1
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
2
|
Salmond S, Weaver SH, Marcus-Aiyeku U, Markiewicz D. Working From Dusk to Dawn: A Joy or Nightmare. Orthop Nurs 2025; 44:4-19. [PMID: 39898675 PMCID: PMC11781549 DOI: 10.1097/nor.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Nurses are needed to work night shift because patients in acute care, subacute, and long-term care facilities require round-the-clock care. A systematic review on the experiences and perceptions of nurses working the night shift in varied settings found the night shift work environment is different and night shift nurses juggle their sleep and deal with ongoing sleep deprivation. Based on the systematic review and the evidence that forewarns of the physical and psychological burden of night shift work, recommendations are made for employers and nurses to navigate the challenges posed to those working against their circadian rhythm.
Collapse
Affiliation(s)
- Susan Salmond
- Susan Salmond, EdD, RN, ANEF, FAAN, Executive Vice Dean at Rutgers, the State University of New Jersey, School of Nursing. Director of The Northeast Institute for Evidence Synthesis and Translation (NEST): A Collaborating Center of Excellence of the Joanna Briggs Institute at Rutgers School of Nursing. Co-Director New Jersey Nursing Emotional Well-Being Institute
- Susan H. Weaver, PhD, RN, CRNI®, NEA-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and New Jersey Collaborating Center for Nursing
- Ulanda Marcus-Aiyeku, DNP, RN, PMHNP-BC, RPI-YB, NE-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and Executive Director, Remi’s Room, LLC
- Dorothy Markiewicz, BSN, RN, ONC, Clinical Charge Nurse, Hackensack Meridian Health Hackensack University Medical Center
| | - Susan H. Weaver
- Susan Salmond, EdD, RN, ANEF, FAAN, Executive Vice Dean at Rutgers, the State University of New Jersey, School of Nursing. Director of The Northeast Institute for Evidence Synthesis and Translation (NEST): A Collaborating Center of Excellence of the Joanna Briggs Institute at Rutgers School of Nursing. Co-Director New Jersey Nursing Emotional Well-Being Institute
- Susan H. Weaver, PhD, RN, CRNI®, NEA-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and New Jersey Collaborating Center for Nursing
- Ulanda Marcus-Aiyeku, DNP, RN, PMHNP-BC, RPI-YB, NE-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and Executive Director, Remi’s Room, LLC
- Dorothy Markiewicz, BSN, RN, ONC, Clinical Charge Nurse, Hackensack Meridian Health Hackensack University Medical Center
| | - Ulanda Marcus-Aiyeku
- Susan Salmond, EdD, RN, ANEF, FAAN, Executive Vice Dean at Rutgers, the State University of New Jersey, School of Nursing. Director of The Northeast Institute for Evidence Synthesis and Translation (NEST): A Collaborating Center of Excellence of the Joanna Briggs Institute at Rutgers School of Nursing. Co-Director New Jersey Nursing Emotional Well-Being Institute
- Susan H. Weaver, PhD, RN, CRNI®, NEA-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and New Jersey Collaborating Center for Nursing
- Ulanda Marcus-Aiyeku, DNP, RN, PMHNP-BC, RPI-YB, NE-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and Executive Director, Remi’s Room, LLC
- Dorothy Markiewicz, BSN, RN, ONC, Clinical Charge Nurse, Hackensack Meridian Health Hackensack University Medical Center
| | - Dorothy Markiewicz
- Susan Salmond, EdD, RN, ANEF, FAAN, Executive Vice Dean at Rutgers, the State University of New Jersey, School of Nursing. Director of The Northeast Institute for Evidence Synthesis and Translation (NEST): A Collaborating Center of Excellence of the Joanna Briggs Institute at Rutgers School of Nursing. Co-Director New Jersey Nursing Emotional Well-Being Institute
- Susan H. Weaver, PhD, RN, CRNI®, NEA-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and New Jersey Collaborating Center for Nursing
- Ulanda Marcus-Aiyeku, DNP, RN, PMHNP-BC, RPI-YB, NE-BC, Nurse Scientist at the Hackensack Meridian Health Ann May Center for Nursing and Executive Director, Remi’s Room, LLC
- Dorothy Markiewicz, BSN, RN, ONC, Clinical Charge Nurse, Hackensack Meridian Health Hackensack University Medical Center
| |
Collapse
|
3
|
Titon SCM, Neto PGG, Titon B, de Figueiredo AC, Markus RP, Gomes FR, Assis VR. Immune-pineal-ocular Axis in Amphibians: Unveiling A Novel Connection. Integr Comp Biol 2024; 64:1309-1319. [PMID: 38658196 DOI: 10.1093/icb/icae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin production in amphibians, little information is available about the natural variation in ocular melatonin levels and its modulation following immune stimulation. We investigated the daily variation of plasma and ocular melatonin levels in bullfrogs (Lithobates catesbeianus) and their modulation following an immune stimulation with lipopolysaccharide (LPS) in yellow cururu toads (Rhinella icterica). For the daily variation, bullfrogs were bled and then euthanized for eye collection every 3 h over 24 h to determine plasma and ocular melatonin levels. We found a positive correlation between ocular and plasma melatonin levels, with maximum values at night (22 h) for both plasma and the eyes. For immune stimulation, yellow cururu toads received an intraperitoneal injection of LPS or saline solution during the day (10 h) or at night (22 h). Two hours after injection, toads were bled and euthanized for eye collection to obtain plasma and ocular melatonin levels. In addition, the liver and bone marrow were collected to investigate local melatonin modulation. Our results demonstrate that retinal light-controlled rhythmic melatonin production is suppressed while liver and bone marrow melatonin levels increase during the inflammatory assemblage in anurans. Interestingly, the LPS injection decreased only ocular melatonin levels, reinforcing the central role of the eyes (i.e., retina) as an essential organ of melatonin production, and a similar role to the pineal gland during the inflammatory response in amphibians. Together, these results point to a possible immune-pineal-ocular axis in amphibians, yet to be fully described in this group.
Collapse
Affiliation(s)
- Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
- College of Public Health, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Colita CI, Hermann DM, Filfan M, Colita D, Doepnner TR, Tica O, Glavan D, Popa-Wagner A. Optimizing Chronotherapy in Psychiatric Care: The Impact of Circadian Rhythms on Medication Timing and Efficacy. Clocks Sleep 2024; 6:635-655. [PMID: 39584972 PMCID: PMC11586979 DOI: 10.3390/clockssleep6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
In many medical settings, medications are typically administered in the morning or evening, aligning with patients' daily routines. This practice does not stem from chronotherapy, which involves scheduling drug administration to enhance its effectiveness, but rather from the way clinical operations are structured. The timing of drug administration can significantly affect a medication's effectiveness and side effects, with the impact varying by up to ten times based on circadian rhythms. Disorders such as major depression, bipolar disorder, and schizophrenia are linked to disruptions in these rhythms. Recent studies have found that circadian dysfunctions, including genetic and neurohumoral changes, underlie many psychiatric conditions. Issues such as an altered glucocorticoid rhythm due to impaired HPA axis function, disturbed melatonin balance, and sleep disturbances have been noted in psychotic disorders. Furthermore, mood disorders have been associated with changes in the expression of circadian rhythm genes such as Clock, Bmal1, and Per. Considering that the absorption, biodistribution, effects on target organs, half-life, metabolism, and elimination of drugs are all influenced by the body's circadian rhythms, this narrative review explores the optimal timing of medication administration to maximize efficacy and minimize side effects in the treatment of psychiatric disorders. By closely monitoring circadian variations in cortisol, melatonin, and key clock genes, as well as by deepening our understanding of the metabolisms and pharmacokinetics of antipsychotic medications, we propose a chronotherapy approach for psychiatric patients that could significantly enhance patient care.
Collapse
Affiliation(s)
- Cezar-Ivan Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Madalina Filfan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Thorsten R. Doepnner
- Department of Neurology, University Medical Center, Klinikstraße 33, 35392 Gießen, Germany;
| | - Oana Tica
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Aurel Popa-Wagner
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
5
|
De Guia IL, Eslick S, Naismith SL, Kanduri S, Shah TM, Martins RN. The Crosstalk Between Amyloid-β, Retina, and Sleep for the Early Diagnosis of Alzheimer's Disease: A Narrative Review. J Alzheimers Dis Rep 2024; 8:1009-1021. [PMID: 39114553 PMCID: PMC11305848 DOI: 10.3233/adr-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which is characterised by progressive memory loss and accumulation of hallmark markers amyloid-β (Aβ) and neurofibrillary tangles in the diseased brain. The current gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview of human retina studies concerning the deposition of Aβ, the role of the retina in sleep-wake cycle, the disruption of sleep in AD, and to gather evidence for the associations between Aβ, the retina, and sleep. Understanding the mechanisms behind the associations between Aβ, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
Collapse
Affiliation(s)
| | - Shaun Eslick
- Macquarie University, North Ryde, NSW, Australia
| | - Sharon L. Naismith
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Ralph N. Martins
- Macquarie University, North Ryde, NSW, Australia
- Edith Cowen University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
6
|
Ma C, Li H, Lu S, Li X. The Role and Therapeutic Potential of Melatonin in Degenerative Fundus Diseases: Diabetes Retinopathy and Age-Related Macular Degeneration. Drug Des Devel Ther 2024; 18:2329-2346. [PMID: 38911030 PMCID: PMC11193467 DOI: 10.2147/dddt.s471525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Degenerative fundus disease encompasses a spectrum of ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), which are major contributors to visual impairment and blindness worldwide. The development and implementation of effective strategies for managing and preventing the onset and progression of these diseases are crucial for preserving patients' visual acuity. Melatonin, a neurohormone primarily produced by the pineal gland, exhibits properties such as circadian rhythm modulation, antioxidant activity, anti-inflammatory effects, and neuroprotection within the ocular environment. Furthermore, melatonin has been shown to suppress neovascularization and reduce vascular leakage, both of which are critical in the pathogenesis of degenerative fundus lesions. Consequently, melatonin emerges as a promising therapeutic candidate for degenerative ocular diseases. This review provides a comprehensive overview of melatonin synthesis, its localization within ocular tissues, and its mechanisms of action, particularly in regulating melatonin production, thereby underscoring its potential as a therapeutic agent for degenerative fundus diseases.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People’s Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Höhn C, Hahn MA, Gruber G, Pletzer B, Cajochen C, Hoedlmoser K. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun 2024; 6:fcae173. [PMID: 38846535 PMCID: PMC11154150 DOI: 10.1093/braincomms/fcae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Exposure to short-wavelength light before bedtime is known to disrupt nocturnal melatonin secretion and can impair subsequent sleep. However, while it has been demonstrated that older adults are less affected by short-wavelength light, there is limited research exploring differences between adolescents and young adults. Furthermore, it remains unclear whether the effects of evening short-wavelength light on sleep architecture extend to sleep-related processes, such as declarative memory consolidation. Here, we recorded polysomnography from 33 male adolescents (15.42 ± 0.97 years) and 35 male young adults (21.51 ± 2.06 years) in a within-subject design during three different nights to investigate the impact of reading for 90 min either on a smartphone with or without a blue-light filter or from a printed book. We measured subjective sleepiness, melatonin secretion, sleep physiology and sleep-dependent memory consolidation. While subjective sleepiness remained unaffected, we observed a significant melatonin attenuation effect in both age groups immediately after reading on the smartphone without a blue-light filter. Interestingly, adolescents fully recovered from the melatonin attenuation in the following 50 min before bedtime, whereas adults still, at bedtime, exhibited significantly reduced melatonin levels. Sleep-dependent memory consolidation and the coupling between sleep spindles and slow oscillations were not affected by short-wavelength light in both age groups. Nevertheless, adults showed a reduction in N3 sleep during the first night quarter. In summary, avoiding smartphone use in the last hour before bedtime is advisable for adolescents and young adults to prevent sleep disturbances. Our research empirically supports general sleep hygiene advice and can inform future recommendations regarding the use of smartphones and other screen-based devices before bedtime.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Georg Gruber
- The Siesta Group Schlafanalyse GmbH, 1210 Vienna, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland
- Research Cluster Molecular and Cognitive Neuroscience (MCN), University of Basel, 4055 Basel, Switzerland
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Abstract
Cardiac dysfunction triggers immune-mediated loss of pineal gland melatonin release.
Collapse
Affiliation(s)
- Harvey Davis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
9
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
Wang W, Hao Z, Wu Z, Cui J, Liu H. Long-term artificial/natural daytime light affects mood, melatonin, corticosterone, and gut microbiota in rats. Appl Microbiol Biotechnol 2023; 107:2689-2705. [PMID: 36912904 DOI: 10.1007/s00253-023-12446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
The desynchronization of circadian rhythms affected by light may induce physiological and psychological disequilibrium. We aimed to elucidate changes of growth, depression-anxiety like behaviors, melatonin and corticosterone (CORT) secretion, and gut microbiota in rats influenced by long-term light inputs. Thirty male Sprague-Dawley rats were exposed to a 16/8 h light/dark regime for 8 weeks. The light period was set to 13 h of daylight with artificial light (AL group, n = 10), or with natural light (NL group, n = 10), or with mixed artificial-natural light (ANL group, n = 10), and 3 h of artificial night light after sunset. The obtained findings indicated that the highest weight gain and food efficiency were observed in the AL group and the lowest in NL group. In the behavioral tests, the NL and ANL groups showed lower anxiety level than AL group, and ANL groups showed lower depression level than AL group. The NL and ANL groups had delayed acrophases and maintained higher concentrations of melatonin compared to AL group. The circadian rhythm of CORT was only found in ANL group. At the phylum level, the mixed light contributed to a lower abundance of Bacteroidetes. The genus level results recommend a synergistic effect of artificial light and natural light on Lactobacillus abundance and an antagonistic effect on the Lachnospiraceae_NK4A136_group abundance. The study indicated that the mixture of artificial and natural light as well as the alignment of the proportions had beneficial influences on depression-anxiety-like levels, melatonin and corticosterone secretion, and the composition of the gut microbiota. KEY POINTS: • The mixed light can reduce the depression-anxiety level • The mixed light can maintain the secretion rhythm of melatonin and CORT • The mixed light can increase Lactobacillus and decrease Lachnospiraceae_NK4A136_group.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, 80336, Munich, Germany
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zizhou Wu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingwei Cui
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
12
|
Chu Y, Oh Y, Gwon M, Hwang S, Jeong H, Kim HW, Kim K, Kim YH. Dose-response analysis of smartphone usage and self-reported sleep quality: a systematic review and meta-analysis of observational studies. J Clin Sleep Med 2023; 19:621-630. [PMID: 36546366 PMCID: PMC9978438 DOI: 10.5664/jcsm.10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
STUDY OBJECTIVES Several studies have recently reported on the association between smartphone usage and self-reported sleep quality. However, no systematic review or meta-analysis has yet been performed. We aimed to analyze the association between smartphone usage time and self-reported sleep quality. METHODS We searched for articles published up to January 13, 2022, using the Embase and Medline databases. All observational studies were eligible for inclusion. The Newcastle-Ottawa scale was used to evaluate the risk of bias within studies. We used restricted cubic spline analysis to perform a dose-response analysis. RESULTS Seventeen studies with a total of 36,485 participants were included. The pooled odds ratio was 2.28 (confidence interval [CI]: 1.81-2.89; P < .001) and heterogeneity was 80%. In the dose-response analysis conducted on 5 studies, the regression coefficient between daily smartphone usage time (hours/day) and poor sleep quality was 1.042 (1.027-1.058), which confirmed a significantly positive association. CONCLUSIONS Smartphone overuse was closely associated with poor self-reported sleep quality, sleep deprivation, and sleep latency prolongation. Further studies using a more structured method and high-quality evidence (cohort or case-control) should be conducted. SYSTEMATIC REVIEW REGISTRATION CRD42022303371. CITATION Chu Y, Oh Y, Gwon M, et al. Dose-response analysis of smartphone usage and self-reported sleep quality: a systematic review and meta-analysis of observational studies. J Clin Sleep Med. 2023;19(3):621-630.
Collapse
Affiliation(s)
- Yoora Chu
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yeongbiehn Oh
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Minseong Gwon
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seokhyun Hwang
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyeokjun Jeong
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Woo Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Kihun Kim
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Kolomeichuk SN, Korneva VA, Kuznetsova TY, Korostovtseva LS, Bochkarev MV, Sviryaev YV, Blagonravov ML. MTNR1A and MTNR1B Gene Variants of the Melatonin Receptor and Arterial Stiffness in Persons without Arterial Hypertension. Bull Exp Biol Med 2023; 174:460-463. [PMID: 36892670 DOI: 10.1007/s10517-023-05729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 03/10/2023]
Abstract
A comparative analysis of vascular stiffness indices and the results of blood test was carried out in 85 healthy donors aged 19-64 years, carriers of polymorphic variants of type 1 and type 2 melatonin receptor genes. The associations of polymorphic markers of type 1 MTNR1A (rs34532313) and type 2 MTNR1B (rs10830963) melatonin receptor genes with parameters of vascular stiffness and blood parameters in healthy patients were studied. Genotyping was performed using allele-specific PCR. In all patients, 24-h BP monitoring with assessment of arterial stiffness was performed. Allele C homozygotes of MTNR1A differed significantly from carriers of the major T allele by elevated triglyceride, LDL, and fibrinogen levels. The major allele C of the rs10830963 polymorphic variant of the MTNR1B gene is associated with elevated LDL and triglycerides, as well as with individual differences in the elastic properties of the vascular wall in the examined subjects.
Collapse
Affiliation(s)
- S N Kolomeichuk
- Institute of Biology - Separated Subdivision of the Federal Research Center Karelia Scientific Center, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russia.
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - V A Korneva
- Petrozavodsk State University, Petrozavodsk, Russia
| | | | - L S Korostovtseva
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M V Bochkarev
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Yu V Sviryaev
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M L Blagonravov
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
14
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
15
|
Redox Homeostasis in Ocular Tissues: Circadian Regulation of Glutathione in the Lens? Antioxidants (Basel) 2022; 11:antiox11081516. [PMID: 36009235 PMCID: PMC9404810 DOI: 10.3390/antiox11081516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Accumulating evidence in tissues suggests an interconnection between circadian clocks and redox regulation. Diurnal variations in antioxidant levels, circadian rhythms of antioxidant enzyme activity, and differences in oxidative stress markers at different times of the day all indicate that oxidative stress responses follow a circadian rhythm. Disruptions of circadian rhythms are linked to a number of age-related diseases, including those in the eye. Typically, ocular tissues contain a robust antioxidant defence system to maintain redox balance and minimise oxidative stress and damage. The lens, in particular, contains remarkably high levels of the antioxidant glutathione (GSH). However, with advancing age, GSH levels deplete, initiating a chain of biochemical events that ultimately result in protein aggregation, light scattering, and age-related cataracts. While there is evidence that the lens exhibits circadian rhythms in the synthesis and release of melatonin, little is known about the regulation or function of timekeeping mechanisms in the lens. Since circadian rhythms are disrupted with age, and the depletion of GSH in the lens is a known initiating factor in the development of age-related cataracts, understanding the mechanisms involved in regulating GSH levels may lead to the future development of approaches to manipulate the clock to restore GSH levels and redox balance in the lens, and protect the lens from cataracts.
Collapse
|
16
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
17
|
Das NK, Samanta S. The potential anti-cancer effects of melatonin on breast cancer. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melatonin is the primary hormone of the pineal gland that is secreted at night. It regulates many physiological functions, including the sleep-wake cycle, gonadal activity, free radical scavenging, immunomodulation, neuro-protection, and cancer progression. The precise functions of melatonin are mediated by guanosine triphosphate (GTP)-binding protein (G-protein) coupled melatonin receptor 1 (MT1) and MT2 receptors. However, nuclear receptors are also associated with melatonin activity. Circadian rhythm disruption, shift work, and light exposure at night hamper melatonin production. Impaired melatonin level promotes various pathophysiological changes, including cancer. In our modern society, breast cancer is a serious problem throughout the world. Several studies have been indicated the link between low levels of melatonin and breast cancer development. Melatonin has oncostatic properties in breast cancer cells. This indolamine advances apoptosis, which arrests the cell cycle and regulates metabolic activity. Moreover, melatonin increases the treatment efficacy of cancer and can be used as an adjuvant with chemotherapeutic agents.
Collapse
Affiliation(s)
- Naba Kumar Das
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| |
Collapse
|
18
|
Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie 2022; 202:2-14. [PMID: 35007648 DOI: 10.1016/j.biochi.2022.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) and diabetes-related complications are amongst the leading causes of mortality worldwide. The international diabetes federation (IDF) has estimated 592 million people to suffer from DM by 2035. Hence, finding a novel biomolecule that can effectively aid diabetes management is vital, as other existing drugs have numerous side effects. Melatonin, a pineal hormone having antioxidative and anti-inflammatory properties, has been implicated in circadian dysrhythmia-linked DM. Reduced levels of melatonin and a functional link between melatonin and insulin are implicated in the pathogenesis of type 2 diabetes (T2D) Additionally, genomic studies revealed that rare variants in melatonin receptor 1b (MTNR1B) are also associated with impaired glucose tolerance and increased risk of T2D. Moreover, exogenous melatonin treatment in cell lines, rodent models, and diabetic patients has shown a potent effect in alleviating diabetes and other related complications. This highlights the role of melatonin in glucose homeostasis. However, there are also contradictory reports on the effects of melatonin supplementation. Thus, it is essential to explore if melatonin can be taken from bench to bedside for diabetes management. This review summarizes the therapeutic potential of melatonin in various diabetic models and whether it can be considered a safe drug for managing diabetic complications and diabetic manifestations like oxidative stress, inflammation, ER stress, mitochondrial dysfunction, metabolic dysregulation, etc.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
19
|
Gazerani P. Nightmares in Migraine: A Focused Review. Behav Sci (Basel) 2021; 11:bs11090122. [PMID: 34562960 PMCID: PMC8471052 DOI: 10.3390/bs11090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Nightmares usually occur during the sleep phase of rapid eye movement (REM) and are associated with some physical symptoms, including sweating, shortness of breath, and lower limb movements. Emotions of fear, anger, shame, and sadness may also accompany nightmares. These symptoms can occur during dreaming, upon awakening, or later when the dream experience is recollected. Nightmares may sporadically occur for everyone, but nightmare disorders are associated with features of impaired mental and physical health and require professional medical treatment. The occurrence of nightmares with several disorders has been reported in the literature, but in migraines it has only been investigated in a small number of studies. Considering the existing relationship between sleep disorders and migraine, the occurrence of nightmares in migraine can negatively affect this association and elevate the risk of depression and anxiety. This, in turn, further reduces the quality of life of affected individuals. Hence, expanding the knowledge on the link between nightmares and migraine, promoting an acceptable quantity and quality of sleep through pharmacological and nonpharmacological interventions in the management of nightmares in migraine, and further scientific investigation of the biopsychosocial mechanisms underlying the link, will be highly valuable for optimal care. This focused review, therefore, gives a brief overview of the current understanding of nightmares in migraine to highlight the open questions and value of further research. The ultimate goal is to contribute to timely recognition and sufficient action to offer beneficial outcomes for affected patients.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg E, Denmark
| |
Collapse
|
20
|
Chaudhry SR, Stadlbauer A, Buchfelder M, Kinfe TM. Melatonin Moderates the Triangle of Chronic Pain, Sleep Architecture and Immunometabolic Traffic. Biomedicines 2021; 9:984. [PMID: 34440187 PMCID: PMC8392406 DOI: 10.3390/biomedicines9080984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022] Open
Abstract
Preclinical as well as human studies indicate that melatonin is essential for a physiological sleep state, promotes analgesia and is involved in immunometabolic signaling by regulating neuroinflammatory pathways. Experimental and clinical neuromodulation studies for chronic pain treatment suggest that neurostimulation therapies such as spinal cord stimulation, vagus nerve stimulation and dorsal root ganglion stimulation have an impact on circulating inflammatory mediators in blood, cerebrospinal fluid and saliva. Herein, we provide an overview of current literature relevant for the shared pathways of sleep, pain and immunometabolism and elaborate the impact of melatonin on the crossroad of sleep, chronic pain and immunometabolism. Furthermore, we discuss the potential of melatonin as an adjunct to neurostimulation therapies. In this narrative review, we addressed these questions using the following search terms: melatonin, sleep, immunometabolism, obesity, chronic pain, neuromodulation, neurostimulation, neuroinflammation, molecular inflammatory phenotyping. So far, the majority of the published literature is derived from experimental studies and studies specifically assessing these relationships in context to neurostimulation are sparse. Thus, the adjunct potential of melatonin in clinical neurostimulation has not been evaluated under the umbrella of randomized-controlled trials and deserves increased attention as melatonin interacts and shares pathways relevant for noninvasive and invasive neurostimulation therapies.
Collapse
Affiliation(s)
- Shafqat R. Chaudhry
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Andreas Stadlbauer
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
| | - Thomas M. Kinfe
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
- Division of Functional Neurosurgery and Stereotaxy, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
21
|
Dominy NJ, Melin AD. Liminal Light and Primate Evolution. ANNUAL REVIEW OF ANTHROPOLOGY 2020. [DOI: 10.1146/annurev-anthro-010220-075454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptive origins of primates and anthropoid primates are topics of enduring interest to biological anthropologists. A convention in these discussions is to treat the light environment as binary—night is dark, day is light—and to impute corresponding selective pressure on the visual systems and behaviors of primates. In consequence, debate has tended to focus on whether a given trait can be interpreted as evidence of nocturnal or diurnal behavior in the primate fossil record. Such classification elides the variability in light, or the ways that primates internalize light in their environments. Here, we explore the liminality of light by focusing on what it is, its many sources, and its flux under natural conditions. We conclude by focusing on the intensity and spectral properties of twilight, and we review the mounting evidence of its importance as a cue that determines the onset or offset of primate activities as well as the entrainment of circadian rhythms.
Collapse
Affiliation(s)
- Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
22
|
Children's Health in the Digital Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093240. [PMID: 32384728 PMCID: PMC7246471 DOI: 10.3390/ijerph17093240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Environmental studies, metabolic research, and state of the art research in neurobiology point towards the reduced amount of natural day and sunlight exposure of the developing child, as a consequence of increasingly long hours spent indoors online, as the single unifying source of a whole set of health risks identified worldwide, as is made clear in this review of currently available literature. Over exposure to digital environments, from abuse to addiction, now concerns even the youngest (ages 0 to 2) and triggers, as argued on the basis of clear examples herein, a chain of interdependent negative and potentially long-term metabolic changes. This leads to a deregulation of the serotonin and dopamine neurotransmitter pathways in the developing brain, currently associated with online activity abuse and/or internet addiction, and akin to that found in severe substance abuse syndromes. A general functional working model is proposed under the light of evidence brought to the forefront in this review.
Collapse
|
23
|
Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9015765. [PMID: 30174783 PMCID: PMC6098907 DOI: 10.1155/2018/9015765] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) affects the retinal macula and results in loss of vision, and AMD is the primary cause of blindness and severe visual impairment among elderly people worldwide. AMD is characterized by the accumulation of drusen in the Bruch's membrane and dysfunction of retinal pigment epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD remains unclear, and no effective treatment exists. Accumulating evidence indicates that oxidative stress plays a critical role in RPE cell degeneration and AMD. Melatonin is an antioxidant that scavenges free radicals, and it has anti-inflammatory, antitumor, and antiangiogenic effects. This study investigated the antioxidative, antiapoptotic, and autophagic effects of melatonin on oxidative damage to RPE cells. We used hydrogen peroxide (H2O2) to stimulate reactive oxygen species production to cause cell apoptosis in ARPE-19 cell lines. Our findings revealed that treatment with melatonin significantly inhibited H2O2-induced RPE cell damage, decreased the apoptotic rate, increased the mitochondrial membrane potential, and increased the autophagy effect. Furthermore, melatonin reduced the Bax/Bcl-2 ratio and the expression levels of the apoptosis-associated proteins cytochrome c and caspase 7. Additionally, melatonin upregulated the expression of the autophagy-related proteins LC3-II and Beclin-1 and downregulated the expression of p62. Thus, melatonin's effects on autophagy and apoptosis can protect against H2O2-induced oxidative damage in human RPE cells. Melatonin may have multiple protective effects on human RPE cells against H2O2-induced oxidative damage.
Collapse
|
24
|
Bloch G, Hazan E, Rafaeli A. Circadian rhythms and endocrine functions in adult insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:56-69. [PMID: 23103982 DOI: 10.1016/j.jinsphys.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
25
|
Almughrabi OM, Marzouk KM, Hasanato RM, Shafik SS. Melatonin levels in periodontal health and disease. J Periodontal Res 2012; 48:315-21. [PMID: 23033974 DOI: 10.1111/jre.12010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to measure melatonin levels in the gingival crevicular fluid and saliva of subjects with healthy periodontal tissues, plaque-induced gingival inflammation, chronic periodontitis and aggressive periodontitis. MATERIAL AND METHODS A total of 70 subjects were examined and assigned to four groups: healthy periodontium (10 subjects); plaque-induced gingival inflammation (20 subjects); chronic periodontitis (20 subjects); and aggressive periodontitis (20 subjects). Gingival crevicular fluid and saliva samples were collected from each subject and analyzed using ELISAs. RESULTS The melatonin levels in both gingival crevicular fluid and saliva were lower in patients with chronic periodontitis (10.4 and 12.8 pg/mL, respectively) and aggressive periodontitis (8.4 and 8.8 pg/mL, respectively) than in patients with gingivitis (13.9 and 17.6 pg/mL, respectively) and in healthy subjects (16.6 and 22.9 pg/mL, respectively). The mean melatonin levels in both gingival crevicular fluid and saliva were statistically significantly higher in healthy patients compared with patients with chronic periodontitis and aggressive periodontitis; however, there was no significant difference in the plaque-induced gingival inflammation between the study groups. CONCLUSIONS The melatonin levels in gingival crevicular fluid and saliva are decreased in diseased periodontal tissues, especially periodontitis. The melatonin level was lowest in the aggressive periodontitis group.
Collapse
Affiliation(s)
- O M Almughrabi
- Department Preventive Dentistry, Periodontics Division, Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
26
|
Jan JE, Reiter RJ, Wong PKH, Bax MCO, Ribary U, Wasdell MB. Melatonin has membrane receptor-independent hypnotic action on neurons: an hypothesis. J Pineal Res 2011; 50:233-40. [PMID: 21210841 DOI: 10.1111/j.1600-079x.2010.00844.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melatonin, which is known to have sleep-promoting properties, has no morpho-physiological barriers and readily enters neurons and their subcellular compartments from both the blood and cerebrospinal fluid. It has multiple receptor-dependent and receptor-independent functions. Sleep is a neuronal function, and it can no longer be postulated that one or more anatomical structures fully control sleep. Neurons require sleep for metabolically driven restorative purposes, and as a result, the process of sleep is modulated by peripheral and central mechanisms. This is an important finding because it suggests that melatonin should have intracellular sleep-inducing properties. Based on recent evidence, it is proposed that melatonin induces sleep at the neuronal level independently of its membrane receptors. Thus, the hypnotic action of melatonin and the mechanisms involving the circadian rhythms are separate neurological functions. This is contrary to the presently accepted view.
Collapse
Affiliation(s)
- James E Jan
- Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Rastmanesh R. Potential of melatonin to treat or prevent age-related macular degeneration through stimulation of telomerase activity. Med Hypotheses 2011; 76:79-85. [DOI: 10.1016/j.mehy.2010.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/07/2010] [Indexed: 12/15/2022]
|
28
|
Jan JE, Reiter RJ, Bax MCO, Ribary U, Freeman RD, Wasdell MB. Long-term sleep disturbances in children: a cause of neuronal loss. Eur J Paediatr Neurol 2010; 14:380-90. [PMID: 20554229 DOI: 10.1016/j.ejpn.2010.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 05/01/2010] [Accepted: 05/05/2010] [Indexed: 12/28/2022]
Abstract
Short-term sleep loss is known to cause temporary difficulties in cognition, behaviour and health but the effects of persistent sleep deprivation on brain development have received little or no attention. Yet, severe sleep disorders that last for years are common in children especially when they have neurodevelopmental disabilities. There is increasing evidence that chronic sleep loss can lead to neuronal and cognitive loss in children although this is generally unrecognized by the medical profession and the public. Without the restorative functions of sleep due to total sleep deprivation, death is inevitable within a few weeks. Chronic sleep disturbances at any age deprive children of healthy environmental exposure which is a prerequisite for cognitive growth more so during critical developmental periods. Sleep loss adversely effects pineal melatonin production which causes disturbance of circadian physiology of cells, organs, neurochemicals, neuroprotective and other metabolic functions. Through various mechanisms sleep loss causes widespread deterioration of neuronal functions, memory and learning, gene expression, neurogenesis and numerous other changes which cause decline in cognition, behaviour and health. When these changes are long-standing, excessive cellular stress develops which may result in widespread neuronal loss. In this review, for the first time, recent research advances obtained from various fields of sleep medicine are integrated in order to show that untreated chronic sleep disorders may lead to impaired brain development, neuronal damage and permanent loss of developmental potentials. Further research is urgently needed because these findings have major implications for the treatment of sleep disorders.
Collapse
Affiliation(s)
- James E Jan
- Pediatric Neurology and Developmental Pediatrics, University of British Columbia, BC, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Luis H Ospina
- Pediatric Ophthalmology and Neuro-ophthalmology, Ste-Justine Hospital, University de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Patel AS, Dacey DM. Relative effectiveness of a blue light–filtering intraocular lens for photoentrainment of the circadian rhythm. J Cataract Refract Surg 2009; 35:529-39. [DOI: 10.1016/j.jcrs.2008.11.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/26/2008] [Accepted: 11/15/2008] [Indexed: 11/30/2022]
|
31
|
Nowak A, Rahman H, Heer C, Schueth A, Laatsch H, Hardeland R. Reactions of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK) with the tyrosine side-chain fragment, 4-ethylphenol. Redox Rep 2008; 13:102-8. [PMID: 18544227 DOI: 10.1179/135100008x259222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK) has previously been shown to interact with various free radicals. Using the ABTS cation radical [ABTS = 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)] as an electron abstracting reactant, which does not destroy the aromate, we found that the reactive intermediate derived from AMK strongly interacts with the benzene rings of other AMK molecules to form di- and oligomers. Since oligomerization is rather unlikely at physiological concentrations, we investigated reactions with other putative reaction partners. The incubation of tyrosine or several of its structural analogs with AMK in the presence of the ABTS cation radical led to numerous products, amongst which were compounds not detected when one of the educts was incubated with the ABTS cation radical alone. With tyrosine and most of its analogs, the number of products formed in the presence of AMK and ABTS cation radical was relatively high and included numerous oligomers. To optimize the yield of products of interest as well as their separation from other compounds, especially oligomers, we investigated the interaction with 4-ethylphenol, which represents the side chain of tyrosine lacking the carboxyl and amino residues of the amino acid, which otherwise can undergo additional reactions. A prominent product was chromatographically separated and analyzed by mass spectrometry [(+)-ESI-MS, (-)-ESI-MS, (+)-HRESI-MS], (1)H-NMR, and H,H-COSY correlations. The substance was identified as N-{3-[2'-(5''-ethyl-2''-hydroxyphenylamino)-5'-methoxyphenyl]-3-oxopropyl} acetamide. This chemically novel compound represents an adduct in which the amino nitrogen of AMK is attached to the C-2 atom of 4-ethylphenol, which corresponds to the C-3 atom in the benzene ring of tyrosine. This finding suggests that, upon interaction of AMK with an electron-abstracting radical, the kynuric intermediate may modify proteins at superficially accessible tyrosine residues. In fact, protein modification by an unidentified melatonin metabolite has been observed in an earlier study. The possibility of protein AMKylation may be of interest with regard to an eventual interference with tyrosine nitration or, more importantly, with tyrosine phosphorylation.
Collapse
Affiliation(s)
- Alexandra Nowak
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|