1
|
Lee SJ, Risse E, Mateus ID, Sanders IR. Evolution of unexpected diversity in a putative mating type locus and its correlation with genome variability reveals likely asexuality in the model mycorrhizal fungus Rhizophagus irregularis. BMC Genomics 2024; 25:888. [PMID: 39304834 DOI: 10.1186/s12864-024-10770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) form mutualistic partnerships with approximately 80% of plant species. AMF, and their diversity, play a fundamental role in plant growth, driving plant diversity, and global carbon cycles. Knowing whether AMF are sexual or asexual has fundamental consequences for how they can be used in agricultural applications. Evidence for and against sexuality in the model AMF, Rhizophagus irregularis, has been proposed. The discovery of a putative mating-type locus (MAT locus) in R. irregularis, and the previously suggested recombination among nuclei of a dikaryon R. irregularis isolate, potentially suggested sexuality. Unless undergoing frequent sexual reproduction, evolution of MAT-locus diversity is expected to be very low. Additionally, in sexual species, MAT-locus evolution is decoupled from the evolution of arbitrary genome-wide loci. RESULTS We studied MAT-locus diversity of R. irregularis. This was then compared to diversification in a phosphate transporter gene (PTG), that is not involved in sex, and to genome-wide divergence, defined by 47,378 single nucleotide polymorphisms. Strikingly, we found unexpectedly high MAT-locus diversity indicating that either it is not involved in sex, or that AMF are highly active in sex. However, a strongly congruent evolutionary history of the MAT-locus, PTG and genome-wide arbitrary loci allows us to reject both the hypothesis that the MAT-locus is involved in mating and that the R. irregularis lineage is sexual. CONCLUSION Our finding shapes the approach to developing more effective AMF strains and is highly informative as it suggests that introduced strains applied in agriculture will not exchange DNA with native populations.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Eric Risse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
2
|
Cama B, Heaton K, Thomas-Oates J, Schulz S, Dasmahapatra KK. Complexity of Chemical Emissions Increases Concurrently with Sexual Maturity in Heliconius Butterflies. J Chem Ecol 2024; 50:197-213. [PMID: 38478290 PMCID: PMC11233321 DOI: 10.1007/s10886-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/10/2024]
Abstract
Pheromone communication is widespread among animals. Since it is often involved in mate choice, pheromone production is often tightly controlled. Although male sex pheromones (MSPs) and anti-aphrodisiacs have been studied in some Heliconius butterfly species, little is known about the factors affecting their production and release in these long-lived butterflies. Here, we investigate the effect of post-eclosion age on chemical blends from pheromone-emitting tissues in Heliconius atthis and Heliconius charithonia, exhibiting respectively free-mating and pupal-mating strategies that are hypothesised to differently affect the timing of their pheromone emissions. We focus on two different tissues: the wing androconia, responsible for MSPs used in courtship, and the genital tip, the production site for anti-aphrodisiac pheromones that affect post-mating behaviour. Gas chromatography-mass spectrometric analysis of tissue extracts from virgin males and females of both species from day 0 to 8 post-eclosion demonstrates the following. Some ubiquitous fatty acid precursors are already detectable at day 0. The complexity of the chemical blends increases with age regardless of tissue or sex. No obvious difference in the time course of blend production was evident between the two species, but female tissues in H. charithonia were more affected by age than in H. atthis. We suggest that compounds unique to male androconia and genitals and whose amount increases with age are potential candidates for future investigation into their roles as pheromones. While this analysis revealed some of the complexity in Heliconius chemical ecology, the effects of other factors, such as the time of day, remain unknown.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| | - Karl Heaton
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | | |
Collapse
|
3
|
van der Merwe NA, Phakalatsane T, Wilken PM. The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa. Genes (Basel) 2023; 14:1158. [PMID: 37372338 DOI: 10.3390/genes14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems.
Collapse
Affiliation(s)
- Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Tshiamo Phakalatsane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Liu L, Huang Y, Song H, Luo M, Dong Z. α-Pheromone Precursor Protein Foc4-PP1 Is Essential for the Full Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4. J Fungi (Basel) 2023; 9:jof9030365. [PMID: 36983533 PMCID: PMC10057649 DOI: 10.3390/jof9030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt of bananas, is considered one of the most destructive fungal pathogens of banana crops worldwide. During infection, Foc secretes many different proteins which promote its colonization of plant tissues. Although F. oxysporum has no sexual cycle, it has been reported to secrete an α-pheromone, which acts as a growth regulator, chemoattractant, and quorum-sensing signaling molecule; and to encode a putative protein with the hallmarks of fungal α-pheromone precursors. In this study, we identified an ortholog of the α-pheromone precursor gene, Foc4-PP1, in Foc tropical race 4 (TR4), and showed that it was necessary for the growth and virulence of Foc TR4. Foc4-PP1 deletion from the Foc TR4 genome resulted in decreased fungal growth, increased sensitivity to oxidative stress and cell-wall-damaging agents, and attenuation of pathogen virulence towards banana plantlets. Subcellular localization analysis revealed that Foc4-PP1 was concentrated in the nuclei and cytoplasm of Nicotiana benthamiana cells, where it could suppress BAX-induced programmed cell death. In conclusion, these findings suggest that Foc4-PP1 contributes to Foc TR4 virulence by promoting hyphal growth and abiotic stress resistance and inhibiting the immune defense responses of host plants.
Collapse
Affiliation(s)
- Lu Liu
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yinghua Huang
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Agribusiness Tropical Crop Science Institute, Maoming 525100, China
| | - Handa Song
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (H.S.); (Z.D.); Tel.: +86-02089003192 (H.S. & Z.D.)
| | - Mei Luo
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (H.S.); (Z.D.); Tel.: +86-02089003192 (H.S. & Z.D.)
| |
Collapse
|
5
|
Bellah H, Seiler NF, Croll D. Divergent Outcomes of Direct Conspecific Pathogen Strain Interaction and Plant Co-Infection Suggest Consequences for Disease Dynamics. Microbiol Spectr 2023; 11:e0444322. [PMID: 36749120 PMCID: PMC10101009 DOI: 10.1128/spectrum.04443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Plant diseases are often caused by co-infections of multiple pathogens with the potential to aggravate disease severity. In genetically diverse pathogen species, co-infections can also be caused by multiple strains of the same species. However, the outcome of such mixed infections by different conspecific genotypes is poorly understood. The interaction among pathogen strains with complex lifestyles outside and inside of the host are likely shaped by diverse traits, including metabolic capacity and the ability to overcome host immune responses. To disentangle competitive outcomes among pathogen strains, we investigated the fungal wheat pathogen Zymoseptoria tritici. The pathogen infects wheat leaves in complex strain assemblies, and highly diverse populations persist between growing seasons. We investigated a set of 14 genetically different strains collected from the same field to assess both competitive outcomes under culture conditions and on the host. Growth kinetics of cocultured strains (~100 pairs) significantly deviated from single strain expectations, indicating competitive exclusion depending on the strain genotype. We found similarly complex outcomes of lesion development on plant leaves following co-infections by the same pairs of strains. While some pairings suppressed overall damage to the host, other combinations exceeded expectations of lesion development based on single strain outcomes. Strain competition outcomes in the absence of the host were poor predictors of outcomes on the host, suggesting that the interaction with the plant immune system adds significant complexity. Intraspecific co-infection dynamics likely make important contributions to disease outcomes in the wild. IMPORTANCE Plants are often attacked by a multitude of pathogens simultaneously, and different species can facilitate or constrain the colonization by others. To what extent simultaneous colonization by different strains of the same species matters, remains unclear. We focused on intra-specific interactions between strains of the major fungal wheat pathogen Zymoseptoria tritici. The pathogen persists in the environment before infecting plant leaves early in the growing season. Leaves are typically colonized by a multitude of strains. Strains cultured in pairs without host were growing differently compared to strains cultured alone. Wheat leaves infected either with single or pairs of strains, we found also highly variable outcomes. Interactions between strains outside of the host were only poorly explaining how strains would interact when on the host, suggesting that pathogen strains engage in complex interactions dependent on the environment. Better understanding within-species interactions will improve our ability to manage crop infections.
Collapse
Affiliation(s)
- Hadjer Bellah
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nicolas F. Seiler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
6
|
Park MJ, Kim E, Jeong YS, Son MY, Jang Y, Ka KH. Determination and Analysis of Hyper-Variable A Mating Types in Wild Strains of Lentinula edodes in Korea. MYCOBIOLOGY 2023; 51:26-35. [PMID: 36846627 PMCID: PMC9946336 DOI: 10.1080/12298093.2022.2161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The diversity of A mating type in wild strains of Lentinula edodes was extensively analyzed to characterize and utilize them for developing new cultivars. One hundred twenty-three A mating type alleles, including 67 newly discovered alleles, were identified from 106 wild strains collected for the past four decades in Korea. Based on previous studies and current findings, a total of 130 A mating type alleles have been found, 124 of which were discovered from wild strains, indicating the hyper-variability of A mating type alleles of L. edodes. About half of the A mating type alleles in wild strains were found in more than two strains, whereas the other half of the alleles were found in only one strain. About 90% of A mating type combinations in dikaryotic wild strains showed a single occurrence. Geographically, diverse A mating type alleles were intensively located in the central region of the Korean peninsula, whereas only allele A17 was observed throughout Korea. We also found the conservation of the TCCCAC motif in addition to the previously reported motifs, including ATTGT, ACAAT, and GCGGAG, in the intergenic regions of A mating loci. Sequence comparison among some alleles indicated that accumulated mutation and recombination would contribute to the diversification of A mating type alleles in L. edodes. Our data support the rapid evolution of A mating locus in L. edodes, and would help to understand the characteristics of A mating loci of wild strains in Korea and help to utilize them for developing new cultivars.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Eunjin Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Yeun Sug Jeong
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Mi-Young Son
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Yeongseon Jang
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Kang-Hyeon Ka
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| |
Collapse
|
7
|
Seike T, Niki H. Pheromone Response and Mating Behavior in Fission Yeast. Microbiol Mol Biol Rev 2022; 86:e0013022. [PMID: 36468849 PMCID: PMC9769774 DOI: 10.1128/mmbr.00130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
8
|
Cravero M, Robinson AJ, Hilpisch P, Chain PS, Bindschedler S, Junier P. Importance of appropriate genome information for the design of mating type primers in black and yellow morel populations. IMA Fungus 2022; 13:14. [PMID: 35996182 PMCID: PMC9394083 DOI: 10.1186/s43008-022-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/13/2022] Open
Abstract
Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.
Collapse
Affiliation(s)
- Melissa Cravero
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Aaron J Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Patrick Hilpisch
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Jacobs KC, Lew DJ. Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules 2022; 12:502. [PMID: 35454091 PMCID: PMC9027094 DOI: 10.3390/biom12040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Cells' ability to track chemical gradients is integral to many biological phenomena, including fertilization, development, accessing nutrients, and combating infection. Mating of the yeast Saccharomyces cerevisiae provides a tractable model to understand how cells interpret the spatial information in chemical gradients. Mating yeast of the two different mating types secrete distinct peptide pheromones, called a-factor and α-factor, to communicate with potential partners. Spatial gradients of pheromones are decoded to guide mobile polarity sites so that polarity sites in mating partners align towards each other, as a prerequisite for cell-cell fusion and zygote formation. In ascomycetes including S. cerevisiae, one pheromone is prenylated (a-factor) while the other is not (α-factor). The difference in physical properties between the pheromones, combined with associated differences in mechanisms of secretion and extracellular pheromone metabolism, suggested that the pheromones might differ in the spatial information that they convey to potential mating partners. However, as mating appears to be isogamous in this species, it is not clear why any such signaling difference would be advantageous. Here we report assays that directly track movement of the polarity site in each partner as a way to understand the spatial information conveyed by each pheromone. Our findings suggest that both pheromones convey very similar information. We speculate that the different pheromones were advantageous in ancestral species with asymmetric mating systems and may represent an evolutionary vestige in yeasts that mate isogamously.
Collapse
Affiliation(s)
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
10
|
Maisonneuve L, Chouteau M, Joron M, Llaurens V. Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage. Evolution 2020; 75:149-165. [PMID: 33210282 DOI: 10.1111/evo.14129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of mate choice is a major topic in evolutionary biology because it is thought to be a key factor in trait and species diversification. Here, we aim at uncovering the ecological conditions and genetic architecture enabling the puzzling evolution of disassortative mating based on adaptive traits. This rare form of mate choice is observed for some polymorphic traits but theoretical predictions on the emergence and persistence of this behavior are largely lacking. Thus, we developed a mathematical model to specifically understand the evolution of disassortative mating based on mimetic color pattern in the polymorphic butterfly Heliconius numata. We confirm that heterozygote advantage favors the evolution of disassortative mating and show that disassortative mating is more likely to emerge if at least one allele at the trait locus is free from any recessive deleterious mutations. We modeled different possible genetic architectures underlying mate choice behavior, such as self-referencing alleles, or specific preference or rejection alleles. Our results showed that self-referencing or rejection alleles linked to the color pattern locus enable the emergence of disassortative mating. However, rejection alleles allow the emergence of disassortative mating only when the color pattern and preference loci are tightly linked.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| | - Mathieu Chouteau
- Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, IFREMER, CNRS Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Mathieu Joron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Violaine Llaurens
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
11
|
Onetto CA, Schmidt SA, Roach MJ, Borneman AR. Comparative genome analysis proposes three new Aureobasidium species isolated from grape juice. FEMS Yeast Res 2020; 20:5902852. [DOI: 10.1093/femsyr/foaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Aureobasidium pullulans is the most abundant and ubiquitous species within the genus and is also considered a core component of the grape juice microflora. So far, a small number of other Aureobasidium species have been reported, that in contrast to A. pullulans, appear far more constrained to specific habitats. It is unknown whether grape juice is a reservoir of novel Aureobasidium species, overlooked in the course of conventional morphological and meta-barcoding analyses. In this study, eight isolates from grape juice taxonomically classified as Aureobasidium through ITS sequencing were subjected to whole-genome phylogenetic, synteny and nucleotide identity analyses, which revealed three isolates to likely represent newly discovered Aureobasidium species. Analyses of ITS and metagenomic sequencing datasets show that these species can be present in grape juice samples from different locations and vintages. Functional annotation revealed the Aureobasidium isolates possess the genetic potential to support growth on the surface of plants and grapes. However, the loss of several genes associated with tolerance to diverse environmental stresses suggest a more constrained ecological range than A. pullulans.
Collapse
Affiliation(s)
- Cristobal A Onetto
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Simon A Schmidt
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Michael J Roach
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| |
Collapse
|
12
|
Treindl AD, Leuchtmann A. Assortative mating in sympatric ascomycete fungi revealed by experimental fertilizations. Fungal Biol 2019; 123:676-686. [PMID: 31416587 DOI: 10.1016/j.funbio.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022]
Abstract
Mate recognition mechanisms resulting in assortative mating constitute an effective reproductive barrier that may promote sexual isolation and speciation. While such mechanisms are widely documented for animals and plants, they remain poorly studied in fungi. We used two interfertile species of Epichloë (Clavicipitaceae, Ascomycota), E. typhina and E. clarkii, which are host-specific endophytes of two sympatrically occurring grasses. The life cycle of these obligatory outcrossing fungi entails dispersal of gametes by a fly vector among external fungal structures (stromata). To test for assortative mating, we mimicked the natural fertilization process by applying mixtures of spermatia from both species and examined their reproductive success. Our trials revealed that fertilization is non-random and preferentially takes place between conspecific mating partners, which is indicative of assortative mating. Additionally, the viability of hybrid and non-hybrid ascospore offspring was assessed. Germination rates were lower in E. clarkii than in E. typhina and were reduced in ascospore progeny from treatments with high proportions of heterospecific spermatia. The preferential mating between conspecific genotypes and reduced hybrid viability represent important reproductive barriers that have not been documented before in Epichloë. Insights from fungal systems will deepen our understanding of the evolutionary mechanisms leading to reproductive isolation and speciation.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics, Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics, Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
13
|
Zhang Y, Yin Y, Hu P, Yu J, Xia W, Ge Q, Cao Q, Cui H, Yu X, Ye Z. Mating-type loci of Ustilago esculenta are essential for mating and development. Fungal Genet Biol 2019; 125:60-70. [PMID: 30685508 DOI: 10.1016/j.fgb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/19/2022]
Abstract
Ustilago esculenta is closely related to the smut fungus Ustilago maydis and, in an endophytic-like life in the plant Zizania latifolia, only infects host stems and causes swollen stems to form edible galls called Jiaobai in China. In order to study its different modes of invasion and sites of symptom development from other smut fungi at the molecular level, we first characterized the a and b mating-type loci of U. esculenta. The a loci contained three a mating-type alleles, encoding two pheromones and one pheromone receptor per allele. The pheromone/receptor system controlled the conjugation formation, the initial step of mating, in which each pheromone was specific for recognition by only one mating partner. In addition, there are at least three b alleles identified in U. esculenta, encoding two subunits of heterodimeric homeodomain transcription factors bE and bW, responsible for hyphal growth and invasiveness. Hyphal formation, elongation and invasion after mating of two compatible partners occurred, only when a heterodimer complex was formed by the bE and bW proteins derived from different alleles. We also demonstrated that even with only one paired pheromone-pheromone receptor, the active b locus heterodimer triggered hyphal growth and infection.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiajia Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
14
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
15
|
Zhu X, Jiao M, Guo J, Liu P, Tan C, Yang Q, Zhang Y, Thomas Voegele R, Kang Z, Guo J. A novel MADS-box transcription factor PstMCM1-1 is responsible for full virulence of Puccinia striiformis f. sp. tritici. Environ Microbiol 2018; 20:1452-1463. [PMID: 29393562 DOI: 10.1111/1462-2920.14054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/21/2018] [Indexed: 11/26/2022]
Abstract
In many eukaryotes, transcription factor MCM1 gene plays crucial roles in regulating mating processes and pathogenesis by interacting with other co-factors. However, little is known about the role of MCM1 in rust fungi. Here, we identified two MCM1 orthologs, PstMCM1-1 and PstMCM1-2, in the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). Sequence analysis indicated that both PstMCM1-1 and PstMCM1-2 contain conserved MADS domains and that PstMCM1-1 belongs to a group of SRF-like proteins that are evolutionarily specific to rust fungi. Yeast two-hybrid assays indicated that PstMCM1-1 interacts with transcription factors PstSTE12 and PstbE1. PstMCM1-1 was found to be highly induced during early infection stages in wheat and during pycniospore formation on the alternate host barberry (Berberis shensiana). PstMCM1-1 could complement the lethal phenotype and mating defects in a mcm1 mutant of Saccharomyces cerevisiae. In addition, it partially complemented the defects in appressorium formation and plant infection in a Magnaporthe oryzae Momcm1 mutant. Knock down of PstMCM1-1 resulted in a significant reduction of hyphal extension and haustorium formation and the virulence of Pst on wheat. Our results suggest that PstMCM1-1 plays important roles in the regulation of mating and pathogenesis of Pst most likely by interacting with co-factors.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, 70599, Germany
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Hadjivasiliou Z, Pomiankowski A. Gamete signalling underlies the evolution of mating types and their number. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0531. [PMID: 27619695 PMCID: PMC5031616 DOI: 10.1098/rstb.2015.0531] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 01/02/2023] Open
Abstract
The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Brandeis M. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. Biol Rev Camb Philos Soc 2017; 93:801-810. [PMID: 28913952 DOI: 10.1111/brv.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
Abstract
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
18
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield MJ, Wingfield BD. Genetic basis for high population diversity in Protea-associated Knoxdaviesia. Fungal Genet Biol 2016; 96:47-57. [DOI: 10.1016/j.fgb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
20
|
|
21
|
|
22
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
23
|
Kües U. In memory of Lorna Ann Casselton, CBE, MA, PhD, DSc, MAE, FRS. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Immler S, Otto SP. The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 2015; 69:694-708. [PMID: 25582562 DOI: 10.1111/evo.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022]
Abstract
The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings.
Collapse
Affiliation(s)
- Simone Immler
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | | |
Collapse
|
25
|
Oliveira JVDC, Borges TA, Corrêa Dos Santos RA, Freitas LFD, Rosa CA, Goldman GH, Riaño-Pachón DM. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. Int J Syst Evol Microbiol 2014; 64:2159-2168. [PMID: 24682702 DOI: 10.1099/ijs.0.060103-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel ustilaginomycetous yeast isolated from the intestinal tract of an insect pest of sugarcane roots in Ribeirão Preto, São Paulo State, Brazil, represents a novel species of the genus Pseudozyma based on molecular analyses of the D1/D2 rDNA large subunit and the internal transcribed spacer (ITS1+ITS2) regions. The name Pseudozyma brasiliensis sp. nov. is proposed for this species, with GHG001(T) ( = CBS 13268(T) = UFMG-CM-Y307(T)) as the type strain. P. brasiliensis sp. nov. is a sister species of Pseudozyma vetiver, originally isolated from leaves of vetiver grass and sugarcane in Thailand. P. brasiliensis sp. nov. is able to grow well with xylan as the sole carbon source and produces high levels of an endo-1,4-xylanase that has a higher specific activity in comparison with other eukaryotic xylanases. This enzyme has a variety of industrial applications, indicating the great biotechnological potential of P. brasiliensis.
Collapse
Affiliation(s)
- Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
| | - Thuanny A Borges
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
| | - Larissa F D Freitas
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
26
|
Phadke SS, Paixão T, Pham T, Pham S, Zufall RA. Genetic background alters dominance relationships between mat alleles in the ciliate Tetrahymena thermophila. J Hered 2013; 105:130-5. [PMID: 24190504 DOI: 10.1093/jhered/est063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pattern of inheritance and mechanism of sex determination can have important evolutionary consequences. We studied probabilistic sex determination in the ciliate Tetrahymena thermophila, which was previously shown to cause evolution of skewed sex ratios. We find that the genetic background alters the sex determination patterns of mat alleles in heterozygotes and that allelic interaction can differentially influence the expression probability of the 7 sexes. We quantify the dominance relationships between several mat alleles and find that A-type alleles, which specify sex I, are indeed recessive to B-type alleles, which are unable to specify that sex. Our results provide additional support for the presence of modifier loci and raise implications for the dynamics of sex ratios in populations of T. thermophila.
Collapse
Affiliation(s)
- Sujal S Phadke
- the Department of Biology and Biochemistry, University of Houston, Houston, TX 77204. Sujal S. Phadke is now at the Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109. Tiago Paixão is now at the Institute of Science and Technology Austria
| | | | | | | | | |
Collapse
|
27
|
Smith RP, Wellman K, Smith ML. Trans-species activity of a nonself recognition domain. BMC Microbiol 2013; 13:63. [PMID: 23517247 PMCID: PMC3618301 DOI: 10.1186/1471-2180-13-63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Background The ability to distinguish nonself from self is a fundamental characteristic of biological systems. In the filamentous fungus Neurospora crassa, multiple incompatibility genes mediate nonself recognition during vegetative growth. One of these genes, un-24, encodes both nonself recognition function and the large subunit of a type I ribonucleotide reductase, an evolutionarily conserved enzyme that is essential for the conversion of NDP precursors into dNDPs for use in DNA synthesis. Previous studies have shown that co-expression of the two allelic forms of un-24, Oakridge (OR) and Panama (PA), in the same cell results in cell death. Results We identify a 135 amino acid nonself recognition domain in the C-terminus region of UN-24 that confers an incompatibility-like phenotype when expressed in the yeast, Saccharomyces cerevisiae. Low-level expression of this domain results in several cytological and phenotypic characteristics consistent with an incompatibility reaction in filamentous fungi. These incompatibility phenotypes are correlated with the presence of a non-reducible complex consisting of the PA incompatibility domain and Rnr1p, a large subunit of ribonucleotide reductase in yeast. When the PA incompatibility domain is switched to high-level expression, the incompatibility phenotype transitions to wild-type concomitant with the appearance of a complex containing the PA incompatibility domain and Ssa1p, an Hsp70 homolog. Conclusions Results from this study provide insights into the mechanism and control of vegetative nonself recognition mediated by ribonucleotide reductase in N. crassa, thus establishing the yeast system as a powerful tool to study fungal nonself recognition. Our work shows that heat shock proteins may function to deactivate vegetative incompatibility systems, as required for entry into the sexual cycle. Finally, our results suggest that variations on the PA incompatibility domain may serve as novel and specific antimicrobial peptides.
Collapse
|
28
|
Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 2013; 76:626-51. [PMID: 22933563 DOI: 10.1128/mmbr.00010-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery.
Collapse
|
29
|
Vuilleumier S, Alcala N, Niculita-Hirzel H. Transitions from reproductive systems governed by two self-incompatible loci to one in fungi. Evolution 2012; 67:501-16. [PMID: 23356621 DOI: 10.1111/j.1558-5646.2012.01783.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-incompatibility (SI), a reproductive system broadly present in plants, chordates, fungi, and protists, might be controlled by one or several multiallelic loci. How a transition in the number of SI loci can occur and the consequences of such events for the population's genetics and dynamics have not been studied theoretically. Here, we provide analytical descriptions of two transition mechanisms: linkage of the two SI loci (scenario 1) and the loss of function of one incompatibility gene within a mating type of a population with two SI loci (scenario 2). We show that invasion of populations by the new mating type form depends on whether the fitness of the new type is lowered, and on the allelic diversity of the SI loci and the recombination between the two SI loci in the starting population. Moreover, under scenario 1, it also depends on the frequency of the SI alleles that became linked. We demonstrate that, following invasion, complete transitions in the reproductive system occurs under scenario 2 and is predicted only for small populations under scenario 1. Interestingly, such events are associated with a drastic reduction in mating type number.
Collapse
Affiliation(s)
- Séverine Vuilleumier
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
30
|
Kellner R, Vollmeister E, Feldbrügge M, Begerow D. Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 2011; 7:e1002436. [PMID: 22242007 PMCID: PMC3248468 DOI: 10.1371/journal.pgen.1002436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 11/09/2011] [Indexed: 01/07/2023] Open
Abstract
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR-triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities.
Collapse
Affiliation(s)
- Ronny Kellner
- Ruhr-Universität Bochum, Geobotany Laboratory, Bochum, Germany
| | - Evelyn Vollmeister
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | - Michael Feldbrügge
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | - Dominik Begerow
- Ruhr-Universität Bochum, Geobotany Laboratory, Bochum, Germany
| |
Collapse
|
31
|
Zaffarano PL, Queloz V, Duò A, Grünig CR. Sex in the PAC: a hidden affair in dark septate endophytes? BMC Evol Biol 2011; 11:282. [PMID: 21961933 PMCID: PMC3199270 DOI: 10.1186/1471-2148-11-282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or in vitro and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the Phialocephala fortinii s. l. - Acephala applanata species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (MAT) genes involved in reproductive processes. RESULTS The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas A. applanata had a homothallic (self-fertile) MAT locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. MAT genes were shown to evolve under strong purifying selection. CONCLUSIONS The signature of sex was found in worldwide populations of PAC species and functionality of MAT genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and in vitro crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.
Collapse
Affiliation(s)
- Pascal L Zaffarano
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
32
|
Coelho MA, Gonçalves P, Sampaio JP. Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evol Biol 2011; 11:249. [PMID: 21880139 PMCID: PMC3236058 DOI: 10.1186/1471-2148-11-249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by MAT loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of MAT genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales. Results We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (STE3.A1 and STE3.A2) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains. Conclusions The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.
Collapse
Affiliation(s)
- Marco A Coelho
- Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
33
|
Nygren K, Strandberg R, Wallberg A, Nabholz B, Gustafsson T, García D, Cano J, Guarro J, Johannesson H. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol 2011; 59:649-63. [DOI: 10.1016/j.ympev.2011.03.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/11/2011] [Accepted: 03/17/2011] [Indexed: 11/27/2022]
|
34
|
de Sena-Tomás C, Fernández-Álvarez A, Holloman WK, Pérez-Martín J. The DNA damage response signaling cascade regulates proliferation of the phytopathogenic fungus Ustilago maydis in planta. THE PLANT CELL 2011; 23:1654-65. [PMID: 21478441 PMCID: PMC3101559 DOI: 10.1105/tpc.110.082552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Alfonso Fernández-Álvarez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
| | - William K. Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - José Pérez-Martín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
35
|
Abstract
The social amoebae possess a sexual cycle that involves transient mutlicellularity: first a zygote attracts surrounding haploid amoebae to form a walled aggregate around it, and then cannibalizes these peripheral cells, eventually forming a dormant single-celled macrocyst. Self-fertile homothallic isolates occur as well as breeding groups of self-infertile heterothallic cells, which commonly have more than two mating types. The mating-type locus of the widely studied model organism Dictyostelium discoideum, which has three mating types, has recently been identified. Two of the three mating types are determined by single putative regulatory genes bearing no mutual similarity, while the third is specified by homologues of both of these genes. This is the first sex-determining locus of an Amoebozoan to be described and, since none of the key regulators show homology to known proteins, may be a first glimpse of a novel mode of regulation used in these organisms. The sexual cycle of dictyostelids has been relatively neglected, but continues to yield much interesting biology as well as having the potential to add to the genetic tools available for the study of these organisms.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| |
Collapse
|
36
|
Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Biol 2011; 48:661-7. [PMID: 21362492 DOI: 10.1016/j.fgb.2011.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/23/2022]
Abstract
An organism's reproductive mode is believed to be a major factor driving its genome evolution. In theory, sexual inbreeding and asexuality are associated with lower effective recombination levels and smaller effective population sizes than sexual outbreeding, giving rise to reduced selection efficiency and genetic hitchhiking. This, in turn, is predicted to result in the accumulation of deleterious mutations and other genomic changes, for example the accumulation of repetitive elements. Empirical data from plants and animals supporting/refuting these theories are sparse and have yielded few conclusive results. A growing body of data from the fungal kingdom, wherein reproductive behavior varies extensively within and among taxonomic groups, has provided new insights into the role of mating systems (e.g., homothallism, heterothallism, pseudohomothallism) and asexuality, on genome evolution. Herein, we briefly review the theoretical relationships between reproductive mode and genome evolution and give examples of empirical data on the topic derived to date from plants and animals. We subsequently focus on the available data from fungi, which suggest that reproductive mode alters the rates and patterns of genome evolution in these organisms, e.g., protein evolution, mutation rate, codon usage, frequency of genome rearrangements and repetitive elements, and variation in chromosome size.
Collapse
|
37
|
Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. – Acephala applanata species complex. Fungal Genet Biol 2010; 47:761-72. [DOI: 10.1016/j.fgb.2010.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/18/2022]
|
38
|
Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 2010; 86:421-42. [PMID: 21489122 DOI: 10.1111/j.1469-185x.2010.00153.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.
Collapse
Affiliation(s)
- Sylvain Billiard
- Université Lille Nord de France, USTL, GEPV, CNRS, FRE 3268, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
39
|
Engh IB, Skrede I, Sætre GP, Kauserud H. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection? BMC Genet 2010; 11:64. [PMID: 20624315 PMCID: PMC2909151 DOI: 10.1186/1471-2156-11-64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/12/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range with a concomitant genetic bottleneck. RESULTS High allelic richness and molecular variation was detected in the mating type linked marker as compared to other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of S. lacrymans than other alleles from S. himantoides. CONCLUSIONS Our results support the idea that strong negative frequency-dependent selection maintains high levels of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.
Collapse
Affiliation(s)
- Ingeborg Bjorvand Engh
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Inger Skrede
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| |
Collapse
|
40
|
Ziegler A, Santos PSC, Kellermann T, Uchanska-Ziegler B. Self/nonself perception, reproduction and the extended MHC. SELF NONSELF 2010; 1:176-191. [PMID: 21487476 DOI: 10.4161/self.1.3.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
Self/nonself perception governs mate selection in most eukaryotic species. It relies on a number of natural barriers that act before, during and after copulation. These hurdles prevent a costly investment into an embryo with potentially suboptimal genetic and immunological properties and aim at discouraging fertilization when male and female gametes exhibit extensive sharing of alleles. Due to the fact that several genes belonging to the extended major histocompatibility complex (xMHC) carry out crucial immune functions and are the most polymorphic within vertebrate genomes, it is likely that securing heterozygosity and the selection of rare alleles within this gene complex contributes to endowing the offspring with an advantage in fighting infections. Apart from MHC class I and II antigens, the products of several other genes within the xMHC are candidates for participating in mate choice, especially since the respective loci are subject to long-range linkage disequilibrium which may aid to preserve functionally connected alleles within a given haplotype. Among these loci are polymorphic odorant receptor genes that are expressed not only in the olfactory epithelium, but also within male reproductive tissues. They may thus not only be of importance in olfaction-influenced mate choice, by recognizing MHC-dependent individual-specific olfactory signals, but could also guide spermatozoa along chemical gradients to their target, the oocyte. By focusing on the human HLA complex and genes within its vicinity, we show here that the products of several xMHC-specified molecules might be involved in self/nonself perception during reproduction. Although the molecular details are often unknown, the existence of highly diverse, yet intertwined pre- and post-copulatory barriers suggests that xMHC-encoded proteins may be important for various stages of mate choice, germ cell development, as well as embryonic and foetal life in mammals and other vertebrates. Many of these genes should thus be regarded as crucial not only within the immune system, but also in reproduction.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik; Charité-Universitätsmedizin Berlin; Campus Benjamin Franklin; Freie Universität Berlin; Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 2010; 74:298-340. [PMID: 20508251 PMCID: PMC2884414 DOI: 10.1128/mmbr.00005-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex is shrouded in mystery. Not only does it preferentially occur in the dark for both fungi and many animals, but evolutionary biologists continue to debate its benefits given costs in light of its pervasive nature. Experimental studies of the benefits and costs of sexual reproduction with fungi as model systems have begun to provide evidence that the balance between sexual and asexual reproduction shifts in response to selective pressures. Given their unique evolutionary history as opisthokonts, along with metazoans, fungi serve as exceptional models for the evolution of sex and sex-determining regions of the genome (the mating type locus) and for transitions that commonly occur between outcrossing/self-sterile and inbreeding/self-fertile modes of reproduction. We review here the state of the understanding of sex and its evolution in the fungal kingdom and also areas where the field has contributed and will continue to contribute to illuminating general principles and paradigms of sexual reproduction.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Min Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Cecelia Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
42
|
Lin X, Jackson JC, Feretzaki M, Xue C, Heitman J. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet 2010; 6:e1000953. [PMID: 20485569 PMCID: PMC2869318 DOI: 10.1371/journal.pgen.1000953] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/14/2010] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1alpha/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell-cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | |
Collapse
|
43
|
Mielnichuk N, Sgarlata C, Pérez-Martín J. A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis. J Cell Sci 2009; 122:4130-40. [PMID: 19861497 DOI: 10.1242/jcs.052233] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During induction of the virulence program in the phytopathogenic fungus Ustilago maydis, the cell cycle is arrested on the plant surface and it is not resumed until the fungus enters the plant. The mechanism of this cell cycle arrest is unknown, but it is thought that it is necessary for the correct implementation of the virulence program. Here, we show that this arrest takes place in the G2 phase, as a result of an increase in the inhibitory phosphorylation of the catalytic subunit of the mitotic cyclin-dependent kinase Cdk1. Sequestration in the cytoplasm of the Cdc25 phosphatase seems to be one of the reasons for the increase in inhibitory phosphorylation. Strikingly, we also report the DNA-damage checkpoint kinase Chk1 appears to be involved in this process. Our results support the emerging idea that checkpoint kinases have roles other than in the DNA-damage response, by virtue of their ability to interact with the cell cycle machinery.
Collapse
Affiliation(s)
- Natalia Mielnichuk
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | | | | |
Collapse
|
44
|
van der Nest MA, Slippers B, Steenkamp ET, De Vos L, Van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Genetic linkage map for Amylostereum areolatum reveals an association between vegetative growth and sexual and self-recognition. Fungal Genet Biol 2009; 46:632-41. [PMID: 19523529 DOI: 10.1016/j.fgb.2009.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Amylostereum areolatum is a filamentous fungus that grows through tip extension, branching and hyphal fusion. In the homokaryotic phase, the hyphae of different individuals are capable of fusing followed by heterokaryon formation, only if they have dissimilar allelic specificities at their mating-type (mat) loci. In turn, hyphal fusion between heterokaryons persists only when they share the same alleles at all of their heterokaryon incompatibility (het) loci. In this study we present the first genetic linkage map for A. areolatum, onto which the mat and het loci, as well as quantitative trait loci (QTLs) for mycelial growth rate are mapped. The recognition loci (mat-A and het-A) are positioned near QTLs associated with mycelial growth, suggesting that the genetic determinants influencing recognition and growth rate in A. areolatum are closely associated. This was confirmed when isolates associated with specific mat and het loci displayed significantly different mycelial growth rates. Although the link between growth and sexual recognition has previously been observed in other fungi, this is the first time that an association between growth and self-recognition has been shown.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Evolutionary strata in a small mating-type-specific region of the smut fungus Microbotryum violaceum. Genetics 2009; 182:1391-6. [PMID: 19448270 DOI: 10.1534/genetics.109.103192] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence analysis and genetic mapping of loci from mating-type-specific chromosomes of the smut fungus Microbotryum violaceum demonstrated that the nonrecombining mating-type-specific region in this species comprises approximately 25% ( approximately 1 Mb) of the chromosome length. Divergence between homologous mating-type-linked genes in this region varies between 0 and 8.6%, resembling the evolutionary strata of vertebrate and plant sex chromosomes.
Collapse
|
46
|
|
47
|
Grosse V, Krappmann S. The asexual pathogen aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. EUKARYOTIC CELL 2008; 7:1724-32. [PMID: 18757566 PMCID: PMC2568067 DOI: 10.1128/ec.00157-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/19/2008] [Indexed: 12/21/2022]
Abstract
The major fungal pathogen of humans, Aspergillus fumigatus, lacks a defined sexual cycle, although the presence of genes encoding putative mating type idiomorphs and regulators of Aspergillus sexual development heightens the potential for cryptic sexuality in this deuteromycete. To test the functionality of these genetic determinants, we transferred the alpha box-encoding mat1-1 idiomorph from an A. fumigatus isolate to the homothallic fertile species Aspergillus nidulans. Abundant formation of fruiting bodies (cleistothecia) containing viable ascospores establishes functionality of this mating type gene product in the transgenic strain. Using a similar approach, we also established that the conserved transcriptional regulator from A. fumigatus, the nsdD gene product, can act as a functional, positively acting factor for A. nidulans cleistothecium development; moreover, high-level expression of NsdD in the endogenous host A. fumigatus profoundly alters hyphal development by triggering the formation of coiled hyphae. Our findings demonstrate that the presumably asexual pathogen A. fumigatus encodes functional regulators of mating and sexual development, thereby potentiating the case for cryptic sexuality in this fungal pathogen.
Collapse
Affiliation(s)
- Verena Grosse
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | | |
Collapse
|
48
|
Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008; 32:1010-32. [PMID: 18811658 DOI: 10.1111/j.1574-6976.2008.00131.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
49
|
Abstract
The sex-determining genes of fungi reside at one or two specialised regions of the chromosome known as the mating type (MAT) loci. The genes are sufficient to determine haploid cell identity, enable compatible mating partners to attract each other, and prepare cells for sexual reproduction after fertilisation. How conserved are these genes in different fungal groups? New work1 seeks an answer to this question by identifying the sex-determining regions of an early diverged fungus. These regions bear remarkable similarity to those described in other fungi, but the sex proteins they encode belong to only a single class of transcription factor, the high mobility group (HMG), indicating that these are likely to be ancestral to other proteins recruited for fungal sex.
Collapse
Affiliation(s)
- Lorna A Casselton
- Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
50
|
Kothe E. Sexual attraction: on the role of fungal pheromone/receptor systems (A review). Acta Microbiol Immunol Hung 2008; 55:125-43. [PMID: 18595318 DOI: 10.1556/amicr.55.2008.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheromones have been detected in all fungal phylogenetic lineages. This came as a surprise, as the general role of pheromones in mate attraction was not envisioned for some fungi. Pheromones and pheromone receptor genes have been identified, however, in members of all true fungal lineages, and even for mycelia forming organisms of plant and amoeba lineages, like oomycetes and myxomycetes. The mating systems and genes governing the mating type are different in fungi, ranging from bipolar with two opposite mating types to tetrapolar mating systems (with four possible mating outcomes, only one of which leads to fertile sexual development) in homobasidioymcetes with more than 23,000 mating types occurring in nature. Pheromones and receptors specifically recognizing these pheromones have evolved with slightly different functions in these different systems. This review is dedicated to follow the evolution of pheromone/receptor systems from simple, biallelic bipolar systems to multiallelic, tetrapolar versions and to explain the slightly different functions the pheromone recognition and subsequent signal transduction cascades within the fungal kingdom. The biotechnological implications of a detailed understanding of mating systems for biological control and plant protection, in medicine, and in mushroom breeding are discussed.
Collapse
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich-Schiller-Universität, Neugasse 25, D-07743 Jena, Germany.
| |
Collapse
|