1
|
Gerritsma S, Jalvingh KM, van de Beld C, Beerda J, van de Zande L, Vrieling K, Wertheim B. Natural and Artificial Selection for Parasitoid Resistance in Drosophila melanogaster Leave Different Genetic Signatures. Front Genet 2019; 10:479. [PMID: 31214243 PMCID: PMC6557190 DOI: 10.3389/fgene.2019.00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptation of complex traits depends on standing genetic variation at multiple loci. The allelic variants that have positive fitness effects, however, can differ depending on the genetic background and the selective pressure. Previously, we interrogated the Drosophila melanogaster genome at the population level for polymorphic positions and identified 215 single nucleotide polymorphisms (SNPs) that had significantly changed in frequency after experimental evolution for increased parasitoid resistance. In the current study, we follow up on 11 of these SNPs as putative targets of the experimental selection process (Jalvingh et al., 2014). We study the patterns of genetic variation for these SNPs in several European field populations. Furthermore, we associate the genetic variation of these SNPs to variation in resistance against the parasitoid Asobara tabida, by determining the individual phenotype and SNP genotype for 144 individuals from four Selection lines and four non-selected Control lines and for 400 individuals from 12 Field lines that differ in parasitoid resistance. For the Selection lines we additionally monitored the changes in allele frequencies throughout the five generations of experimental selection. For three genes, mbl (Zn-finger protein), mthl4 (G-protein coupled receptor) and CG17287 (protein-cysteine S-palmitoyltransferase) individual SNP genotypes were significantly associated with resistance level in the Selection and Control lines. Additionally, the minor allele in mbl and mthl4 were consistently and gradually favored throughout the five generations of experimental evolution. However, none of these alleles did appear to be associated to high resistance in the Field lines. We suggest that, within field populations, selection for parasitoid resistance is a gradual process that involves co-adapted gene complexes. Fast artificial selection, however, enforces the sudden cumulating of particular alleles that confer high resistance (genetic sweep). We discuss our findings in the context of local adaptation.
Collapse
Affiliation(s)
- Sylvia Gerritsma
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Kirsten M Jalvingh
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Carmen van de Beld
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jelmer Beerda
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, Netherlands
| | - Bregje Wertheim
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Everman ER, McNeil CL, Hackett JL, Bain CL, Macdonald SJ. Dissection of Complex, Fitness-Related Traits in Multiple Drosophila Mapping Populations Offers Insight into the Genetic Control of Stress Resistance. Genetics 2019; 211:1449-1467. [PMID: 30760490 PMCID: PMC6456312 DOI: 10.1534/genetics.119.301930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
We leverage two complementary Drosophila melanogaster mapping panels to genetically dissect starvation resistance-an important fitness trait. Using >1600 genotypes from the multiparental Drosophila Synthetic Population Resource (DSPR), we map numerous starvation stress QTL that collectively explain a substantial fraction of trait heritability. Mapped QTL effects allowed us to estimate DSPR founder phenotypes, predictions that were correlated with the actual phenotypes of these lines. We observe a modest phenotypic correlation between starvation resistance and triglyceride level, traits that have been linked in previous studies. However, overlap among QTL identified for each trait is low. Since we also show that DSPR strains with extreme starvation phenotypes differ in desiccation resistance and activity level, our data imply multiple physiological mechanisms contribute to starvation variability. We additionally exploited the Drosophila Genetic Reference Panel (DGRP) to identify sequence variants associated with starvation resistance. Consistent with prior work these sites rarely fall within QTL intervals mapped in the DSPR. We were offered a unique opportunity to directly compare association mapping results across laboratories since two other groups previously measured starvation resistance in the DGRP. We found strong phenotypic correlations among studies, but extremely low overlap in the sets of genomewide significant sites. Despite this, our analyses revealed that the most highly associated variants from each study typically showed the same additive effect sign in independent studies, in contrast to otherwise equivalent sets of random variants. This consistency provides evidence for reproducible trait-associated sites in a widely used mapping panel, and highlights the polygenic nature of starvation resistance.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Casey L McNeil
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Jennifer L Hackett
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Clint L Bain
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
3
|
Wang Z, Wang L, Wang Z, Lu BR. Non-random transmission of parental alleles into crop-wild and crop-weed hybrid lineages separated by a transgene and neutral identifiers in rice. Sci Rep 2017; 7:10436. [PMID: 28874702 PMCID: PMC5585250 DOI: 10.1038/s41598-017-10596-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
It is essential to assess environmental impact of transgene flow from genetically engineered crops to their wild or weedy relatives before commercialization. Measuring comparative trials of fitness in the transgene-flow-resulted hybrids plays the key role in the assessment, where the segregated isogenic hybrid lineages/subpopulations with or without a transgene of the same genomic background are involved. Here, we report substantial genomic differentiation between transgene-present and -absent lineages (F2-F3) divided by a glyphosate-resistance transgene from a crop-wild/weed hybrid population in rice. We further confirmed that such differentiation is attributed to increased frequencies of crop-parent alleles in transgenic hybrid lineages at multiple loci across the genome, as estimated by SSR (simple sequence repeat) markers. Such preferential transmission of parental alleles was also found in equally divided crop-wild/weed hybrid lineages with or without a particular neutral SSR identifier. We conclude that selecting either a transgene or neutral marker as an identifier to create hybrid lineages will result in different genomic background of the lineages due to non-random transmission of parental alleles. Non-random allele transmission may misrepresent the outcomes of fitness effects. We therefore propose seeking other means to evaluate fitness effects of transgenes for assessing environmental impact caused by crop-to-wild/weed gene flow.
Collapse
Affiliation(s)
- Zhe Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Zhi Wang
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for biodiversity science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Power analysis of artificial selection experiments using efficient whole genome simulation of quantitative traits. Genetics 2015; 199:991-1005. [PMID: 25672748 PMCID: PMC4391575 DOI: 10.1534/genetics.115.175075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates.
Collapse
|
5
|
Jalvingh KM, Chang PL, Nuzhdin SV, Wertheim B. Genomic changes under rapid evolution: selection for parasitoid resistance. Proc Biol Sci 2014; 281:20132303. [PMID: 24500162 PMCID: PMC3924063 DOI: 10.1098/rspb.2013.2303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
In this study, we characterize changes in the genome during a swift evolutionary adaptation, by combining experimental selection with high-throughput sequencing. We imposed strong experimental selection on an ecologically relevant trait, parasitoid resistance in Drosophila melanogaster against Asobara tabida. Replicated selection lines rapidly evolved towards enhanced immunity. Larval survival after parasitization increased twofold after just five generations of selection. Whole-genome sequencing revealed that the fast and strong selection response in innate immunity produced multiple, highly localized genomic changes. We identified narrow genomic regions carrying a significant signature of selection, which were present across all chromosomes and covered in total less than 5% of the whole D. melanogaster genome. We identified segregating sites with highly significant changes in frequency between control and selection lines that fell within these narrow 'selected regions'. These segregating sites were associated with 42 genes that constitute possible targets of selection. A region on chromosome 2R was highly enriched in significant segregating sites and may be of major effect on parasitoid defence. The high genetic variability and small linkage blocks in our base population are likely responsible for allowing this complex trait to evolve without causing widespread erosive effects in the genome, even under such a fast and strong selective regime.
Collapse
Affiliation(s)
- Kirsten M. Jalvingh
- Evolutionary Genetics Group, University of Groningen, Groningen, The Netherlands
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Peter L. Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sergey V. Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bregje Wertheim
- Evolutionary Genetics Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Nuzhdin SV, Turner TL. Promises and limitations of hitchhiking mapping. Curr Opin Genet Dev 2013; 23:694-9. [PMID: 24239053 PMCID: PMC3872824 DOI: 10.1016/j.gde.2013.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/20/2013] [Accepted: 10/03/2013] [Indexed: 12/18/2022]
Abstract
Building the connection between genetic and phenotypic variation is an important 'work in progress', and one that will enable proactive diagnosis and treatment in medicine, promote development of environment-targeted varieties in agriculture, and clarify the limits of species adaptation to changing environments in conservation. Quantitative trait loci (QTL) mapping and genome wide association (GWA) studies have recently been allied to an additional focus on 'hitchhiking' (HH) mapping--using changes in allele frequency due to artificial or natural selection. This older technique has been popularized by the falling costs of high throughput sequencing. Initial HH-resequensing experiments seem to have found many thousands of polymorphisms responding to selection. We argue that this interpretation appears too optimistic, and that the data might in fact be more consistent with dozens, rather than thousands, of loci under selection. We propose several developments required for sensible data analyses that will fully realize the great power of the HH technique, and outline ways of moving forward.
Collapse
Affiliation(s)
- Sergey V Nuzhdin
- Program in Molecular and Computation Biology, University of Southern California, Los Angeles 90089, United States.
| | | |
Collapse
|
7
|
Kessner D, Turner TL, Novembre J. Maximum likelihood estimation of frequencies of known haplotypes from pooled sequence data. Mol Biol Evol 2013; 30:1145-58. [PMID: 23364324 PMCID: PMC3670732 DOI: 10.1093/molbev/mst016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA samples are often pooled, either by experimental design or because the sample itself is a mixture. For example, when population allele frequencies are of primary interest, individual samples may be pooled together to lower the cost of sequencing. Alternatively, the sample itself may be a mixture of multiple species or strains (e.g., bacterial species comprising a microbiome or pathogen strains in a blood sample). We present an expectation–maximization algorithm for estimating haplotype frequencies in a pooled sample directly from mapped sequence reads, in the case where the possible haplotypes are known. This method is relevant to the analysis of pooled sequencing data from selection experiments, as well as the calculation of proportions of different species within a metagenomics sample. Our method outperforms existing methods based on single-site allele frequencies, as well as simple approaches using sequence read data. We have implemented the method in a freely available open-source software tool.
Collapse
Affiliation(s)
- Darren Kessner
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA
| | | | | |
Collapse
|
8
|
Chelo IM, Teotónio H. The opportunity for balancing selection in experimental populations of Caenorhabditis elegans. Evolution 2012; 67:142-56. [PMID: 23289568 DOI: 10.1111/j.1558-5646.2012.01744.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of balancing selection in maintaining diversity during the evolution of sexual populations to novel environments is poorly understood. To address this issue, we studied the impact of two mating systems, androdioecy and dioecy, on genotype distributions during the experimental evolution of Caenorhabditis elegans. We analyzed the temporal trajectories of 334 single nucleotide polymorphisms, covering 1/3 of the genome, and found extensive allele frequency changes and little loss of heterozygosities after 100 generations. As modeled with numerical simulations, SNP differentiation was consistent with genetic drift and average fitness effects of 2%, assuming that selection acted independently at each locus. Remarkably, inbreeding by self-fertilization was of little consequence to SNP differentiation. Modeling selection on deleterious recessive alleles suggests that the initial evolutionary dynamics can be explained by associative overdominance, but not the later stages because much lower heterozygosities would be maintained during experimental evolution. By contrast, models with selection on true overdominant loci can explain the heterozygote excess observed at all periods, particularly when negative epistasis or independent fitness effects were considered. Overall, these findings indicate that selection at single loci, including purging of recessive alleles, underlies most of the genetic differentiation accomplished during the experiment. Nonetheless, they also imply that maintenance of genetic diversity may in large part be due to balancing selection at multiple loci.
Collapse
Affiliation(s)
- Ivo M Chelo
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | | |
Collapse
|
9
|
Remolina SC, Chang PL, Leips J, Nuzhdin SV, Hughes KA. Genomic basis of aging and life-history evolution in Drosophila melanogaster. Evolution 2012; 66:3390-403. [PMID: 23106705 DOI: 10.1111/j.1558-5646.2012.01710.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural diversity in aging and other life-history patterns is a hallmark of organismal variation. Related species, populations, and individuals within populations show genetically based variation in life span and other aspects of age-related performance. Population differences are especially informative because these differences can be large relative to within-population variation and because they occur in organisms with otherwise similar genomes. We used experimental evolution to produce populations divergent for life span and late-age fertility and then used deep genome sequencing to detect sequence variants with nucleotide-level resolution. Several genes and genome regions showed strong signatures of selection, and the same regions were implicated in independent comparisons, suggesting that the same alleles were selected in replicate lines. Genes related to oogenesis, immunity, and protein degradation were implicated as important modifiers of late-life performance. Expression profiling and functional annotation narrowed the list of strong candidate genes to 38, most of which are novel candidates for regulating aging. Life span and early age fecundity were negatively correlated among populations; therefore, the alleles we identified also are candidate regulators of a major life-history trade-off. More generally, we argue that hitchhiking mapping can be a powerful tool for uncovering the molecular bases of quantitative genetic variation.
Collapse
Affiliation(s)
- Silvia C Remolina
- Department of Animal Biology, University of Illinois, Urbana-Champaign, 505 S. Goodwin Ave, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
10
|
Turner TL, Miller PM. Investigating natural variation in Drosophila courtship song by the evolve and resequence approach. Genetics 2012; 191:633-42. [PMID: 22466043 PMCID: PMC3374323 DOI: 10.1534/genetics.112.139337] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/18/2012] [Indexed: 12/13/2022] Open
Abstract
A primary goal of population genetics is to determine the genetic basis of natural trait variation. We could significantly advance this goal by developing comprehensive genome-wide approaches to link genotype and phenotype in model organisms. Here we combine artificial selection with population-based resequencing to investigate the genetic basis of variation in the interpulse interval (IPI) of Drosophila melanogaster courtship song. We performed divergent selection on replicate populations for only 14 generations, but had considerable power to differentiate alleles that evolved due to selection from those that evolved stochastically. We identified a large number of variants that changed frequency in response to selection for this simple behavior, and they are highly underrepresented on the X chromosome. Though our power was adequate using this experimental technique, the ability to differentiate causal variants from those affected by linked selection requires further development.
Collapse
Affiliation(s)
- Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
11
|
Telonis-Scott M, Gane M, DeGaris S, Sgrò CM, Hoffmann AA. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Mol Biol Evol 2011; 29:1335-51. [PMID: 22130970 DOI: 10.1093/molbev/msr294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability to counter periods of low humidity is an important determinant of distribution range in Drosophila. Climate specialists with low physiological tolerance to desiccation stress are restricted to the tropics and may lack the ability to further increase resistance through evolution. Although the physiological adaptations to desiccation stress are well studied in Drosophila and other ectotherms, factors underlying evolutionary responses remain unknown because of a paucity of genetic data. We address this issue by mapping evolutionary shifts in D. melanogaster under selection for desiccation resistance. Genomic DNA from five independent replicate selected, and control lines were hybridized to high density Affymetrix Drosophila tiling arrays resulting in the detection of 691 single feature polymorphisms (SFPs) differing between the treatments. While randomly distributed throughout the genome, the SFPs formed specific clusters according to gene ontology. These included genes involved in ion transport and respiratory system development that provide candidates for evolutionary changes involving excretory and respiratory water balance. Changes to genes related to neuronal control of cell signaling, development, and gene regulation provide candidates to explore novel biological processes in stress resistance. Sequencing revealed the nucleotide shifts in a subset of the SFPs and highlighted larger regions of genomic diversity surrounding SFPs. The association between natural desiccation resistance and a 463-bp region of the 5' promoter region of the Dys gene undergoing allele frequency changes in response to selection in the experimental evolution lines was tested in an independent population from Coffs Harbour, Australia. The allele frequencies of 23 SNPs common to the two populations were inferred from the parents of the 10% most and 10% least resistant Coffs Harbour flies. The frequencies of the selected alleles were higher at all sites, with three sites significantly associated with the resistant Coffs Harbour flies. This study illustrates how rapid mapping can be used for discovering natural molecular variants associated with survival to low humidity and provides a wealth of candidate alleles to explore the genetic basis of physiological differences among resistant and susceptible Drosophila populations and species.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
12
|
Mapping Mendelian traits in asexual progeny using changes in marker allele frequency. Genet Res (Camb) 2011; 93:221-32. [DOI: 10.1017/s0016672311000115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryLinkage between markers and genes that affect a phenotype of interest may be determined by examining differences in marker allele frequency in the extreme progeny of a cross between two inbred lines. This strategy is usually employed when pooling is used to reduce genotyping costs. When the cross progeny are asexual, the extreme progeny may be selected by multiple generations of asexual reproduction and selection. We analyse this method of measuring phenotype in asexual progeny and examine the changes in marker allele frequency due to selection over many generations. Stochasticity in marker frequency in the selected population arises due to the finite initial population size. We derive the distribution of marker frequency as a result of selection at a single major locus, and show that in order to avoid spurious changes in marker allele frequency in the selected population, the initial population size should be in the low to mid hundreds.
Collapse
|
13
|
Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet 2011; 7:e1001336. [PMID: 21437274 PMCID: PMC3060078 DOI: 10.1371/journal.pgen.1001336] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/14/2011] [Indexed: 01/08/2023] Open
Abstract
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. Understanding the causes and consequences of natural genetic variation is crucial to the characterization of biological evolution. Moreover, natural genetic variation is comprised of millions of perturbations, which are partially randomized across genotypes such that a small number of individuals can be used to combinatorially analyze a large number of differences, facilitating mechanistic understanding of biological systems. Here we demonstrate a powerful technique to parse genomic variation using artificial selection. By selecting replicate populations of Drosophila flies to become bigger and smaller, and then determining the evolutionary response at the genomic level, we have mapped hundreds of genes that respond to selection on body size. As our approach is powerful and cost-effective compared to existing approaches, we expect it to be a major component of diverse future efforts.
Collapse
Affiliation(s)
- Thomas L Turner
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, California, USA.
| | | | | | | | | |
Collapse
|
14
|
Wiener P, Edriss MA, Williams JL, Waddington D, Law A, Woolliams JA, Gutiérrez-Gil B. Information content in genome-wide scans: concordance between patterns of genetic differentiation and linkage mapping associations. BMC Genomics 2011; 12:65. [PMID: 21269469 PMCID: PMC3041744 DOI: 10.1186/1471-2164-12-65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/26/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Scanning the genome with high density SNP markers has become a standard approach for identifying regions of the genome showing substantial between-population genetic differentiation, and thus evidence of diversifying selection. Such regions may contain genes of large phenotypic effect. However, few studies have attempted to address the power or efficacy of such an approach. RESULTS In this study, the patterns of allele frequency differences between two cattle breeds based on the Bovine HapMap study were compared with statistical evidence for QTL based on a linkage mapping study of an experimental population formed by a cross between the same breeds. Concordance between the two datasets was seen for chromosomes carrying QTL with strong statistical support, such as BTA5 and BTA18, which carry genes associated with coat color. For these chromosomes, there was a correspondence between the strength of the QTL signal along the chromosome and the degree of genetic differentiation between breeds. However, such an association was not seen in a broader comparison that also included chromosomes carrying QTL with lower significance levels. In addition, other chromosomal regions with substantial QTL effects did not include markers showing extreme between-breed genetic differentiation. Furthermore, the overall consistency between the two studies was weak, with low genome-wide correlation between the statistical values obtained in the linkage mapping study and between-breed genetic differentiation from the HapMap study. CONCLUSIONS These results suggest that genomic diversity scans are capable of detecting regions associated with qualitative traits but may be limited in their power to detect regions associated with quantitative phenotypic differences between populations, which may depend on the marker resolution of the study and the level of LD in the populations under investigation.
Collapse
Affiliation(s)
- Pamela Wiener
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | - Mohammad A Edriss
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - John L Williams
- Parco Tecnologico Padano, Via Einstein, Polo Universitario, Lodi 26900, Italy
| | - David Waddington
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | - Andrew Law
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | - John A Woolliams
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| |
Collapse
|
15
|
WERTHEIM BREGJE, KRAAIJEVELD ALEXR, HOPKINS MEIRIONG, WALTHER BOER MARK, GODFRAY HCHARLESJ. Functional genomics of the evolution of increased resistance to parasitism in Drosophila. Mol Ecol 2010; 20:932-49. [DOI: 10.1111/j.1365-294x.2010.04911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
|
17
|
Norry FM, Larsen PF, Liu Y, Loeschcke V. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1050-1057. [PMID: 19651134 DOI: 10.1016/j.jinsphys.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 05/28/2023]
Abstract
Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.
Collapse
Affiliation(s)
- Fabian M Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
18
|
Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression. Genetics 2009; 183:547-61, 1SI-21SI. [PMID: 19667135 DOI: 10.1534/genetics.109.105957] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species-specific regulation of gene expression contributes to the development and maintenance of reproductive isolation and to species differences in ecologically important traits. A better understanding of the evolutionary forces that shape regulatory variation and divergence can be developed by comparing expression differences among species and interspecific hybrids. Once expression differences are identified, the underlying genetics of regulatory variation or divergence can be explored. With the goal of associating cis and/or trans components of regulatory divergence with differences in gene expression, overall and allele-specific expression levels were assayed genomewide in female adult heads of Drosophila melanogaster, D. simulans, and their F1 hybrids. A greater proportion of cis differences than trans differences were identified for genes expressed in heads and, in accordance with previous studies, cis differences also explained a larger number of species differences in overall expression level. Regulatory divergence was found to be prevalent among genes associated with defense, olfaction, and among genes downstream of the Drosophila sex determination hierarchy. In addition, two genes, with critical roles in sex determination and micro RNA processing, Sxl and loqs, were identified as misexpressed in hybrid female heads, potentially contributing to hybrid incompatibility.
Collapse
|
19
|
Abstract
Experimental evolution is a powerful approach that can be used for the study of adaptation. Evolutionary biologists often use Drosophila as a model organism in experiments that test theories about the evolution of traits related to fitness. Such evolution experiments can take three forms: direct selection for a trait of interest; surveys of traits of interest in populations selected for other traits; and reverse selection. We review some of the Drosophila experiments that have provided insight into both the evolution of particular physiological traits and the correlations between physiological and life history traits, focusing on stress resistance. The most common artifacts that can obscure the results from evolution experiments are discussed. We also include a treatment of genomic technologies that are now available for the Drosophila model. The primary goal of this review is to introduce the kind of experimental evolution strategies and technologies that evolutionary physiologists might use in the future.
Collapse
|
20
|
Turner TL, von Wettberg EJ, Nuzhdin SV. Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One 2008; 3:e3183. [PMID: 18784841 PMCID: PMC2527522 DOI: 10.1371/journal.pone.0003183] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/19/2008] [Indexed: 01/21/2023] Open
Abstract
Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low Ca∶Mg ratio in A. lyrata.
Collapse
Affiliation(s)
- Thomas L Turner
- Center for Population Biology, University of California Davis, Davis, California, United States of America.
| | | | | |
Collapse
|
21
|
Wisser RJ, Murray SC, Kolkman JM, Ceballos H, Nelson RJ. Selection mapping of loci for quantitative disease resistance in a diverse maize population. Genetics 2008; 180:583-99. [PMID: 18723892 PMCID: PMC2535707 DOI: 10.1534/genetics.108.090118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/05/2008] [Indexed: 11/18/2022] Open
Abstract
The selection response of a complex maize population improved primarily for quantitative disease resistance to northern leaf blight (NLB) and secondarily for common rust resistance and agronomic phenotypes was investigated at the molecular genetic level. A tiered marker analysis with 151 simple sequence repeat (SSR) markers in 90 individuals of the population indicated that on average six alleles per locus were available for selection. An improved test statistic for selection mapping was developed, in which quantitative trait loci (QTL) are identified through the analysis of allele-frequency shifts at mapped multiallelic loci over generations of selection. After correcting for the multiple tests performed, 25 SSR loci showed evidence of selection. Many of the putatively selected loci were unlinked and dispersed across the genome, which was consistent with the diffuse distribution of previously published QTL for NLB resistance. Compelling evidence for selection was found on maize chromosome 8, where several putatively selected loci colocalized with published NLB QTL and a race-specific resistance gene. Analysis of F2 populations derived from the selection mapping population suggested that multiple linked loci in this chromosomal segment were, in part, responsible for the selection response for quantitative resistance to NLB.
Collapse
Affiliation(s)
- Randall J Wisser
- Institute for Genomic Diversity, Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Changes in environmental conditions can rapidly shift allele frequencies in populations of species with relatively short generation times. Frequency shifts might be detectable in neutral genetic markers when stressful conditions cause a population decline. However, frequency shifts that are diagnostic of specific conditions depend on isolating sets of genes that are involved in adaptive responses. Shifts at candidate loci underlying adaptive responses and DNA regions that control their expression have now been linked to evolutionary responses to pollution, global warming and other changes. Conversely, adaptive constraints, particularly in physiological traits, are recognized through DNA decay in candidate genes. These approaches help researchers and conservation managers understand the power and constraints of evolution.
Collapse
|