1
|
López-Olvera JR, Ramírez E, Martínez-Carrasco C, Granados JE. Wildlife-Livestock Host Community Maintains Simultaneous Epidemiologic Cycles of Mycoplasma conjunctivae in a Mountain Ecosystem. Vet Sci 2024; 11:217. [PMID: 38787189 PMCID: PMC11125856 DOI: 10.3390/vetsci11050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious keratoconjunctivitis (IKC) is an eye disease caused by Mycoplasma conjunctivae that affects domestic and wild caprines, including Iberian ibex (Capra pyrenaica), a medium-sized mountain ungulate. However, its role in IKC dynamics in multi-host communities has been poorly studied. This study assessed M. conjunctivae in Iberian ibex and seasonally sympatric domestic small ruminants in the Natural Space of Sierra Nevada (NSSN), a mountain habitat in southern Spain. From 2015 to 2017, eye swabs were collected from 147 ibexes (46 subadults, 101 adults) and 169 adult domestic small ruminants (101 sheep, 68 goats). Mycoplasma conjunctivae was investigated through real-time qPCR and statistically assessed according to species, sex, age category, year, period, and area. The lppS gene of M. conjunctivae was sequenced and phylogenetically analysed. Mycoplasma conjunctivae was endemic and asymptomatic in the host community of the NSSN. Three genetic clusters were shared by ibex and livestock, and one was identified only in sheep, although each host species could maintain the infection independently. Naïve subadults maintained endemic infection in Iberian ibex, with an epizootic outbreak in 2017 when the infection spread to adults. Wild ungulates are epidemiologically key in maintaining and spreading IKC and other shared diseases among spatially segregated livestock flocks.
Collapse
Affiliation(s)
- Jorge Ramón López-Olvera
- Servei d’Ecopatologia de Fauna Salvatge (SEFaS) and Wildlife Ecology & Health Group (WE&H), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, E-08193 Barcelona, Spain;
| | - Eva Ramírez
- Servei d’Ecopatologia de Fauna Salvatge (SEFaS) and Wildlife Ecology & Health Group (WE&H), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, E-08193 Barcelona, Spain;
| | - Carlos Martínez-Carrasco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain;
| | - José Enrique Granados
- Parque Nacional y Parque Natural de Sierra Nevada and Wildlife Ecology & Health Group (WE&H), Pinos Genil, E-18191 Granada, Spain;
| |
Collapse
|
2
|
Cardoso TF, Luigi‐Sierra MG, Castelló A, Cabrera B, Noce A, Mármol‐Sánchez E, García‐González R, Fernández‐Arias A, Alabart JL, López‐Olvera JR, Mentaberre G, Granados‐Torres JE, Cardells‐Peris J, Molina A, Sànchez A, Clop A, Amills M. Assessing the levels of intraspecific admixture and interspecific hybridization in Iberian wild goats ( Capra pyrenaica). Evol Appl 2021; 14:2618-2634. [PMID: 34815743 PMCID: PMC8591326 DOI: 10.1111/eva.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Iberian wild goats (Capra pyrenaica, also known as Iberian ibex, Spanish ibex, and Spanish wild goat) underwent strong genetic bottlenecks during the 19th and 20th centuries due to overhunting and habitat destruction. From the 1970s to 1990s, augmentation translocations were frequently carried out to restock Iberian wild goat populations (very often with hunting purposes), but they were not systematically planned or recorded. On the other hand, recent data suggest the occurrence of hybridization events between Iberian wild goats and domestic goats (Capra hircus). Augmentation translocations and interspecific hybridization might have contributed to increase the diversity of Iberian wild goats. With the aim of investigating this issue, we have genotyped 118 Iberian wild goats from Tortosa-Beceite, Sierra Nevada, Muela de Cortes, Gredos, Batuecas, and Ordesa and Monte Perdido by using the Goat SNP50 BeadChip (Illumina). The analysis of genotypic data indicated that Iberian wild goat populations are strongly differentiated and display low diversity. Only three Iberian wild goats out from 118 show genomic signatures of mixed ancestry, a result consistent with a scenario in which past augmentation translocations have had a limited impact on the diversity of Iberian wild goats. Besides, we have detected eight Iberian wild goats from Tortosa-Beceite with signs of domestic goat introgression. Although rare, hybridization with domestic goats could become a potential threat to the genetic integrity of Iberian wild goats; hence, measures should be taken to avoid the presence of uncontrolled herds of domestic or feral goats in mountainous areas inhabited by this iconic wild ungulate.
Collapse
Affiliation(s)
- Tainã Figueiredo Cardoso
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - María Gracia Luigi‐Sierra
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Anna Castelló
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Betlem Cabrera
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antonia Noce
- Leibniz‐Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Emilio Mármol‐Sánchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | | | - Alberto Fernández‐Arias
- Servicio de Caza y PescaDepartamento de Agricultura, Ganadería y Medio AmbienteGobierno de AragónZaragozaSpain
| | - José Luis Alabart
- Unidad de Producción y Sanidad AnimalCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)Instituto Agroalimentario de Aragón ‐ IA2 (CITA‐Universidad de Zaragoza)Gobierno de AragónZaragozaSpain
| | - Jorge Ramón López‐Olvera
- Wildlife Ecology & Health Group and Servei d’Ecopatologia de Fauna Salvatge (SEFaS)Departament de Medicina i Cirurgia AnimalsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Gregorio Mentaberre
- Wildlife Ecology & Health Group and Departament de Ciència AnimalEscola Tècnica Superior d’Enginyeria Agraria (ETSEA)Universitat de Lleida (UdL)LleidaSpain
| | | | - Jesús Cardells‐Peris
- SAIGAS (Servicio de Análisis, Investigación y Gestión de Animales Silvestres) and Wildlife Ecology & Health Group, Faculty of VeterinaryUniversidad Cardenal Herrera‐CEU, CEU UniversitiesValenciaSpain
| | - Antonio Molina
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
| | - Armand Sànchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Alex Clop
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marcel Amills
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
3
|
Forcina G, Woutersen K, Sánchez-Ramírez S, Angelone S, Crampe JP, Pérez JM, Fandos P, Granados JE, Jowers MJ. Demography reveals populational expansion of a recently extinct Iberian ungulate. ZOOSYST EVOL 2021. [DOI: 10.3897/zse.97.61854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing the demographic history of endangered taxa is paramount to predict future fluctuations and disentangle the contributing factors. Extinct taxa or populations might also provide key insights in this respect by means of the DNA extracted from museum specimens. Nevertheless, the degraded status of biological material and the limited number of records may pose some constraints. For this reason, identifying all available sources, including private and public biological collections, is a crucial step forward. In this study, we reconstructed the demographic history based on cytochrome-b sequence data of the Pyrenean ibex (Capra pyrenaica pyrenaica), a charismatic taxon of the European wildlife that became extinct in the year 2000. Moreover, we built a database of the museum specimens available in public biological collections worldwide and genotyped a privately owned 140-year-old trophy from the Spanish Pyrenees to confirm its origin. We found that the population of the Pyrenean ibex underwent a recent expansion approximately 20,000 years ago, after which trophy hunting and epizootics triggered a relentless population decline. Our interpretations, based on the genetic information currently available in public repositories, provide a solid basis for more exhaustive analyses relying on all the new sources identified. In particular, the adoption of a genome-wide approach appears a fundamental prerequisite to disentangle the multiple contributing factors associated with low genetic diversity, including inbreeding depression, acting as extinction drivers.
Collapse
|
4
|
Sequence diversity of MHC class-II DRB gene in gazelles (Gazella subgutturosa) raised in Sanliurfa of Turkey. J Genet 2018. [DOI: 10.1007/s12041-018-0974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Peters SO, Hussain T, Adenaike AS, Adeleke MA, De Donato M, Hazzard J, Babar ME, Imumorin IG. Genetic Diversity of Bovine Major Histocompatibility Complex Class II DRB3 locus in cattle breeds from Asia compared to those from Africa and America. J Genomics 2018; 6:88-97. [PMID: 29928467 PMCID: PMC6004549 DOI: 10.7150/jgen.26491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic polymorphisms and diversity of BoLA-DRB3.2 are essential because of DRB3 gene's function in innate immunity and its association with infectious diseases resistance or tolerance in cattle. The present study was aimed at assessing the level of genetic diversity of DRB3 in the exon 2 (BoLA-DRB3.2) region in African, American and Asian cattle breeds. Amplification of exon 2 in 174 cattle revealed 15 haplotypes. The breeds with the highest number of haplotypes were Brangus (10), Sokoto Gudali (10) and Dajal (9), while the lowest number of haplotypes were found in Holstein and Sahiwal with 4 haplotypes each. Medium Joining network obtained from haplotypic data showed that all haplotypes condensed around a centric area and each sequence (except in H-3, H-51 and H-106) representing almost a specific haplotype. The BoLA-DRB3.2 sequence analyses revealed a non-significant higher rate of non-synonymous (dN) compared to synonymous substitutions (dS). The ratio of dN/dS substitution across the breeds were observed to be greater than one suggesting that variation at the antigen-binding sites is under positive selection; thus increasing the chances of these breeds to respond to wide array of pathogenic attacks. An analysis of molecular variance revealed that 94.01 and 5.99% of the genetic variation was attributable to differences within and among populations, respectively. Generally, results obtained suggest that within breed genetic variation across breeds is higher than between breeds. This genetic information will be important for investigating the relationship between BoLADRB3.2 and diseases in various cattle breeds studied with attendant implication on designing breeding programs that will aim at selecting individual cattle that carry resistant alleles.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149.,Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Adeyemi S Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), P/Bag X54001, Durban 4000, South Africa
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Quretaro, Mexico
| | - Jordan Hazzard
- Department of Animal Science, Berry College, Mount Berry, GA 30149
| | - Masroor E Babar
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ikhide G Imumorin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332.,African Institute for Bioscience Research and Training, Ibadan, Nigeria
| |
Collapse
|
6
|
Angelone S, Jowers MJ, Molinar Min AR, Fandos P, Prieto P, Pasquetti M, Cano-Manuel FJ, Mentaberre G, Olvera JRL, Ráez-Bravo A, Espinosa J, Pérez JM, Soriguer RC, Rossi L, Granados JE. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica). BMC Genet 2018; 19:28. [PMID: 29739323 PMCID: PMC5941765 DOI: 10.1186/s12863-018-0616-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. Results We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele. Conclusions This finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units). Electronic supplementary material The online version of this article (10.1186/s12863-018-0616-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samer Angelone
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain. .,Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - Michael J Jowers
- CIBIO/ InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Campus Agrario De Vairão, 4485-661, Vairão, Portugal
| | - Anna Rita Molinar Min
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - Paulino Fandos
- Agencia de Medio Ambiente y Agua, E-41092, Sevilla, Isla de la Cartuja, Spain
| | - Paloma Prieto
- Parque Natural Sierras de Cazorla, Segura y Las Villas, Martínez Falero11, E-23470, Cazorla, Jaén, Spain
| | - Mario Pasquetti
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | | | - Gregorio Mentaberre
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Jorge Ramón López Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Arián Ráez-Bravo
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - José Espinosa
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Jesús M Pérez
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - José Enrique Granados
- Espacio Natural Sierra Nevada, Carretera Antigua de Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
| |
Collapse
|
7
|
|
8
|
Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evol Appl 2017; 11:123-139. [PMID: 29387150 PMCID: PMC5775499 DOI: 10.1111/eva.12490] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Restoration of lost species ranges to their native distribution is key for the survival of endangered species. However, reintroductions often fail and long‐term genetic consequences are poorly understood. Alpine ibex (Capra ibex) are wild goats that recovered from <100 individuals to ~50,000 within a century by population reintroductions. We analyzed the population genomic consequences of the Alpine ibex reintroduction strategy. We genotyped 101,822 genomewide single nucleotide polymorphism loci in 173 Alpine ibex, the closely related Iberian ibex (Capra pyrenaica) and domestic goat (Capra hircus). The source population of all Alpine ibex maintained genetic diversity comparable to Iberian ibex, which experienced less severe bottlenecks. All reintroduced Alpine ibex populations had individually and combined lower levels of genetic diversity than the source population. The reintroduction strategy consisted of primary reintroductions from captive breeding and secondary reintroductions from established populations. This stepwise reintroduction strategy left a strong genomic footprint of population differentiation, which increased with subsequent rounds of reintroductions. Furthermore, analyses of genomewide runs of homozygosity showed recent inbreeding primarily in individuals of reintroduced populations. We showed that despite the rapid census recovery, Alpine ibex carry a persistent genomic signature of their reintroduction history. We discuss how genomic monitoring can serve as an early indicator of inbreeding.
Collapse
Affiliation(s)
- Christine Grossen
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
| | - Iris Biebach
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
| | - Samer Angelone-Alasaad
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
9
|
Cai R, Shafer ABA, Laguardia A, Lin Z, Liu S, Hu D. Recombination and selection in the major histocompatibility complex of the endangered forest musk deer (Moschus berezovskii). Sci Rep 2015; 5:17285. [PMID: 26603338 PMCID: PMC4658564 DOI: 10.1038/srep17285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Collapse
Affiliation(s)
- Ruibo Cai
- College of Nature Conservation, Beijing Forestry University, China
| | | | - Alice Laguardia
- College of Nature Conservation, Beijing Forestry University, China
| | - Zhenzhen Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, China
| |
Collapse
|
10
|
Li L, Wang BB, Ge YF, Wan QH. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet 2014; 41:401-12. [PMID: 25053118 DOI: 10.1111/iji.12135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
Abstract
Genes of the major histocompatibility complex (MHC) family are crucial in immune responses because they present pathogenic peptides to T cells. In this study, we analysed the genetic variation in forest musk deer (Moschus berezovskii) MHC II genes and its potential association with musk deer purulent disease. In total, 53 purulent disease-susceptible and 46 purulent disease-resistant individuals were selected for MHC II exon 2 fragment analysis. Among them, 16 DQ alleles and four additional DR alleles were identified, with DQ exon 2 fragments displaying a low level of polymorphism. The nonsynonymous substitutions exceeded the synonymous substitutions in the peptide-binding sites of DQA2, DQB1 and DQB2. Then, 28 MHC II alleles were used to analyse the distribution patterns of purulent disease between the susceptible and resistant groups. Among them, three alleles (DQA1*01, DQA1*02 and DQA2*04) were found to be resistant, and five alleles (DRB3*07, DQA1*03, DQA1*04, DQA2*05 and DQA2*06) were found to increase susceptibility. Additionally, three haplotypes were found to be putatively associated with musk deer purulent disease. However, these three haplotypes were only found in the resistant or susceptible group, and their frequencies were low. The results from our study support a contributory role of MHC II polymorphisms in the development of purulent disease in forest musk deer.
Collapse
Affiliation(s)
- L Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
11
|
Alasaad S, Fickel J, Rossi L, Sarasa M, BenÃ-tez-Camacho B, Granados JE, Soriguer RC. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain. Acta Vet Scand 2012; 54:56. [PMID: 23006678 PMCID: PMC3511808 DOI: 10.1186/1751-0147-54-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022] Open
Abstract
Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC) loci usually excludes them from being used in studies to detect hybridization events. However, if a) the parental species don’t share alleles, and b) one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis), then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus) and free-ranging Iberian ibex (Capra pyrenaica hispanica) by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management.
Collapse
|
12
|
Shafer ABA, Fan CW, Cote SD, Coltman DW. (Lack of) Genetic Diversity in Immune Genes Predates Glacial Isolation in the North American Mountain Goat (Oreamnos americanus). J Hered 2012; 103:371-9. [DOI: 10.1093/jhered/esr138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Xu S, Ju J, Zhou X, Wang L, Zhou K, Yang G. Considerable MHC diversity suggests that the functional extinction of baiji is not related to population genetic collapse. PLoS One 2012; 7:e30423. [PMID: 22272349 PMCID: PMC3260281 DOI: 10.1371/journal.pone.0030423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/15/2011] [Indexed: 12/02/2022] Open
Abstract
To further extend our understanding of the mechanism causing the current nearly extinct status of the baiji (Lipotes vexillifer), one of the most critically endangered species in the world, genetic diversity at the major histocompatibility complex (MHC) class II DRB locus was investigated in the baiji. Nine highly divergent DRB alleles were identified in 17 samples, with an average of 28.4 (13.2%) nucleotide difference and 16.7 (23.5%) amino acid difference between alleles. The unexpectedly high levels of DRB allelic diversity in the baiji may partly be attributable to its evolutionary adaptations to the freshwater environment which is regarded to have a higher parasite diversity compared to the marine environment. In addition, balancing selection was found to be the main mechanisms in generating sequence diversity at baiji DRB gene. Considerable sequence variation at the adaptive MHC genes despite of significant loss of neutral genetic variation in baiji genome might suggest that intense selection has overpowered random genetic drift as the main evolutionary forces, which further suggested that the critically endangered or nearly extinct status of the baiji is not an outcome of genetic collapse.
Collapse
Affiliation(s)
- Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianfeng Ju
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lian Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Salles PDA, Santos SC, Rondina D, Weller M. Genetic variability of six indigenous goat breeds using major histocompatibility complex-associated microsatellite markers. J Vet Sci 2011; 12:127-32. [PMID: 21586871 PMCID: PMC3104166 DOI: 10.4142/jvs.2011.12.2.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study aimed at analyzing the genetic variability of indigenous goat breeds (Capra hircus) using the MHC-associated microsatellite markers BF1, BM1818, BM1258, DYMS1, and SMHCC1. The following breeds were included: Chinese Xuhuai, Indian Changthangi and Pashmina, Kenyan Small East African (SEA) and Galla, and Albanian Vendi. To examine genetic variability, the levels of heterozigosity, degrees of inbreeding, and genetic differences among the breeds were analyzed. The mean number of alleles ranged from nine in the Galla to 14.5 in the Vendi breed. The mean observed heterozygosity and mean expected heterozygosity varied from 0.483 in the Vendi to 0.577 in the Galla breed, and from 0.767 in the SEA to 0.879 in the Vendi breed, respectively. Significant loss of heterozygosity (p < 0.01) indicated that these loci were not in Hardy-Weinberg equilibrium. The mean F(IS) values ranged from 0.3299 in the SEA to 0.4605 in the Vendi breed with a mean value of 0.3623 in all breeds (p < 0.001). Analysis of molecular variance indicated that 7.14% and 4.74% genetic variation existed among the different breeds and geographic groups, whereas 92.86% and 95.26% existed in the breeds and the geographic groups, respectively (p < 0.001). The microsatellite marker analysis disclosed a high degree of genetic polymorphism. Loss of heterozygosity could be due to genetic drift and endogamy. The genetic variation among populations and geographic groups does not indicate a correlation of genetic differences with geographic distance.
Collapse
Affiliation(s)
- Patricy de Andrade Salles
- Rede Nordeste de Biotecnologia, Departamento da Medicina Veterinária, Universidade Estadual do Ceará, 60740-000 Fortaleza, Brazil
| | | | | | | |
Collapse
|
16
|
BIEBACH IRIS, KELLER LUKASF. A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex). Mol Ecol 2009; 18:5046-58. [DOI: 10.1111/j.1365-294x.2009.04420.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
MAINGUY JULIEN, CÔTÉ STEEVED, COLTMAN DAVIDW. Multilocus heterozygosity, parental relatedness and individual fitness components in a wild mountain goat,Oreamnos americanuspopulation. Mol Ecol 2009; 18:2297-306. [DOI: 10.1111/j.1365-294x.2009.04197.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Folch J, Cocero M, Chesné P, Alabart J, Domínguez V, Cognié Y, Roche A, Fernández-Árias A, Martí J, Sánchez P, Echegoyen E, Beckers J, Bonastre AS, Vignon X. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 2009; 71:1026-34. [DOI: 10.1016/j.theriogenology.2008.11.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 11/17/2022]
|
19
|
Gebremedhin B, Ficetola GF, Naderi S, Rezaei HR, Maudet C, Rioux D, Luikart G, Flagstad Ø, Thuiller W, Taberlet P. Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex. Anim Conserv 2009. [DOI: 10.1111/j.1469-1795.2009.00238.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D'Amelio S, Rossi L, Meneguz PG, Bertorelle G. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Mol Ecol 2009; 17:4053-67. [PMID: 19238706 DOI: 10.1111/j.1365-294x.2008.03892.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen-mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high d(n)/d(s) ratio and the presence of trans-species polymorphisms suggest that a strong long-term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D-loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000-30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.
Collapse
Affiliation(s)
- S Mona
- Department of Biology and Evolution, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alvarez-Busto J, García-Etxebarria K, Herrero J, Garin I, Jugo BM. Diversity and evolution of the Mhc-DRB1 gene in the two endemic Iberian subspecies of Pyrenean chamois, Rupicapra pyrenaica. Heredity (Edinb) 2007; 99:406-13. [PMID: 17551521 DOI: 10.1038/sj.hdy.6801016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Major histocompatibility complex class II locus DRB variation was investigated by single-strand conformation polymorphism analysis and sequence analysis in the two subspecies of Pyrenean chamois (Rupicapra pyrenaica) endemic to the Iberian Peninsula. Low levels of genetic variation were detected in both subspecies, with seven different alleles in R. p. pyrenaica and only three in the R. p. parva. After applying the rarefaction method to cope with the differences in sample size, the low allele number of parva was highlighted. The low allelic repertoire of the R. p. parva subspecies is most likely the result of bottlenecks caused by hunting pressure and recent parasitic infections by sarcoptic mange. A phylogenetic analysis of both Pyrenean chamois and DRB alleles from 10 different caprinid species revealed that the chamois alleles form two monophyletic groups. In comparison with other Caprinae DRB sequences, the Rupicapra alleles displayed a species-specific clustering that reflects a large temporal divergence of the chamois from other caprinids, as well as a possible difference in the selective environment for these species.
Collapse
Affiliation(s)
- J Alvarez-Busto
- Genetika, Antropologia Fisikoa eta Animali Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | | | | | | | | |
Collapse
|
22
|
Mayer F, Brunner A. Non-neutral evolution of the major histocompatibility complex class II gene DRB1 in the sac-winged bat Saccopteryx bilineata. Heredity (Edinb) 2007; 99:257-64. [PMID: 17519971 PMCID: PMC7094720 DOI: 10.1038/sj.hdy.6800989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The immune genes of the major histocompatibility complex (MHC) are classical examples for high levels of genetic diversity and non-neutral evolution. This is particularly true for the regions containing the antigen-binding sites as, for instance, in the exon 2 of the MHC class II gene DRB. We surveyed, for the first time in the order Chiroptera, the genetic diversity within this exon in the sac-winged bat Saccopteryx bilineata. We detected 11 alleles among 85 bats, of which 79 were sampled in one population. Pairwise comparisons revealed that interallelic sequence differences ranged between 3 and 22%, although nucleotide substitutions were not evenly distributed along the exon sequence. This was most probably the result of intragenic recombination. High levels of sequence divergence and significantly more nonsynonymous than synonymous substitutions (dN/dS>1) suggest long-term balancing selection. Thus, the data are consistent with the hypothesis that recombination gives rise to new alleles at the DRB locus of the sac-winged bat, and these are maintained in the population through balancing selection. In this respect, the sac-winged bat closely resembles other mammalian species.
Collapse
Affiliation(s)
- F Mayer
- Department of Zoology, University of Erlangen, Erlangen, Germany.
| | | |
Collapse
|
23
|
Xu S, Sun P, Zhou K, Yang G. Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides). Immunogenetics 2007; 59:581-92. [PMID: 17486336 DOI: 10.1007/s00251-007-0223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/31/2007] [Indexed: 11/29/2022]
Abstract
Major histocompatibility complex (MHC) class II DQB and DRA genes and class I gene of finless porpoises (Neophocaena phocaenoides) were investigated by single-strand conformation polymorphism and sequence analysis. The DRA, DQB, and MHC-I loci each contained 5, 14, and 34 unique sequences, respectively, and considerable sequence variation was found at the MHC-I and DQB loci. Gene duplication was manifested as three to five distinct sequences at each of the DQB and MHC-I loci from some individuals, and these sequences at each of the two loci separately clustered into four groups (cluster A, B, C, and D) based on the phylogenetic trees. Phylogenetic reconstruction revealed a trans-species pattern of evolution. Relatively high rates of non-synonymous (dN) vs synonymous (dS) substitution in the peptide-binding region (PBR) suggested balancing selection for maintaining polymorphisms at the MHC-I and DQB loci. In contrast, one single locus with little sequence variation was detected in the DRA gene, and no non-synonymous substitutions in the PBR indicated no balancing selection on this gene.
Collapse
Affiliation(s)
- Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 122 Ninghai Road, Nanjing 210097, China
| | | | | | | |
Collapse
|
24
|
Axtner J, Sommer S. Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 2007; 59:417-26. [PMID: 17351770 DOI: 10.1007/s00251-007-0205-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The generation and maintenance of allelic polymorphism in genes of the major histocompatibility complex (MHC) is a central issue in evolutionary genetics. Recently, the focus has changed from ex situ to in situ populations to understand the mechanisms that determine adaptive MHC polymorphism under natural selection. Birth-and-death evolution and gene conversion events are considered to generate sequence diversity in MHC genes, which subsequently is maintained by balancing selection through parasites. The ongoing arms race between the host and parasites leads to an adaptive selection pressure upon the MHC, evident in high rates of non-synonymous vs synonymous substitution rates. We characterised the MHC class II DRB exon 2 of free living bank voles, Clethrionomys glareolus by single-strand conformation polymorphism and direct sequencing. Unlike other arvicolid species, the DRB locus of the bank vole is at least quadruplicated. No evidence for gene conversion events in the Clgl-DRB sequences was observed. We found not only high allelic polymorphism with 26 alleles in 36 individuals but also high rates of silent polymorphism. Exceptional for MHC class II genes is a purifying selection pressure upon the majority of MHC-DRB sequences. Further, we analysed the association between certain DRB alleles and the parasite burden with gastrointestinal trichostrongyle nematodes Heligmosomum mixtum and Heligmosomoides glareoli and found significant quality differences between specific alleles with respect to infection intensity. Our findings suggest a snapshot in an evolutionary process of ongoing birth-and-death evolution. One allele cluster has lost its function and is already silenced, another is loosing its adaptive value in terms of gastrointestinal nematode resistance, while a third group of alleles indicates all signs of classical functional MHC alleles.
Collapse
Affiliation(s)
- Jan Axtner
- Animal Ecology & Conservation, University Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | | |
Collapse
|
25
|
Mainguy J, Worley K, Côté SD, Coltman DW. Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites. CONSERV GENET 2006. [DOI: 10.1007/s10592-006-9243-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Schaschl H, Wandeler P, Suchentrunk F, Obexer-Ruff G, Goodman SJ. Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity (Edinb) 2006; 97:427-37. [PMID: 16941019 DOI: 10.1038/sj.hdy.6800892] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Collapse
Affiliation(s)
- H Schaschl
- Konrad Lorenz Institute for Ethology, Vienna, Austria.
| | | | | | | | | |
Collapse
|
27
|
Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2005; 2:16. [PMID: 16242022 PMCID: PMC1282567 DOI: 10.1186/1742-9994-2-16] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022] Open
Abstract
Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies.
Collapse
Affiliation(s)
- Simone Sommer
- Animal Ecology & Conservation, Biocentre Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|