1
|
Yıldırım B, Vogl C. Purifying selection against spurious splicing signals contributes to the base composition evolution of the polypyrimidine tract. J Evol Biol 2023; 36:1295-1312. [PMID: 37564008 PMCID: PMC10946897 DOI: 10.1111/jeb.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 08/12/2023]
Abstract
Among eukaryotes, the major spliceosomal pathway is highly conserved. While long introns may contain additional regulatory sequences, the ones in short introns seem to be nearly exclusively related to splicing. Although these regulatory sequences involved in splicing are well-characterized, little is known about their evolution. At the 3' end of introns, the splice signal nearly universally contains the dimer AG, which consists of purines, and the polypyrimidine tract upstream of this 3' splice signal is characterized by over-representation of pyrimidines. If the over-representation of pyrimidines in the polypyrimidine tract is also due to avoidance of a premature splicing signal, we hypothesize that AG should be the most under-represented dimer. Through the use of DNA-strand asymmetry patterns, we confirm this prediction in fruit flies of the genus Drosophila and by comparing the asymmetry patterns to a presumably neutrally evolving region, we quantify the selection strength acting on each motif. Moreover, our inference and simulation method revealed that the best explanation for the base composition evolution of the polypyrimidine tract is the joint action of purifying selection against a spurious 3' splice signal and the selection for pyrimidines. Patterns of asymmetry in other eukaryotes indicate that avoidance of premature splicing similarly affects the nucleotide composition in their polypyrimidine tracts.
Collapse
Affiliation(s)
- Burçin Yıldırım
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Claus Vogl
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| |
Collapse
|
2
|
Hertzog A, Selvanathan A, Farnsworth E, Tchan M, Adams L, Lewis K, Tolun AA, Bennetts B, Ho G, Bhattacharya K. Intronic variants in inborn errors of metabolism: Beyond the exome. Front Genet 2022; 13:1031495. [PMID: 36561316 PMCID: PMC9763607 DOI: 10.3389/fgene.2022.1031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Non-coding regions are areas of the genome that do not directly encode protein and were initially thought to be of little biological relevance. However, subsequent identification of pathogenic variants in these regions indicates there are exceptions to this assertion. With the increasing availability of next generation sequencing, variants in non-coding regions are often considered when no causative exonic changes have been identified. There is still a lack of understanding of normal human variation in non-coding areas. As a result, potentially pathogenic non-coding variants are initially classified as variants of uncertain significance or are even overlooked during genomic analysis. In most cases where the phenotype is non-specific, clinical suspicion is not sufficient to warrant further exploration of these changes, partly due to the magnitude of non-coding variants identified. In contrast, inborn errors of metabolism (IEMs) are one group of genetic disorders where there is often high phenotypic specificity. The clinical and biochemical features seen often result in a narrow list of diagnostic possibilities. In this context, there have been numerous cases in which suspicion of a particular IEM led to the discovery of a variant in a non-coding region. We present four patients with IEMs where the molecular aetiology was identified within non-coding regions. Confirmation of the molecular diagnosis is often aided by the clinical and biochemical specificity associated with IEMs. Whilst the clinical severity associated with a non-coding variant can be difficult to predict, obtaining a molecular diagnosis is crucial as it ends diagnostic odysseys and assists in management.
Collapse
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia,Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Ashley Hertzog,
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Elizabeth Farnsworth
- Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW, Australia
| | - Louisa Adams
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Katherine Lewis
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia,Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Bruce Bennetts
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Gladys Ho
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Kaustuv Bhattacharya
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| |
Collapse
|
3
|
Mordvinov VA, Ershov NI, Zaparina OG, Pakharukova MY. Genomics and proteomics of the liver fluke Opisthorchis felineus. Vavilovskii Zhurnal Genet Selektsii 2021; 24:383-390. [PMID: 33659821 PMCID: PMC7716572 DOI: 10.18699/vj20.44-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The causative agent of opisthorchiasis, the liver fluke Opisthorchis felineus (Rivolta, 1884) is one of the helminths of humans and animals in Russia. Together with closely related species of trematodes O. viverrini (Poirier, 1886) and Clonorchis sinensis (Loos, 1907), O. felineus is a part of a triad of epidemiologically important trematodes in the family Opisthorchiidae. Adult O. felineus worms infest the hepatobiliary system of warm-blooded animals and might provoke the development of severe pathologies, including malignancy of bile duct epithelium. The high medical importance of O. felineus attracts the attention of researchers. This review briefly summarizes the data about O. felineus genomics and proteomics. The review provides a comparative analysis of the number of genes and sizes of nuclear genomes of a number of flatworms, the distribution of intron lengths, as well as results of synteny between the O. felineus, O. viverrini and C. sinensis genomes. Special attention is paid to a particular form of RNA processing known as trans-splicing, widely presented in the opisthorchiid genomes. We also provide the results of a comparative analysis of the xenobiotic metabolizing system between parasitic and free-living flatworms. Moreover, data on parasitic granulins, which are potential promoters of cholangiocyte neoplasia, are also presented. Data on the O. felineus genomics and proteomics provide first insights into the structural and functional organization of the genome of this parasitic flatworm with a complex life cycle as well as provide a significant contribution to our understanding of “host-parasite” interaction and evolution of this group of parasitic flatworms.
Collapse
Affiliation(s)
- V A Mordvinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O G Zaparina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M Y Pakharukova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Gotoh O. Modeling one thousand intron length distributions with fitild. Bioinformatics 2018; 34:3258-3264. [PMID: 29722882 PMCID: PMC6157073 DOI: 10.1093/bioinformatics/bty353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation Intron length distribution (ILD) is a specific feature of a genome that exhibits extensive species-specific variation. Whereas ILD contributes to up to 30% of the total information content for intron recognition in some species, rendering it an important component of computational gene prediction, very few studies have been conducted to quantitatively characterize ILDs of various species. Results We developed a set of computer programs (fitild, compild, etc.) to build statistical models of ILDs and compare them with one another. Each ILD of more than 1000 genomes was fitted with fitild to a statistical model consisting of one, two, or three components of Frechet distributions. Several measures of distances between ILDs were calculated by compild. A theoretical model was presented to better understand the origin of the observed shape of an ILD. Availability and implementation The C++ source codes are available at https://github.com/ogotoh/fitild.git/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Osamu Gotoh
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, Koto-ku, Tokyo, Japan.,Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
5
|
Abstract
Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics.
Collapse
Affiliation(s)
- Simon Creer
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, United Kingdom
| |
Collapse
|
6
|
Bondarenko VS, Gelfand MS. Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS One 2016; 11:e0161476. [PMID: 27603699 PMCID: PMC5014332 DOI: 10.1371/journal.pone.0161476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022] Open
Abstract
A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in various representatives of Ciliates.
Collapse
Affiliation(s)
- Vladyslav S. Bondarenko
- Institute of Molecular Biology and Genetics, NASU, Zabolotnogo Str. 150, Kyiv, 03680, Ukraine
- * E-mail:
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow GSP-1, 119234, Russia
| |
Collapse
|
7
|
Zumkeller SM, Knoop V, Knie N. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae. Genome Biol Evol 2016; 8:2505-19. [PMID: 27492234 PMCID: PMC5010907 DOI: 10.1093/gbe/evw173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues.
Collapse
Affiliation(s)
- Simon Maria Zumkeller
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Nils Knie
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
8
|
Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization of newly gained introns in Daphnia populations. Genome Biol Evol 2014; 6:2218-34. [PMID: 25123113 PMCID: PMC4202315 DOI: 10.1093/gbe/evu174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin
| | - Robert Kuzoff
- Department of Biology, University of Wisconsin-Whitewater
| | - Chen Khuan Wong
- Genetics and Genomics Program, Department of Medicine, Boston University
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
9
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Zheng Y, Blair D, Bradley JE. Phyletic distribution of fatty acid-binding protein genes. PLoS One 2013; 8:e77636. [PMID: 24155969 PMCID: PMC3796463 DOI: 10.1371/journal.pone.0077636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/13/2013] [Indexed: 01/13/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are a family of fatty acid-binding small proteins essential for lipid trafficking, energy storage and gene regulation. Although they have 20 to 70% amino acid sequence identity, these proteins share a conserved tertiary structure comprised of ten beta sheets and two alpha helixes. Availability of the complete genomes of 34 invertebrates, together with transcriptomes and ESTs, allowed us to systematically investigate the gene structure and alternative splicing of FABP genes over a wide range of phyla. Only in genomes of two cnidarian species could FABP genes not be identified. The genomic loci for FABP genes were diverse and their genomic structure varied. In particular, the intronless FABP genes, in most of which the key residues involved in fatty acid binding varied, were common in five phyla. Interestingly, several species including one trematode, one nematode and four arthropods generated FABP mRNA variants via alternative splicing. These results demonstrate that both gene duplication and post-transcriptional modifications are used to generate diverse FABPs in species studied.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - David Blair
- James Cook University, Townsville, Queensland, Australia
| | - Janette E. Bradley
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Zhu T, Niu DK. Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS One 2013; 8:e61683. [PMID: 23613904 PMCID: PMC3629103 DOI: 10.1371/journal.pone.0061683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels.
Collapse
Affiliation(s)
- Tao Zhu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Doumen C. Variable intron/exon structure in the oligochaete lombricine kinase gene. Gene 2012; 505:276-82. [PMID: 22705027 DOI: 10.1016/j.gene.2012.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 11/23/2022]
Abstract
Lombricine kinase is an annelid enzyme that belongs to the phosphagen kinase family of which creatine kinase and arginine kinase are the typical representatives. The enzymes play important roles in the cellular energy metabolism of animals. Biochemical, physiological and molecular information with respect to lombricine kinase is limited compared to other phosphagen kinases. This study presents data on the cDNA sequences of lombricine kinase from two smaller oligochaetes, Enchytraeus sp. and Stylaria sp. The deduced amino acid sequences are analyzed and compared with other selected phosphagen kinases. The intron/exon structure of the lombricine kinase gene was determined for these two species as well as two additional oligochaetes, Lumbriculus variegatus and Tubifex tubifex, and compared with available data for annelid phosphagen kinases. The data indicate the existence of a variable organization of the proposed 8-intron/9-exon gene structure. The results provide further insights in the evolution and position of these enzymes within the phosphagen kinase family.
Collapse
Affiliation(s)
- Chris Doumen
- Department of Mathematics and Natural Sciences, Collin College, Plano, TX 75074, USA.
| |
Collapse
|
13
|
Wang D, Su Y, Wang X, Lei H, Yu J. Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in Mammalian intron size expansion. Evol Bioinform Online 2012; 8:301-19. [PMID: 22807622 PMCID: PMC3396637 DOI: 10.4137/ebo.s9758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Repetitive sequences (RSs) are redundant, complex at times, and often lineage-specific, representing significant “building” materials for genes and genomes. According to their origins, sequence characteristics, and ways of propagation, repetitive sequences are divided into transposable elements (TEs) and satellite sequences (SSs) as well as related subfamilies and subgroups hierarchically. The combined changes attributable to the repetitive sequences alter gene and genome architectures, such as the expansion of exonic, intronic, and intergenic sequences, and most of them propagate in a seemingly random fashion and contribute very significantly to the entire mutation spectrum of mammalian genomes. Principal findings Our analysis is focused on evolutional features of TEs and SSs in the intronic sequence of twelve selected mammalian genomes. We divided them into four groups—primates, large mammals, rodents, and primary mammals—and used four non-mammalian vertebrate species as the out-group. After classifying intron size variation in an intron-centric way based on RS-dominance (TE-dominant or SS-dominant intron expansions), we observed several distinct profiles in intron length and positioning in different vertebrate lineages, such as retrotransposon-dominance in mammals and DNA transposon-dominance in the lower vertebrates, amphibians and fishes. The RS patterns of mouse and rat genes are most striking, which are not only distinct from those of other mammals but also different from that of the third rodent species analyzed in this study—guinea pig. Looking into the biological functions of relevant genes, we observed a two-dimensional divergence; in particular, genes that possess SS-dominant and/or RS-free introns are enriched in tissue-specific development and transcription regulation in all mammalian lineages. In addition, we found that the tendency of transposons in increasing intron size is much stronger than that of satellites, and the combined effect of both RSs is greater than either one of them alone in a simple arithmetic sum among the mammals and the opposite is found among the four non-mammalian vertebrates. Conclusions TE- and SS-derived RSs represent major mutational forces shaping the size and composition of vertebrate genes and genomes, and through natural selection they either fine-tune or facilitate changes in size expansion, position variation, and duplication, and thus in functions and evolutionary paths for better survival and fitness. When analyzed globally, not only are such changes significantly diversified but also comprehensible in lineages and biological implications.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Hepburn NJ, Schmidt DW, Mower JP. Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss. Mol Biol Evol 2012; 29:3111-20. [PMID: 22593225 DOI: 10.1093/molbev/mss130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intron loss is often thought to occur through retroprocessing, which is the reverse transcription and genomic integration of a spliced transcript. In plant mitochondria, several unambiguous examples of retroprocessing are supported by the parallel loss of an intron and numerous adjacent RNA edit sites, but in most cases, the evidence for intron loss via retroprocessing is weak or lacking entirely. To evaluate mechanisms of intron loss, we designed a polymerase chain reaction (PCR)-based assay to detect recent intron losses from the mitochondrial cox2 gene within genus Magnolia, which was previously suggested to have variability in cox2 intron content. Our assay showed that all 22 examined species have a cox2 gene with two introns. However, one species, Magnolia tripetala, contains an additional cox2 gene that lacks both introns. Quantitative PCR showed that both M. tripetala cox2 genes are present in the mitochondrial genome. Although the intronless gene has lost several ancestral RNA edit sites, their distribution is inconsistent with retroprocessing models. Instead, phylogenetic and gene conversion analyses indicate that the intronless gene was horizontally acquired from a eudicot and then underwent gene conversion with the native intron-containing gene. The models are presented to summarize the roles of horizontal gene transfer and gene conversion as a novel mechanism of intron loss.
Collapse
Affiliation(s)
- Nancy J Hepburn
- Center for Plant Science Innovation, University of Nebraska, NE, USA
| | | | | |
Collapse
|
15
|
Evolutionary Genomics of Colias Phosphoglucose Isomerase (PGI) Introns. J Mol Evol 2012; 74:96-111. [DOI: 10.1007/s00239-012-9492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
16
|
Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
18
|
Wang D, Yu J. Both size and GC-content of minimal introns are selected in human populations. PLoS One 2011; 6:e17945. [PMID: 21437290 PMCID: PMC3060096 DOI: 10.1371/journal.pone.0017945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/16/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We previously have studied the insertion and deletion polymorphism by sequencing no more than one hundred introns in a mixed human population and found that the minimal introns tended to maintain length at an optimal size. Here we analyzed re-sequenced 179 individual genomes (from African, European, and Asian populations) from the data released by the 1000 Genome Project to study the size dynamics of minimal introns. PRINCIPAL FINDINGS We not only confirmed that minimal introns in human populations are selected but also found two major effects in minimal intron evolution: (i) Size-effect: minimal introns longer than an optimal size (87 nt) tend to have a higher ratio of deletion to insertion than those that are shorter than the optimal size; (ii) GC-effect: minimal introns with lower GC content tend to be more frequently deleted than those with higher GC content. The GC-effect results in a higher GC content in minimal introns than their flanking exons as opposed to larger introns (≥125 nt) that always have a lower GC content than that of their flanking exons. We also observed that the two effects are distinguishable but not completely separable within and between populations. CONCLUSIONS We validated the unique mutation dynamics of minimal introns in keeping their near-optimal size and GC content, and our observations suggest potentially important functions of human minimal introns in transcript processing and gene regulation.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Hu XS, Yeh FC, Wang Z. Structural genomics: correlation blocks, population structure, and genome architecture. Curr Genomics 2011; 12:55-70. [PMID: 21886455 PMCID: PMC3129043 DOI: 10.2174/138920211794520141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 11/27/2022] Open
Abstract
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6J 2C8, Canada
- Department of Renewable Resources, 751 General Service Building, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Francis C. Yeh
- Department of Renewable Resources, 751 General Service Building, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Zhiquan Wang
- 1400 College Plaza, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6J 2C8, Canada
| |
Collapse
|
20
|
Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldón T. Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 2010; 10:57. [PMID: 20178587 PMCID: PMC2834692 DOI: 10.1186/1471-2148-10-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/23/2010] [Indexed: 12/03/2022] Open
Abstract
Background Spliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes. Despite much research, many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. We circumvent this problem by using genes originated by endosymbiotic gene transfer, in which an intron-less structure at the time of the transfer can be assumed. Results By comparing the exon-intron structures of 64 mitochondrial-derived genes that were transferred to the nucleus at different evolutionary periods, we can trace the history of intron gains in different eukaryotic lineages. Our results show that the intron density of genes transferred relatively recently to the nuclear genome is similar to that of genes originated by more ancient transfers, indicating that gene structure can be rapidly shaped by intron gain after the integration of the gene into the genome and that this process is mainly determined by forces acting specifically on each lineage. We analyze 12 cases of mitochondrial-derived genes that have been transferred to the nucleus independently in more than one lineage. Conclusions Remarkably, the proportion of shared intron positions that were gained independently in homologous genes is similar to that proportion observed in genes that were transferred prior to the speciation event and whose shared intron positions might be due to vertical inheritance. A particular case of parallel intron gain in the nad7 gene is discussed in more detail.
Collapse
Affiliation(s)
- Nahal Ahmadinejad
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
Rates and mechanisms of intron gain and loss have traditionally been inferred from alignments of highly conserved genes sampled from phylogenetically distant taxa. We report a population-genomic approach that detected 24 discordant intron/exon boundaries between the whole-genome sequences of two Daphnia pulex isolates. Sequencing of presence/absence loci across a collection of D. pulex isolates and outgroup Daphnia species shows that most polymorphisms are a consequence of recent gains, with parallel gains often occurring at the same locations in independent allelic lineages. More than half of the recent gains are associated with short sequence repeats, suggesting an origin via repair of staggered double-strand breaks. By comparing the allele-frequency spectrum of intron-gain alleles with that for derived single-base substitutions, we also provide evidence that newly arisen introns are intrinsically deleterious and tend to accumulate in population-genetic settings where random genetic drift is a relatively strong force.
Collapse
Affiliation(s)
- Wenli Li
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | | | - Way Sung
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - Michael Lynch
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Skelly DA, Ronald J, Connelly CF, Akey JM. Population genomics of intron splicing in 38 Saccharomyces cerevisiae genome sequences. Genome Biol Evol 2009; 1:466-78. [PMID: 20333215 PMCID: PMC2839277 DOI: 10.1093/gbe/evp046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2009] [Indexed: 11/12/2022] Open
Abstract
Introns are a ubiquitous feature of eukaryotic genomes, and the dynamics of intron evolution between species has been extensively studied. However, comparatively few analyses have focused on the evolutionary forces shaping patterns of intron variation within species. To better understand the population genetic characteristics of introns, we performed an extensive population genetics analysis on key intron splice sequences obtained from 38 strains of Saccharomyces cerevisiae. As expected, we found that purifying selection is the dominant force governing intron splice sequence evolution in yeast, formally confirming that intron-containing alleles are a mutational liability. In addition, through extensive coalescent simulations, we obtain quantitative estimates of the strength of purifying selection (2Nes ≈ 19) and use diffusion approximations to provide insights into the evolutionary dynamics and sojourn times of newly arising splice sequence mutations in natural yeast populations. In contrast to previous functional studies, evolutionary analyses comparing the prevalence of introns in essential and nonessential genes suggest that introns in nonribosomal protein genes are functionally important and tend to be actively maintained in natural populations of S. cerevisiae. Finally, we demonstrate that heritable variation in splicing efficiency is common in intron-containing genes with splice sequence polymorphisms. More generally, our study highlights the advantages of population genomics analyses for exploring the forces that have generated extant patterns of genome variation and for illuminating basic biological processes.
Collapse
Affiliation(s)
- Daniel A Skelly
- Department of Genome Sciences, University of Washington, USA
| | | | | | | |
Collapse
|
23
|
Abstract
In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These “large introns” must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5′ and 3′ acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing—a consecutive splicing from the 5′-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs) that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites.
Collapse
|
24
|
Catania F, Gao X, Scofield DG. Endogenous mechanisms for the origins of spliceosomal introns. J Hered 2009; 100:591-6. [PMID: 19635762 DOI: 10.1093/jhered/esp062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted genes of the last eukaryotic common ancestor (LECA) and proliferated by "insertion" events. Although this is a possible explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of spliceosomal introns in eukaryotes without invoking an exogenous source.
Collapse
Affiliation(s)
- Francesco Catania
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
25
|
Sharpton TJ, Neafsey DE, Galagan JE, Taylor JW. Mechanisms of intron gain and loss in Cryptococcus. Genome Biol 2008; 9:R24. [PMID: 18234113 PMCID: PMC2395259 DOI: 10.1186/gb-2008-9-1-r24] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/29/2007] [Accepted: 01/30/2008] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Genome comparisons across deep phylogenetic divergences have revealed that spliceosomal intron gain and loss are common evolutionary events. However, because of the deep divergences involved in these comparisons, little is understood about how these changes occur, particularly in the case of intron gain. To ascertain mechanisms of intron gain and loss, we compared five relatively closely related genomes from the yeast Cryptococcus. RESULTS We observe a predominance of intron loss over gain and identify a relatively slow intron loss rate in Cryptococcus. Some genes preferentially lose introns and a large proportion of intron losses occur in the middle of genes (so called internal intron loss). Finally, we identify a gene that displays a differential number of introns in a repetitive DNA region. CONCLUSION Based the observed patterns of intron loss and gain, population resequencing and population genetic analysis, it appears that recombination causes the widely observed but poorly understood phenomenon of internal intron loss and that DNA repeat expansion can create new introns in a population.
Collapse
Affiliation(s)
- Thomas J Sharpton
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
26
|
Benavides E, Baum R, McClellan D, Sites JW. Molecular phylogenetics of the lizard genus Microlophus (squamata:tropiduridae): aligning and retrieving indel signal from nuclear introns. Syst Biol 2008; 56:776-97. [PMID: 17907054 DOI: 10.1080/10635150701618527] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We use a multigene data set (the mitochondrial locus and nine nuclear gene regions) to test phylogenetic relationships in the South American "lava lizards" (genus Microlophus) and describe a strategy for aligning noncoding sequences that accounts for differences in tempo and class of mutational events. We focus on seven nuclear introns that vary in size and frequency of multibase length mutations (i.e., indels) and present a manual alignment strategy that incorporates insertions and deletions (indels) for each intron. Our method is based on mechanistic explanations of intron evolution that does not require a guide tree. We also use a progressive alignment algorithm (Probabilistic Alignment Kit; PRANK) and distinguishes insertions from deletions and avoids the "gapcost" conundrum. We describe an approach to selecting a guide tree purged of ambiguously aligned regions and use this to refine PRANK performance. We show that although manual alignment is successful in finding repeat motifs and the most obvious indels, some regions can only be subjectively aligned, and there are limits to the size and complexity of a data matrix for which this approach can be taken. PRANK alignments identified more parsimony-informative indels while simultaneously increasing nucleotide identity in conserved sequence blocks flanking the indel regions. When comparing manual and PRANK with two widely used methods (CLUSTAL, MUSCLE) for the alignment of the most length-variable intron, only PRANK recovered a tree congruent at deeper nodes with the combined data tree inferred from all nuclear gene regions. We take this concordance as an objective function of alignment quality and present a strongly supported phylogenetic hypothesis for Microlophus relationships. From this hypothesis we show that (1) a coded indel data partition derived from the PRANK alignment contributed significantly to nodal support and (2) the indel data set permitted detection of significant conflict between mitochondrial and nuclear data partitions, which we hypothesize arose from secondary contact of distantly related taxa, followed by hybridization and mtDNA introgression.
Collapse
Affiliation(s)
- Edgar Benavides
- Department of Integrative Biology, Brigham Young University, Provo, UT, USA.
| | | | | | | |
Collapse
|
27
|
Stergiopoulos I, Groenewald M, Staats M, Lindhout P, Crous PW, De Wit PJGM. Mating-type genes and the genetic structure of a world-wide collection of the tomato pathogen Cladosporium fulvum. Fungal Genet Biol 2007; 44:415-29. [PMID: 17178244 DOI: 10.1016/j.fgb.2006.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
Two mating-type genes, designated MAT1-1-1 and MAT1-2-1, were cloned and sequenced from the presumed asexual ascomycete Cladosporium fulvum (syn. Passalora fulva). The encoded products are highly homologous to mating-type proteins from members of the Mycosphaerellaceae, such as Mycosphaerella graminicola and Cercospora beticola. In addition, the two MAT idiomorphs of C. fulvum showed regions of homology and each contained one additional putative ORF without significant similarity to known sequences. The distribution of the two mating-type genes in a world-wide collection of 86 C. fulvum strains showed a departure from a 1:1 ratio (chi(2)=4.81, df=1). AFLP analysis revealed a high level of genotypic diversity, while strains of the fungus were identified with similar virulence spectra but distinct AFLP patterns and opposite mating-types. These features could suggest the occurrence of recombination in C. fulvum.
Collapse
MESH Headings
- Amino Acid Sequence
- Cladosporium/genetics
- Cladosporium/growth & development
- Cloning, Molecular
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Gene Expression Regulation, Fungal
- Genes, Mating Type, Fungal/genetics
- Genetic Variation
- Haplotypes
- Solanum lycopersicum/microbiology
- Models, Genetic
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Restriction Fragment Length
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Laboratory of Phytopathology, Wageningen University and Research Centre, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Wang HF, Feng L, Niu DK. Relationship between mRNA stability and intron presence. Biochem Biophys Res Commun 2007; 354:203-8. [PMID: 17207776 PMCID: PMC7092898 DOI: 10.1016/j.bbrc.2006.12.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 12/26/2006] [Indexed: 12/02/2022]
Abstract
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.
Collapse
|
29
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
30
|
Slater R, Bishop NE. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component. BMC Evol Biol 2006; 6:59. [PMID: 16889659 PMCID: PMC1579232 DOI: 10.1186/1471-2148-6-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/04/2006] [Indexed: 11/10/2022] Open
Abstract
Background Vps25p is the product of yeast gene VPS25 and is found in an endosomal sorting complex required for transport (ESCRT)-II, along with Vps22p and Vps36p. This complex is essential for sorting of ubiquitinated biosynthetic and endosomal cargoes into endosomes. Results We found that VPS25 is a highly conserved and widely expressed eukaryotic gene, with single orthologs in chromalveolate, excavate, amoebozoan, plant, fungal and metazoan species. Two paralogs were found in Trichomonas vaginalis. An ortholog was strikingly absent from the Encephalitozoon cuniculi genome. Intron positions were analyzed in VPS25 from 36 species. We found evidence for five ancestral VPS25 introns, intron loss, and single instances of intron gain (a Paramecium species) and intron slippage (Theileria species). Processed pseudogenes were identified in four mammalian genomes, with a notable absence in the mouse genome. Two retropseudogenes were found in the chimpanzee genome, one more recently inserted, and one evolving from a common primate ancestor. The amino acid sequences of 119 Vps25 orthologs are aligned, compared with the known secondary structure of yeast Vps25p, and used to carry out phylogenetic analysis. Residues in two amino-terminal PPXY motifs (motif I and II), involved in dimerization of Vps25p and interaction with Vps22p and Vps36p, were closely, but not absolutely conserved. Specifically, motif I was absent in Vps25 homologs of chromalveolates, euglenozoa, and diplomonads. A highly conserved carboxy-terminal lysine was identified, which suggests Vps25 is ubiquitinated. Arginine-83 of yeast Vps25p involved in Vps22p interaction was highly, but not absolutely, conserved. Human tissue expression analysis showed universal expression. Conclusion We have identified 119 orthologs of yeast Vps25p. Expression of mammalian VPS25 in a wide range of tissues, and the presence in a broad range of eukaryotic species, indicates a basic role in eukaryotic cell function. Intron splice site positions were highly conserved across all major eukaryotic species, suggesting an ancestral origin. Amino acid sequence analysis showed the consensus for the amino-terminal proline-rich motifs is P- [WP]-X-[YF] for motif I (when present) and P-P-[FYL]-[FY] for motif II, and that Vps25 may be ubiquitinated.
Collapse
Affiliation(s)
- Ruth Slater
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Greater Manchester M13 9PT, UK
| | - Naomi E Bishop
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Greater Manchester M13 9PT, UK
| |
Collapse
|