteins. We previously showed that classification of Caenorhabditis elegans Rho GTPases on the basis of their enzymatic properties was significantly different from sequence alignments. To further develop this concept, we have developed an integrated approach to classify C. elegans small GTPases based on functional data comprising affinity for GTP, sub-cellular localization, tissue distribution and silencing impact. This analysis led to establish a novel functional classification for small GTPases. To test the relevance of this classification in mammals, we focused our attention on the human orthologs of small GTPases from a specific group comprising arf-1.2, evl-20, arl-1, Y54E10BR.2, unc-108 and rab-7. We then tested their involvement in protein secretion and membrane traffic in mammalian systems. Using this approach we identify a novel network containing 18 GTPases, and 23 functionally interacting proteins, conserved between C. elegans and mammals, which is involved in membrane traffic and protein secretion.
Collapse
Affiliation(s)
| | - Sarah Jenna
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Jeremy C Simpson
- School of Biology & Environmental Science and Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Eric Chevet
- Department of Surgery, McGill University, Montreal, QC, Canada.,INSERM U1242, COSS, Université de Rennes-1, CLCC Eugene Marquis, Rennes, France.,BMYscreen, Bordeaux, France
| | - Saïd Taouji
- BMYscreen, Bordeaux, France.,INSERM U1218, CLCC Institut Bergonié, Bordeaux, France
| |
Collapse
|
33
|
Shibata S, Kawanai T, Hara T, Yamamoto A, Chaya T, Tokuhara Y, Tsuji C, Sakai M, Tachibana T, Inagaki S. ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles. J Cell Sci 2016; 129:3620-3634. [PMID: 27550519 DOI: 10.1242/jcs.186817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
The function of ARHGEF10, a known guanine nucleotide exchange factor (GEF) for RhoA with proposed roles in various diseases, is poorly understood. To understand the precise function of this protein, we raised a monoclonal antibody against ARHGEF10 and determined its localization in HeLa cells. ARHGEF10 was found to localize to vesicles containing Rab6 (of which there are three isoforms, Rab6a, Rab6b and Rab6c), Rab8 (of which there are two isoforms, Rab8a and Rab8b), and/or the secretion marker neuropeptide Y (NPY)-Venus in a Rab6-dependent manner. These vesicles were known to originate from the Golgi and contain secreted or membrane proteins. Ectopic expression of an N-terminal-truncated ARHGEF10 mutant led to the generation of large vesicle-like structures containing both Rab6 and Rab8. Additionally, small interfering (si)RNA-mediated knockdown of ARHGEF10 impaired the localization of Rab8 to these exocytotic vesicles. Furthermore, the invasiveness of MDA-MB231 cells was markedly decreased by knockdown of ARHGEF10, as well as of Rab8. From these results, we propose that ARHGEF10 acts in exocytosis and tumor invasion in a Rab8-dependent manner.
Collapse
Affiliation(s)
- Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsubasa Kawanai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Hara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Asuka Yamamoto
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Tokuhara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Chinami Tsuji
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Sakai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Li W, Liang X, Zeng Z, Yu K, Zhan S, Su Q, Yan Y, Mansai H, Qiao W, Yang Q, Qi Z, Huang Z. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes. Biomed Pharmacother 2016; 83:194-200. [PMID: 27470565 DOI: 10.1016/j.biopha.2016.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Simvastatin,a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor, is clinically used in the prevention and treatment of cardiovascular diseases. Numerous studies demonstrate that statins increase the risk of new-onset diabetes in long-term therapy, but mechanisms underpinning this effect are still unclear. Here, we investigated whether simvastatin inhibited the glucose uptake activity and the underlying mechanisms in C2C12 myotubes. Our studies showed that simvastatin significantly inhibited glucose uptake activity and GLUT4 translocation, whereas the effect was reversible with mevalonolactone (ML), which acts as an intermediate of cholesterol synthesis pathway. Mechanistically, the inhibition of glucose uptake and GLUT4 translocation elicited by simvastatin were associated with the suppression of the insulin receptor (IR)/IR substrate (IRS)/Akt signaling cascade. Simvastatin suppressed the phosphorylation of IR, IRS-1 and Akt, and total expression of IR or IRS-1, but did not affect Akt. Furthermore, simvastatin decreased Rac1 GTP binding. In conclusion, our findings indicate that simvastatin suppresses glucose uptake activity and GLUT4 translocation via IR-dependent IRS-1/PI3K/Akt pathway. These results provide an important new insight into the mechanism of statins on insulin sensitivity which may be associated with new-onset diabetes.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Xiaojing Liang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Zhipeng Zeng
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China; Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaizhen Yu
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Shaopeng Zhan
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Qiang Su
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Yinzhi Yan
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Huseen Mansai
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Weitong Qiao
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Qi Yang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.
| | - Zhengrong Huang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China.
| |
Collapse
|
35
|
Zhou Y, Gu P, Shi W, Li J, Hao Q, Cao X, Lu Q, Zeng Y. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int J Mol Med 2016; 37:931-8. [PMID: 26936652 PMCID: PMC4790643 DOI: 10.3892/ijmm.2016.2499] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/10/2016] [Indexed: 12/03/2022] Open
Abstract
Intrauterine growth retardation (IUGR) induces metabolic syndrome, which is often characterized by insulin resistance (IR), in adults. Previous research has shown that microRNAs (miRNAs or miRs) play a role in the target genes involved in this process, but the mechanisms remain unclear. In the present study, we examined miRNA profiles using samples of skeletal muscles from both IUGR and control rat offspring whose mothers were fed either a protein-restricted diet or a diet which involved normal amounts of protein during pregnancy, respectively. miR-29a was found to be upregulated in the skeletal muscles of IUGR offspring. The luciferase reporter assay confirmed the direct interaction between miR-29a and peroxisome proliferator-activated receptor δ (PPARδ). Overexpression of miR-29a in the skeletal muscle cell line C2C12 suppressed the expression of its target gene PPARδ, which, in turn, influenced the expression of its coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thus, PPARδ/PGC-1α-dependent signals together reduced insulin-dependent glucose uptake and adenosine triphosphate (ATP) production. Overexpression of miR-29a also caused a decrease in levels of glucose transporter 4 (GLUT4), the most important glucose transporter in skeletal muscle, which partially induced a decrease insulin-dependent glucose uptake. These findings provide evidence for a novel micro-RNA-mediated mechanism of PPARδ regulation, and we also noted the IR-promoting actions of miR-29a in skeletal muscles of IUGR.
Collapse
Affiliation(s)
- Yuehua Zhou
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Pingqing Gu
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weijie Shi
- Department of Obstetrics and Gynecology of Xinghua People's Hospital, Xinghua, Jiangsu 225700, P.R. China
| | - Jingyun Li
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qun Hao
- Department of Obstetrics and Gynecology, Nanjing General Hospital of PLA, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaomei Cao
- Duman High School, Singapore 436895, Republic of Singapore
| | - Qin Lu
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Yu Zeng
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
36
|
Ishibashi K, Nehashi K, Oshima T, Ohkura N, Atsumi GI. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes. Int J Food Sci Nutr 2016; 67:99-110. [DOI: 10.3109/09637486.2016.1144721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Kana Nehashi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Toshiyuki Oshima
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Naoki Ohkura
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
37
|
Small GTPases in peroxisome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1006-13. [PMID: 26775587 DOI: 10.1016/j.bbamcr.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment.
Collapse
|
38
|
Ijuin T, Hatano N, Hosooka T, Takenawa T. Regulation of insulin signaling in skeletal muscle by PIP3 phosphatase, SKIP, and endoplasmic reticulum molecular chaperone glucose-regulated protein 78. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3192-201. [DOI: 10.1016/j.bbamcr.2015.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/30/2022]
|
39
|
Sun Y, Jaldin-Fincati J, Liu Z, Bilan PJ, Klip A. A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis. Mol Biol Cell 2015; 27:75-89. [PMID: 26538022 PMCID: PMC4694764 DOI: 10.1091/mbc.e15-05-0319] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
Rab13 is necessary for insulin-regulated GLUT4-vesicle exocytosis in muscle. Biochemical and imaging analyses provide evidence that activated Rab13 engages a scaffold protein MICAL-L2 to form a complex with Rab13 and α-actinin-4. Through GLUT4 interaction with α-actinin-4, GLUT4 vesicles are recruited to the muscle plasma membrane. Insulin promotes glucose uptake into skeletal muscle through recruitment of glucose transporter 4 (GLUT4) to the plasma membrane. Rab GTPases are molecular switches mobilizing intracellular vesicles, and Rab13 is necessary for insulin-regulated GLUT4–vesicle exocytic translocation in muscle cells. We show that Rab13 engages the scaffold protein MICAL-L2 in this process. RNA interference–mediated knockdown of MICAL-L2 or truncated MICAL-L2 (MICAL-L2-CT) impaired insulin-stimulated GLUT4 translocation. Insulin increased Rab13 binding to MICAL-L2, assessed by pull down and colocalization under confocal fluorescence and structured illumination microscopies. Association was also visualized at the cell periphery using TIRF microscopy. Insulin further increased binding of MICAL-L2 to α-actinin-4 (ACTN4), a protein involved in GLUT4 translocation. Rab13, MICAL-L2, and ACTN4 formed an insulin-dependent complex assessed by pull down and confocal fluorescence imaging. Of note, GLUT4 associated with the complex in response to insulin, requiring the ACTN4-binding domain in MICAL-L2. This was demonstrated by pull down with distinct fragments of MICAL-L2 and confocal and structured illumination microscopies. Finally, expression of MICAL-L2-CT abrogated the insulin-dependent colocalization of Rab13 with ACTN4 or Rab13 with GLUT4. Our findings suggest that MICAL-L2 is an effector of insulin-activated Rab13, which links to GLUT4 through ACTN4, localizing GLUT4 vesicles at the muscle cell periphery to enable their fusion with the membrane.
Collapse
Affiliation(s)
- Yi Sun
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Zhi Liu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip J Bilan
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
40
|
Phosphatidylinositol 3,4,5-Trisphosphate Phosphatase SKIP Links Endoplasmic Reticulum Stress in Skeletal Muscle to Insulin Resistance. Mol Cell Biol 2015; 36:108-18. [PMID: 26483413 DOI: 10.1128/mcb.00921-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/20/2022] Open
Abstract
Insulin resistance is critical in the pathogenesis of type 2 diabetes. Endoplasmic reticulum (ER) stress in liver and adipose tissues plays an important role in the development of insulin resistance. Although skeletal muscle is a primary site for insulin-dependent glucose disposal, it is unclear if ER stress in those tissues contributes to insulin resistance. In this study, we show that skeletal muscle kidney-enriched inositol polyphosphate phosphatase (SKIP), a PIP3 (phosphatidylinositol-3,4,5-trisphosphate) phosphatase, links ER stress to insulin resistance in skeletal muscle. SKIP expression was increased due to ER stress and was higher in the skeletal muscle isolated from high-fat-diet-fed mice and db/db mice than in that from wild-type mice. Mechanistically, ER stress promotes activating transcription factor 6 (ATF6) and X-box binding protein 1 (XBP1)-dependent expression of SKIP. These findings underscore the specific and prominent role of SKIP in the development of insulin resistance in skeletal muscle.
Collapse
|
41
|
Toyoda Y, Saitoh S. Adaptive regulation of glucose transport, glycolysis and respiration for cell proliferation. Biomol Concepts 2015; 6:423-30. [PMID: 26418646 DOI: 10.1515/bmc-2015-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022] Open
Abstract
The cell must utilise nutrients to generate energy as a means of sustaining its life. As the environment is not necessarily abundant in nutrients and oxygen, the cell must be able to regulate energy metabolism to adapt to changes in extracellular and intracellular conditions. Recently, several key regulators of energy metabolism have been reported. This review describes the recent advances in molecular regulation of energy metabolism, focusing mainly on glycolysis and its shunt pathways. Human diseases, such as cancer and neurodegenerative disorders, are also discussed in relation to failure of energy metabolism regulation.
Collapse
|
42
|
Gordon JW, Dolinsky VW, Mughal W, Gordon GRJ, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol 2015; 93:452-65. [PMID: 26151290 DOI: 10.1139/bcb-2015-0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic β-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.
Collapse
Affiliation(s)
- Joseph W Gordon
- a Department of Human Anatomy and Cell Science, College of Nursing, Faculty of Health Sciences, University of Manitoba, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- b Department of Pharmacology and Therapeutics, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Wajihah Mughal
- c Department of Human Anatomy and Cell Science, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Grant R J Gordon
- d Hotchkiss Brain Institute, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.,e Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jonathan McGavock
- f Department of Pediatrics and Child Health, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
43
|
Chen MZ, Hudson CA, Vincent EE, de Berker DAR, May MT, Hers I, Dayan CM, Andrews RC, Tavaré JM. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal. PLoS One 2015; 10:e0120084. [PMID: 25876175 PMCID: PMC4395354 DOI: 10.1371/journal.pone.0120084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/19/2015] [Indexed: 01/14/2023] Open
Abstract
Aims Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB), and compared this to lean volunteers. Materials and Methods The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR) in eight morbidly obese (body mass index, BMI=47.3±2.2 kg/m2) patients, before and after RYGB, and in eight lean volunteers (BMI=20.7±0.7 kg/m2). Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50) and maximal (GDR100) GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity. Results Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001). Weight-loss of 29.9±4 kg after surgery significantly improved GDR50 (P=0.004) but not GDR100 (P=0.3). These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001). Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA), and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA), and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively). Conclusions Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.
Collapse
Affiliation(s)
- Mimi Z. Chen
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Claire A. Hudson
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Emma E. Vincent
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Margaret T. May
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Ingeborg Hers
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Colin M. Dayan
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Robert C. Andrews
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Jeremy M. Tavaré
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
Arendt KL, Zhang Y, Jurado S, Malenka RC, Südhof TC, Chen L. Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron 2015; 86:442-56. [PMID: 25843403 DOI: 10.1016/j.neuron.2015.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA)-dependent homeostatic plasticity and NMDA receptor-dependent long-term potentiation (LTP), a form of Hebbian plasticity, both enhance synaptic strength by increasing the abundance of postsynaptic AMPA receptors (AMPARs). However, it is unclear whether the molecular mechanisms mediating AMPAR trafficking during homeostatic and Hebbian plasticity differ, and it is unknown how RA signaling impacts Hebbian plasticity. Here, we show that RA increases postsynaptic AMPAR abundance using an activity-dependent mechanism that requires a unique SNARE (soluble NSF-attachment protein receptor)-dependent fusion machinery different from that mediating LTP. Specifically, RA-induced AMPAR trafficking did not involve complexin, which activates SNARE complexes containing syntaxin-1 or -3, but not complexes containing syntaxin-4, whereas LTP required complexin. Moreover, RA-induced AMPAR trafficking utilized the Q-SNARE syntaxin-4, whereas LTP utilized syntaxin-3; both additionally required the Q-SNARE SNAP-47 and the R-SNARE synatobrevin-2. Finally, acute RA treatment blocked subsequent LTP expression, probably by increasing AMPAR trafficking. Thus, RA-induced homeostatic plasticity involves a novel, activity-dependent postsynaptic AMPAR-trafficking pathway mediated by a unique SNARE-dependent fusion machinery.
Collapse
Affiliation(s)
- Kristin L Arendt
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Yingsha Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Sandra Jurado
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
45
|
Qin Z, Pandey NR, Zhou X, Stewart CA, Hari A, Huang H, Stewart AF, Brunel JM, Chen HH. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochem Biophys Res Commun 2015; 458:21-7. [DOI: 10.1016/j.bbrc.2015.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 12/29/2022]
|
46
|
Ijuin T, Takenawa T. Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain. Biochem Biophys Res Commun 2015; 456:41-6. [DOI: 10.1016/j.bbrc.2014.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/26/2022]
|
47
|
Saitoh S, Mori A, Uehara L, Masuda F, Soejima S, Yanagida M. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. Mol Biol Cell 2014; 26:373-86. [PMID: 25411338 PMCID: PMC4294683 DOI: 10.1091/mbc.e14-11-1503] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glucose transporters play a pivotal role in glucose homeostasis. The fission yeast high-affinity glucose transporter Ght5 is regulated with regard to transcription and localization via CaMKK and TOR pathways. These results clarify the evolutionarily conserved mechanisms underlying glucose homeostasis that prevent hyperglycemia in humans. Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca2+/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.
Collapse
Affiliation(s)
- Shigeaki Saitoh
- Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Ayaka Mori
- Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Lisa Uehara
- Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Fumie Masuda
- Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Saeko Soejima
- Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
48
|
Jeong MY, Kim HL, Park J, Jung Y, Youn DH, Lee JH, Jin JS, So HS, Park R, Kim SH, Kim SJ, Hong SH, Um JY. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int J Obes (Lond) 2014; 39:456-64. [PMID: 25109782 DOI: 10.1038/ijo.2014.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/07/2014] [Accepted: 08/03/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the anti-obesity effect of Rubi Fructus (RF) extract using brown adipose tissue (BAT) and primary brown preadipocytes in vivo and in vitro. METHODS Male C57BL/6 J mice (n=5 per group) were fed a high-fat diet (HFD) for 10 weeks with or without RF. Brown preadipocytes from the interscapular BAT of mice (age, post-natal days 1-3) were cultured with differentiation media (DM) including isobutylmethylxanthine, dexamethasone, T3, indomethacin and insulin with or without RF. RESULTS In HFD-induced obese C57BL/6 J mice, long-term RF treatment significantly reduced weight gain as well as the weights of the white adipose tissue, liver and spleen. Serum levels of total cholesterol and low-density lipoprotein cholesterol were also reduced in the HFD group which received RF treatment. Furthermore, RF induced thermogenic-, adipogenic- and mitochondria-related gene expressions in BAT. In primary brown adipocytes, RF effectively stimulated the expressions of thermogenic- and mitochondria-related genes. In addition, to examine whether LIPIN1, a regulator of adipocyte differentiation, is regulated by RF, Lipin1 small interfering RNA (siRNA) and RF were pretreated in primary brown adipocytes. Pretreatment with Lipin1 siRNA and RF downregulated the DM-induced expression levels of thermogenic- and mitochondria-related genes. Moreover, RF markedly upregulated AMP-activated protein kinase. Our study shows that RF is capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes. CONCLUSIONS This study demonstrates that RF prevents the development of obesity in mice fed with a HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes, which suggests that RF has potential as a therapeutic application for the treatment or prevention of obesity.
Collapse
Affiliation(s)
- M Y Jeong
- 1] Center for Metabolic Function Regulation, Wonkwang University, Iksan, Korea [2] College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - H L Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - J Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Y Jung
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - D H Youn
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - J H Lee
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - J S Jin
- Department of Oriental Medicine Resources, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan, Korea
| | - H S So
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Korea
| | - R Park
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Korea
| | - S H Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - S J Kim
- Department of Cosmeceutical Science, Daegu Hanny University, Gyeongsan, Korea
| | - S H Hong
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Korea
| | - J Y Um
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
49
|
Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, Yamashita A, Ohno S. aPKCλ maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem 2014; 156:115-28. [PMID: 24700503 PMCID: PMC4112437 DOI: 10.1093/jb/mvu022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The slit diaphragm (SD), the specialized intercellular junction between renal glomerular epithelial cells (podocytes), provides a selective-filtration barrier in renal glomeruli. Dysfunction of the SD results in glomerular diseases that are characterized by disappearance of SD components, such as nephrin, from the cell surface. Although the importance of endocytosis and degradation of SD components for the maintenance of SD integrity has been suggested, the dynamic nature of the turnover of intact cell-surface SD components remained unclear. Using isolated rat glomeruli we show that the turnover rates of cell-surface SD components are relatively high; they almost completely disappear from the cell surface within minutes. The exocytosis, but not endocytosis, of heterologously expressed nephrin requires the kinase activity of the cell polarity regulator atypical protein kinase C (aPKC). Consistently, we demonstrate that podocyte-specific deletion of aPKCλ resulted in a decrease of cell-surface localization of SD components, causing massive proteinuria. In conclusion, the regulation of SD turnover by aPKC is crucial for the maintenance of SD integrity and defects in aPKC signalling can lead to proteinuria. These findings not only reveal the pivotal importance of the dynamic turnover of cell-surface SD components but also suggest a novel pathophysiological basis in glomerular disease.
Collapse
Affiliation(s)
- Daisuke Satoh
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yutaka Harita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chikara Daimon
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Harada
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
50
|
Wilson C, Contreras-Ferrat A, Venegas N, Osorio-Fuentealba C, Pávez M, Montoya K, Durán J, Maass R, Lavandero S, Estrada M. Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J Cell Physiol 2014; 228:2399-407. [PMID: 23757167 DOI: 10.1002/jcp.24413] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Testosterone exerts important effects in the heart. Cardiomyocytes are target cells for androgens, and testosterone induces rapid effects via Ca(2+) release and protein kinase activation and long-term effects via cardiomyocyte differentiation and hypertrophy. Furthermore, it stimulates metabolic effects such as increasing glucose uptake in different tissues. Cardiomyocytes preferentially consume fatty acids for ATP production, but under particular circumstances, glucose uptake is increased to optimize energy production. We studied the effects of testosterone on glucose uptake in cardiomyocytes. We found that testosterone increased uptake of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-2-deoxyglucose and [(3) H]2-deoxyglucose, which was blocked by the glucose transporter 4 (GLUT4) inhibitor indinavir. Testosterone stimulation in the presence of cyproterone or albumin-bound testosterone-induced glucose uptake, which suggests an effect that is independent of the intracellular androgen receptor. To determine the degree of GLUT4 cell surface exposure, cardiomyocytes were transfected with the plasmid GLUT4myc-eGFP. Subsequently, testosterone increased GLUT4myc-GFP exposure at the plasma membrane. Inhibition of Akt by the Akt-inhibitor-VIII had no effect. However, inhibition of Ca(2+) /calmodulin protein kinase (CaMKII) (KN-93 and autocamtide-2 related inhibitory peptide II) and AMP-activated protein kinase (AMPK) (compound C and siRNA for AMPK) prevented glucose uptake induced by testosterone. Moreover, GLUT4myc-eGFP exposure at the cell surface caused by testosterone was also abolished after CaMKII and AMPK inhibition. These results suggest that testosterone increases GLUT4-dependent glucose uptake, which is mediated by CaMKII and AMPK in cultured cardiomyocytes. Glucose uptake could represent a mechanism by which testosterone increases energy production and protein synthesis in cardiomyocytes.
Collapse
Affiliation(s)
- Carlos Wilson
- Programa de Fisiología y Biofísica y Programa de Biología Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|