1
|
Guinan J, Lopez BS. Generating Bovine Monocyte-Derived Dendritic Cells for Experimental and Clinical Applications Using Commercially Available Serum-Free Medium. Front Immunol 2020; 11:591185. [PMID: 33178224 PMCID: PMC7596353 DOI: 10.3389/fimmu.2020.591185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in fundamental and applied immunology research often originate from pilot studies utilizing animal models. While cattle represent an ideal model for disease pathogenesis and vaccinology research for a number of human disease, optimized bovine culture models have yet to be fully established. Monocyte-derived dendritic cells (MoDC) are critical in activating adaptive immunity and are an attractive subset for experimental and clinical applications. The use of serum-supplemented culture medium in this ex vivo approach is undesirable as serum contains unknown quantities of immune-modulating components and may induce unwanted immune responses if not autologous. Here, we describe a standardized protocol for generating bovine MoDC in serum-free medium (AIM-V) and detail the MoDC phenotype, cytokine profile, and metabolic signature achieved using this culture methodology. MoDC generated from adult, barren cattle were used for a series of experiments that evaluated the following culture conditions: medium type, method of monocyte enrichment, culture duration, and concentration of differentiation additives. Viability and yield were assessed using flow cytometric propidium iodide staining and manual hemocytometer counting, respectively. MoDC phenotype and T cell activation and proliferation were assessed by flow cytometric analysis of surface markers (MHC class II, CD86, CD14, and CD205), and CD25 and CFSE respectively. Cytokine secretion was quantified using a multiplex bovine cytokine panel (IL-1α, IL-1β, IL-8, IL-10, IL-17A, IFN-γ, MIP-1α, TNF-α, and IL-4). Changes in cell metabolism following stimulation were analyzed using an Extracellular Flux (XFe96) Seahorse Analyzer. Data were analyzed using paired t-tests and repeated measures ANOVA. Immature MoDC generated in serum-free medium using magnetic-activated cell sorting with plate adhesion to enrich monocytes and cultured for 4 days have the following phenotypic profile: MHC class II+++, CD86+, CD205++, and CD14-. These MoDC can be matured with PMA and ionomycin as noted by increased CD86 and CD40 expression, increased cytokine secretion (IL-1α, IL-10, MIP-1α, and IL-17A), a metabolic switch to aerobic glycolysis, and induction of T cell activation and proliferation following maturation. Cultivation of bovine MoDC utilizing our well-defined culture protocol offers a serum-free approach to mechanistically investigate mechanisms of diseases and the safety and efficacy of novel therapeutics for both humans and cattle alike.
Collapse
Affiliation(s)
- Jack Guinan
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| | - Brina S Lopez
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| |
Collapse
|
2
|
Kratochvílová L, Sláma P. Overview of Bovine Dendritic Cells. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866030815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
3
|
Zhuang T, Urakawa M, Sato H, Sato Y, Taguchi T, Umino T, Katto S, Tanaka K, Yoshimura K, Takada N, Kobayashi H, Ito M, Rose MT, Kiku Y, Nagasawa Y, Kitazawa H, Watanabe K, Nochi T, Hayashi T, Aso H. Phenotypic and functional analysis of bovine peripheral blood dendritic cells before parturition by a novel purification method. Anim Sci J 2018; 89:1011-1019. [PMID: 29708291 PMCID: PMC6055732 DOI: 10.1111/asj.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are specialized antigen presenting cells specializing in antigen uptake and processing, and play an important role in the innate and adaptive immune response. A subset of bovine peripheral blood DCs was identified as CD172a+/CD11c+/MHC (major histocompatibility complex) class II+ cells. Although DCs are identified at 0.1%–0.7% of peripheral blood mononuclear cells (PBMC), the phenotype and function of DCs remain poorly understood with regard to maintaining tolerance during the pregnancy. All cattle used in this study were 1 month before parturition. We have established a novel method for the purification of DCs from PBMC using magnetic‐activated cell sorting, and purified the CD172a+/CD11c+DCs, with high expression of MHC class II and CD40, at 84.8% purity. There were individual differences in the expressions of CD205 and co‐stimulatory molecules CD80 and CD86 on DCs. There were positive correlations between expression of cytokine and co‐stimulatory molecules in DCs, and the DCs maintained their immune tolerance, evidenced by their low expressions of the co‐stimulatory molecules and cytokine production. These results suggest that before parturition a half of DCs may be immature and tend to maintain tolerance based on the low cytokine production, and the other DCs with high co‐stimulatory molecules may already have the ability of modulating the T‐cell linage.
Collapse
Affiliation(s)
- Tao Zhuang
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Megumi Urakawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hidetoshi Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Yuko Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Teruaki Taguchi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tsuyoshi Umino
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shiro Katto
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Koutaro Tanaka
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kozue Yoshimura
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Naokazu Takada
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Hiroko Kobayashi
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Megumi Ito
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Michael T Rose
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cardiganshire, UK
| | - Yoshio Kiku
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Yuya Nagasawa
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kouichi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohito Hayashi
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Sheridan MP, Browne JA, Doyle MB, Fitzsimons T, McGill K, Gormley E. IL-10 suppression of IFN-γ responses in tuberculin-stimulated whole blood from Mycobacterium bovis infected cattle. Vet Immunol Immunopathol 2017; 189:36-42. [PMID: 28669385 DOI: 10.1016/j.vetimm.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
The measurement of bovine interferon-gamma (IFN-γ) forms the basis of a diagnostic test for bovine tuberculosis where Mycobacterium bovis sensitised effector T cells produce IFN-γ following in vitro stimulation with tuberculin antigens. In cattle infected with M. bovis it is also known that the anti-inflammatory IL-10 cytokine can inhibit in vitro production of IFN-γ leading to a reduced response in the IFN-γ diagnostic test. In order to investigate this in greater detail, whole blood samples from tuberculin skin test positive and negative cattle were stimulated with bovine and avian tuberculin antigens and in parallel with a neutralising anti-IL-10 monoclonal antibody. The results showed that IFN-γ protein levels increased when IL-10 activity was suppressed by Anti - IL-10. By using a standard diagnostic interpretation, the elevated levels of IFN-γ were shown to change the level of agreement between the performance of the single intradermal comparative tuberculin test (SICTT) and IFN-γ assay, depending on the tuberculin treatment. A transcriptomic analysis using RT-qPCR investigated the influence of IL-10 activity on expression of a suite of cytokine genes (IFNG, IL12B, IL10 and CXCL10) associated with antigen-stimulated production of IFN-γ. The IFNG and IL12B genes both experienced significant increases in expression in the presence of Anti-IL-10, while the expression of IL10 and CXCL10 remained unaffected.
Collapse
Affiliation(s)
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Ireland
| | - Mairead B Doyle
- UCD School of Veterinary Medicine, University College Dublin, Ireland
| | - Tara Fitzsimons
- UCD School of Veterinary Medicine, University College Dublin, Ireland
| | - Kevina McGill
- UCD School of Veterinary Medicine, University College Dublin, Ireland
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, University College Dublin, Ireland.
| |
Collapse
|
5
|
Longitudinal characterization of bovine monocyte-derived dendritic cells from mid-gestation into subsequent lactation reveals nadir in phenotypic maturation and macrophage-like cytokine profile in late gestation. J Reprod Immunol 2016; 118:1-8. [DOI: 10.1016/j.jri.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
|
6
|
Cardoso N, Franco-Mahecha OL, Czepluch W, Quintana ME, Malacari DA, Trotta MV, Mansilla FC, Capozzo AV. Bovine Viral Diarrhea Virus Infects Monocyte-Derived Bovine Dendritic Cells by an E2-Glycoprotein-Mediated Mechanism and Transiently Impairs Antigen Presentation. Viral Immunol 2016; 29:417-29. [PMID: 27529119 DOI: 10.1089/vim.2016.0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis.
Collapse
Affiliation(s)
- Nancy Cardoso
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Olga Lucía Franco-Mahecha
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Wenzel Czepluch
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - María Eugenia Quintana
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Darío Amílcar Malacari
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - Myrian Vanesa Trotta
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Tanner R, O'Shea MK, Fletcher HA, McShane H. In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016; 34:4656-4665. [PMID: 27527814 DOI: 10.1016/j.vaccine.2016.07.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) continues to pose a serious global health threat, and the current vaccine, BCG, has variable efficacy. However, the development of a more effective vaccine is severely hampered by the lack of an immune correlate of protection. Candidate vaccines are currently evaluated using preclinical animal models, but experiments are long and costly and it is unclear whether the outcomes are predictive of efficacy in humans. Unlike measurements of single immunological parameters, mycobacterial growth inhibition assays (MGIAs) represent an unbiased functional approach which takes into account a range of immune mechanisms and their complex interactions. Such a controlled system offers the potential to evaluate vaccine efficacy and study mediators of protective immunity against Mycobacterium tuberculosis (M.tb). This review discusses the underlying principles and relative merits and limitations of the different published MGIAs, their demonstrated abilities to measure mycobacterial growth inhibition and vaccine efficacy, and what has been learned about the immune mechanisms involved.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Pomeroy B, Sipka A, Klaessig S, Schukken Y. Monocyte-derived dendritic cells from late gestation cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion. Vet Immunol Immunopathol 2015; 167:22-9. [DOI: 10.1016/j.vetimm.2015.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022]
|
9
|
Parlane NA, Buddle BM. Immunity and Vaccination against Tuberculosis in Cattle. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Nfon CK, Marszal P, Zhang S, Weingartl HM. Innate immune response to Rift Valley fever virus in goats. PLoS Negl Trop Dis 2012; 6:e1623. [PMID: 22545170 PMCID: PMC3335883 DOI: 10.1371/journal.pntd.0001623] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings.
Collapse
Affiliation(s)
- Charles K. Nfon
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- * E-mail: (CKN); (HMW)
| | - Peter Marszal
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Shunzhen Zhang
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Hana M. Weingartl
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (CKN); (HMW)
| |
Collapse
|
11
|
Bovine mammary dendritic cells: A heterogeneous population, distinct from macrophages and similar in phenotype to afferent lymph veiled cells. Comp Immunol Microbiol Infect Dis 2012; 35:31-8. [DOI: 10.1016/j.cimid.2011.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 09/12/2011] [Accepted: 09/28/2011] [Indexed: 11/22/2022]
|
12
|
Bharathan M, Mullarky IK. Targeting mucosal immunity in the battle to develop a mastitis vaccine. J Mammary Gland Biol Neoplasia 2011; 16:409-19. [PMID: 21968537 DOI: 10.1007/s10911-011-9233-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 01/31/2023] Open
Abstract
The mucosal immune system encounters antigens that enhance and suppress immune function, and serves as a selective barrier against invading pathogens. The mammary gland not only encounters antigens but also produces a nutrient evolved to protect and enhance mucosal development in the neonate. Efforts to manipulate antibody concentrations in milk to prevent mastitis, an infection of the mammary gland, have been hampered both by complexity and variation in target pathogens and limited knowledge of cellular immunity in the gland. Successful vaccination strategies must overcome the natural processes that regulate types and concentrations of milk antibodies for neonatal development, and enhance cellular immunity. Furthermore, the need to overcome dampening of immunity caused by non-pathogenic encounters to successfully prevent establishment of infection is an additional obstacle in vaccine development at mucosal sites. A significant mastitis pathogen, Staphylococcus aureus, not only resides as a normal flora on a multitude of species, but also causes clinical disease with limited treatment options. Using the bovine model of S. aureus mastitis, researchers can decipher the role of antigen selection and presentation by mammary dendritic cells, enhance development of central and effector memory function, and subsequently target specific memory cells to the mammary gland for successful vaccine development. This brief review provides an overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis.
Collapse
Affiliation(s)
- Mini Bharathan
- Immunology, Human Therapeutic Division, Intrexon Corporation, Germantown, MD, USA
| | | |
Collapse
|
13
|
Shaler CR, Kugathasan K, McCormick S, Damjanovic D, Horvath C, Small CL, Jeyanathan M, Chen X, Yang PC, Xing Z. Pulmonary mycobacterial granuloma increased IL-10 production contributes to establishing a symbiotic host-microbe microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1622-34. [PMID: 21406169 PMCID: PMC3078470 DOI: 10.1016/j.ajpath.2010.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/09/2023]
Abstract
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, we have addressed this issue by comparing the immune responses within the airway luminal and granuloma compartments. We found that despite having a similar immune cellular profile to that in the airway lumen, the granuloma displayed severely suppressed type 1 immune cytokine but enhanced chemokine responses. Both antigen-presenting cells (APCs) and T cells in granuloma produced fewer type 1 immune molecules including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and nitric oxide. As a result, the granuloma APCs developed a reduced capacity to phagocytose mycobacteria and to induce T-cell proliferation. To examine the molecular mechanisms, we compared the levels of immune suppressive cytokine IL-10 in the airway lumen and granuloma and found that both granuloma APCs and T cells produced much more IL-10. Thus, IL-10 deficiency restored type 1 immune activation within the granuloma while having a minimal effect within the airway lumen. Hence, our study provides the first experimental evidence that, contrary to the conventional belief, the BCG-induced lung granuloma represents a symbiotic host-microbe microenvironment characterized by suppressed type 1 immune activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhou Xing
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Simultaneous measurement of antigen-stimulated interleukin-1 beta and gamma interferon production enhances test sensitivity for the detection of Mycobacterium bovis infection in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1946-51. [PMID: 20926697 DOI: 10.1128/cvi.00377-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to identify cytokines that may be useful as candidates for inclusion in diagnostic tests for Mycobacterium bovis infection in cattle, we compared the levels of gamma interferon (IFN-γ), interleukin 1β (IL-1β), IL-4, IL-10, IL-12, macrophage inflammatory protein 1β (MIP-1β), and tumor necrosis factor alpha (TNF-α) in whole-blood cultures from tuberculosis (TB) reactor animals or TB-free controls following stimulation with M. bovis-specific antigens (purified protein derivative from M. bovis [PPD-B] or ESAT-6/CFP-10). In addition to IFN-γ responses, the production of IL-1β and TNF-α was also statistically significantly elevated in TB reactor cattle over that in uninfected controls following stimulation with PPD-B or ESAT-6/CFP-10 peptides. Thus, we evaluated whether the use of these two additional readouts could disclose further animals not detected by measuring IFN-γ alone. To this end, receiver operating characteristic (ROC) analyses were performed to define diagnostic cutoffs for positivity for TNF-α and IL-1β. These results revealed that for ESAT-6/CFP-10-induced responses, the use of all three readouts (IFN-γ, TNF-α, and IL-1β) in parallel increased the sensitivity of detection of M. bovis-infected animals by 11% but also resulted in a specificity decrease of 14%. However, applying only IFN-γ and IL-1β in parallel resulted in a 5% increase in sensitivity without the corresponding loss of specificity. The results for PPD-B-induced responses were similar, although the loss of specificity was more pronounced, even when only IFN-γ and IL-1β were used as readout systems. In conclusion, we have demonstrated that the use of an additional readout system, such as IL-1β, can potentially complement IFN-γ by increasing overall test sensitivity for the detection of M. bovis infection in cattle.
Collapse
|
15
|
Bień J, Moskwa B, Cabaj W. In vitro isolation and identification of the first Neospora caninum isolate from European bison (Bison bonasus bonasus L.). Vet Parasitol 2010; 173:200-5. [DOI: 10.1016/j.vetpar.2010.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 11/30/2022]
|
16
|
Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response. Int Immunopharmacol 2010; 10:865-74. [DOI: 10.1016/j.intimp.2010.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/11/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022]
|
17
|
Scandurra GM, Young M, de Lisle GW, Collins DM. A bovine macrophage screening system for identifying attenuated transposon mutants of Mycobacterium avium subsp. paratuberculosis with vaccine potential. J Microbiol Methods 2009; 77:58-62. [PMID: 19386227 DOI: 10.1016/j.mimet.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/17/2008] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
Johne's disease is a chronic granulomatous enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is responsible for considerable economic losses in the livestock industry and in particular within the dairy sector. A more effective vaccine against Johne's disease would be of major benefit. In this study, we developed an efficient procedure for identifying mutants of MAP with reduced virulence that are potential live vaccine candidates against Johne's disease. A mariner transposon was used to create random insertional libraries in two different MAP strains (989 and k10), an effective cattle macrophage survival system was developed, and a total of 1890 insertion mutants were screened by using a 96-prong multi-blot replicator (frogger) system. Two of the transposon mutants with poor survival ability in macrophages were tested in mice. These strains were found to be attenuated in vivo, thereby validating the further use of this macrophage screening system to identify MAP mutants with potential as candidate vaccines against Johne's disease.
Collapse
Affiliation(s)
- G M Scandurra
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|