1
|
Ferenci T, Maharjan R. Mutational heterogeneity: A key ingredient of bet-hedging and evolutionary divergence? Bioessays 2014; 37:123-30. [DOI: 10.1002/bies.201400153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas Ferenci
- School of Molecular Bioscience; University of Sydney; NSW Australia
| | - Ram Maharjan
- School of Molecular Bioscience; University of Sydney; NSW Australia
| |
Collapse
|
2
|
Moray C, Lanfear R, Bromham L. Domestication and the mitochondrial genome: comparing patterns and rates of molecular evolution in domesticated mammals and birds and their wild relatives. Genome Biol Evol 2014; 6:161-9. [PMID: 24459286 PMCID: PMC3914681 DOI: 10.1093/gbe/evu005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 11/14/2022] Open
Abstract
Studies of domesticated animals have led to the suggestion that domestication could have significant effects on patterns of molecular evolution. In particular, analyses of mitochondrial genome sequences from domestic dogs and yaks have yielded higher ratios of non-synonymous to synonymous substitutions in the domesticated lineages than in their wild relatives. These results are important because they imply that changes to selection or population size operating over a short timescale can cause significant changes to the patterns of mitochondrial molecular evolution. In this study, our aim is to test whether the impact on mitochondrial genome evolution is a general feature of domestication or whether it is specific to particular examples. We test whether domesticated mammals and birds have consistently different patterns of molecular evolution than their wild relatives for 16 phylogenetically independent comparisons of mitochondrial genome sequences. We find no consistent difference in branch lengths or dN/dS between domesticated and wild lineages. We also find no evidence that our failure to detect a consistent pattern is due to the short timescales involved or low genetic distance between domesticated lineages and their wild relatives. However, removing comparisons where the wild relative may also have undergone a bottleneck does reveal a pattern consistent with reduced effective population size in domesticated lineages. Our results suggest that, although some domesticated lineages may have undergone changes to selective regime or effective population size that could have affected mitochondrial evolution, it is not possible to generalize these patterns over all domesticated mammals and birds.
Collapse
Affiliation(s)
- Camile Moray
- Centre for Macroevolution and Macroecology, Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert Lanfear
- Centre for Macroevolution and Macroecology, Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- National Evolutionary Synthesis Center, Durham, NC
| | - Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 2013; 8:e54710. [PMID: 23405090 PMCID: PMC3566118 DOI: 10.1371/journal.pone.0054710] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats are genomic elements that are prone to changes in repeat number and are thus often polymorphic. These sequences are found at a high density at the start of human genes, in the gene’s promoter. Increasing empirical evidence suggests that length variation in these tandem repeats can affect gene regulation. One class of tandem repeats, known as microsatellites, rapidly alter in repeat number. Some of the genetic variation induced by microsatellites is known to result in phenotypic variation. Recently, our group developed a novel method for measuring the evolutionary conservation of microsatellites, and with it we discovered that human microsatellites near transcription start sites are often highly conserved. In this study, we examined the properties of microsatellites found in promoters. We found a high density of microsatellites at the start of genes. We showed that microsatellites are statistically associated with promoters using a wavelet analysis, which allowed us to test for associations on multiple scales and to control for other promoter related elements. Because promoter microsatellites tend to be G/C rich, we hypothesized that G/C rich regulatory elements may drive the association between microsatellites and promoters. Our results indicate that CpG islands, G-quadruplexes (G4) and untranslated regulatory regions have highly significant associations with microsatellites, but controlling for these elements in the analysis does not remove the association between microsatellites and promoters. Due to their intrinsic lability and their overlap with predicted functional elements, these results suggest that many promoter microsatellites have the potential to affect human phenotypes by generating mutations in regulatory elements, which may ultimately result in disease. We discuss the potential functions of human promoter microsatellites in this context.
Collapse
Affiliation(s)
- Sterling Sawaya
- Centre for Reproduction and Genomics, Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
A hypothesis that mutability evolves to facilitate evolutionary adaptation is dismissed by many biologists. Their skepticism is based on a theoretical expectation that natural selection must minimize mutation rates. That view, in turn, is historically grounded in an intuitive presumption that "the vast majority of mutations are harmful." But such skepticism is surely misplaced. Several highly mutagenic genomic patterns, including simple sequence repeats, and transposable elements, are integrated into an unexpectedly large proportion of functional genetic loci. Because alleles arising within such patterns can retain an intrinsic propensity toward a particular style of mutation, natural selection that favors any such allele can indirectly favor the site's mutability as well. By exploiting patterns that have produced beneficial alleles in the past, indirect selection can encourage mutation within constraints that reduce the probability of deleterious effect, thereby shaping implicit "mutation protocols" that effectively promote evolvability.
Collapse
Affiliation(s)
- David G King
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, Illinois, USA.
| |
Collapse
|
5
|
Abstract
The strategy of antigenic variation is to present a constantly changing population phenotype that enhances parasite transmission, through evasion of immunity arising within, or existing between, host animals. Trypanosome antigenic variation occurs through spontaneous switching among members of a silent archive of many hundreds of variant surface glycoprotein (VSG) antigen genes. As with such contingency systems in other pathogens, switching appears to be triggered through inherently unstable DNA sequences. The archive occupies subtelomeres, a genome partition that promotes hypermutagenesis and, through telomere position effects, singular expression of VSG. Trypanosome antigenic variation is augmented greatly by the formation of mosaic genes from segments of pseudo-VSG, an example of implicit genetic information. Hypermutation occurs apparently evenly across the whole archive, without direct selection on individual VSG, demonstrating second-order selection of the underlying mechanisms. Coordination of antigenic variation, and thereby transmission, occurs through networking of trypanosome traits expressed at different scales from molecules to host populations.
Collapse
Affiliation(s)
- J David Barry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary, & Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
6
|
Fonville NC, Ward RM, Mittelman D. Stress-induced modulators of repeat instability and genome evolution. J Mol Microbiol Biotechnol 2012; 21:36-44. [PMID: 22248541 DOI: 10.1159/000332748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Evolution hinges on the ability of organisms to adapt to their environment. A key regulator of adaptability is mutation rate, which must be balanced to maintain genome fidelity while permitting sufficient plasticity to cope with environmental changes. Multiple mechanisms govern an organism's mutation rate. Constitutive mechanisms include mutator alleles that drive global, permanent increases in mutation rates, but these changes are confined to the subpopulation that carries the mutator allele. Other mechanisms focus mutagenesis in time and space to improve the chances that adaptive mutations can spread through the population. For example, environmental stress can induce mechanisms that transiently relax the fidelity of DNA repair to bring about a temporary increase in mutation rates during times when an organism experiences a reduced fitness for its surroundings, as has been demonstrated for double-strand break repair in Escherichia coli. Still, other mechanisms control the spatial distribution of mutations by directing changes to especially mutable sequences in the genome. In eukaryotic cells, for example, the stress-sensitive chaperone Hsp90 can regulate the length of trinucleotide repeats to fine-tune gene function and can regulate the mobility of transposable elements to enable larger functional changes. Here, we review the regulation of mutation rate, with special emphasis on the roles of tandem repeats and environmental stress in genome evolution.
Collapse
|
7
|
|
8
|
King DG. Evolution of simple sequence repeats as mutable sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:10-25. [PMID: 23560302 DOI: 10.1007/978-1-4614-5434-2_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because natural selection is commonly presumed to minimize mutation rates, the discovery of mutationally unstable simple sequence repeats (SSRs) in many functional genomic locations came as a surprise to many biologists. Whether such SSRs persist in spite of or because of their intrinsic mutability-whether they constitute a genetic burden or an evolutionary boon--remains uncertain. Two contrasting evolutionary explanations can be offered for SSR abundance. First, suppressing the inherent mutability of repetitive sequences might simply lie beyond the reach of natural selection. Alternatively, natural selection might indirectly favor SSRs at sites where particular repeat-number variants have provided positive contributions to fitness. Indirect selection could thereby shape SSRs into "tuning knobs" that facilitate evolutionary adaptation by implementing an implicit protocol of incremental adjustability. The latter possibility is consistent with deep evolutionary conservation of some SSRs, including several in genes with neurological and neurodevelopmental function.
Collapse
Affiliation(s)
- David G King
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, Illinois, USA.
| |
Collapse
|
9
|
Victoria FC, da Maia LC, de Oliveira AC. In silico comparative analysis of SSR markers in plants. BMC PLANT BIOLOGY 2011; 11:15. [PMID: 21247422 PMCID: PMC3037304 DOI: 10.1186/1471-2229-11-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The adverse environmental conditions impose extreme limitation to growth and plant development, restricting the genetic potential and reflecting on plant yield losses. The progress obtained by classic plant breeding methods aiming at increasing abiotic stress tolerances have not been enough to cope with increasing food demands. New target genes need to be identified to reach this goal, which requires extensive studies of the related biological mechanisms. Comparative analyses in ancestral plant groups can help to elucidate yet unclear biological processes. RESULTS In this study, we surveyed the occurrence patterns of expressed sequence tag-derived microsatellite markers for model plants. A total of 13,133 SSR markers were discovered using the SSRLocator software in non-redundant EST databases made for all eleven species chosen for this study. The dimer motifs are more frequent in lower plant species, such as green algae and mosses, and the trimer motifs are more frequent for the majority of higher plant groups, such as monocots and dicots. With this in silico study we confirm several microsatellite plant survey results made with available bioinformatics tools. CONCLUSIONS The comparative studies of EST-SSR markers among all plant lineages is well suited for plant evolution studies as well as for future studies of transferability of molecular markers.
Collapse
Affiliation(s)
- Filipe C Victoria
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, RS, Brasil
- Graduate Program in Biotechnology, Universidade Federal de Pelotas, RS, Brasil
| | - Luciano C da Maia
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, RS, Brasil
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, RS, Brasil
| |
Collapse
|
10
|
Birge LM, Pitts ML, Richard BH, Wilkinson GS. Length polymorphism and head shape association among genes with polyglutamine repeats in the stalk-eyed fly, Teleopsis dalmanni. BMC Evol Biol 2010; 10:227. [PMID: 20663190 PMCID: PMC3055267 DOI: 10.1186/1471-2148-10-227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/27/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Polymorphisms of single amino acid repeats (SARPs) are a potential source of genetic variation for rapidly evolving morphological traits. Here, we characterize variation in and test for an association between SARPs and head shape, a trait under strong sexual selection, in the stalk-eyed fly, Teleopsis dalmanni. Using an annotated expressed sequence tag database developed from eye-antennal imaginal disc tissues in T. dalmanni we identified 98 genes containing nine or more consecutive copies of a single amino acid. We then quantify variation in length and allelic diversity for 32 codon and 15 noncodon repeat regions in a large outbred population. We also assessed the frequency with which amino acid repeats are either gained or lost by identifying sequence similarities between T. dalmanni SARP loci and their orthologs in Drosophila melanogaster. Finally, to identify SARP containing genes that may influence head development we conducted a two-generation association study after assortatively mating for extreme relative eyespan. RESULTS We found that glutamine repeats occur more often than expected by amino acid abundance among 3,400 head development genes in T. dalmanni and D. melanogaster. Furthermore, glutamine repeats occur disproportionately in transcription factors. Loci with glutamine repeats exhibit heterozygosities and allelic diversities that do not differ from noncoding dinucleotide microsatellites, including greater variation among X-linked than autosomal regions. In the majority of cases, repeat tracts did not overlap between T. dalmanni and D. melanogaster indicating that large glutamine repeats are gained or lost frequently during Dipteran evolution. Analysis of covariance reveals a significant effect of parental genotype on mean progeny eyespan, with body length as a covariate, at six SARP loci [CG33692, ptip, band4.1 inhibitor LRP interactor, corto, 3531953:1, and ecdysone-induced protein 75B (Eip75B)]. Mixed model analysis of covariance using the eyespan of siblings segregating for repeat length variation confirms that significant genotype-phenotype associations exist for at least one sex at five of these loci and for one gene, CG33692, longer repeats were associated with longer relative eyespan in both sexes. CONCLUSION Among genes expressed during head development in stalk-eyed flies, long codon repeats typically contain glutamine, occur in transcription factors and exhibit high levels of heterozygosity. Furthermore, the presence of significant associations within families between repeat length and head shape indicates that six genes, or genes linked to them, contribute genetic variation to the development of this extremely sexually dimorphic trait.
Collapse
Affiliation(s)
- Leanna M Birge
- Department of Biology, University of Maryland, College Park, MD 20742 USA
- University College London, Research Department of Genetics, Evolution and Environment, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| | - Marie L Pitts
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187 USA
| | - Baker H Richard
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024 USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
11
|
Fondon JW, Hammock EAD, Hannan AJ, King DG. Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 2008; 31:328-34. [PMID: 18550185 DOI: 10.1016/j.tins.2008.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 02/03/2023]
Affiliation(s)
- John W Fondon
- McDermott Center for Human Growth and Development and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
12
|
Mutation rate variation in eukaryotes: evolutionary implications of site-specific mechanisms. Nat Rev Genet 2007. [DOI: 10.1038/nrg2158-c1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|