1
|
Chen H, Ren H, Lu X, Shi G, Zhao Q, Zhao D, Bu W. Electroacupuncture alleviates motor dysfunction after intracerebral hemorrhage via the PPARγ-EAAT2 pathway. Neuroreport 2025; 36:169-178. [PMID: 39869482 PMCID: PMC11781546 DOI: 10.1097/wnr.0000000000002134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood. This study investigated whether EA can have a neuroprotective effect in motor function after ICH by inhibiting glutamate-mediated excitotoxicity on the primary motor cortex. The model was established using autologous tail artery blood, followed by administration of EA at Quchi (LI11) and Zusanli (ST36) for 3 or 7 consecutive days. The rats' behavior was examined by modified neurological severity score (mNSS) and open-field test (OFT). Nissl staining, immunofluorescence detection, and transmission electron microscopy were used to observe the degree of neuron damage. The level of the cortical glutamate was detected by the ELISA. Peroxisome proliferator-activated receptor gamma (PPARγ) expression was detected by immunohistochemistry and western blot. The protein and mRNA expression of excitatory amino acid transporter 2 (EAAT2) was detected by western blot and quantitative real-time PCR. Our data demonstrated that EA significantly reduces glutamate levels, alleviates neuronal damage, and promotes motor function recovery in rats after ICH. In addition, EA upregulates PPARγ and EAAT2 expression. However, the protective effect of EA on motor function and EAAT2 expression are partially abolished by T0070907, an antagonist of PPARγ. EA at LI11 and ST36 improved glutamate excitotoxicity and promoted motor function recovery after ICH by activating the PPARγ-EAAT2 pathway and reducing the glutamate level.
Collapse
Affiliation(s)
| | - Huiling Ren
- Neurology, The Third Hospital of Hebei Medical University
| | - Xudong Lu
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | | | | | | | - Wei Bu
- Departments of Neurosurgery
| |
Collapse
|
2
|
Johnson D, Hagerman R. Medical use of cannabidiol in fragile X syndrome. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:415-426. [DOI: 10.1016/b978-0-323-90036-2.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Viedma-Poyatos Á, González-Jiménez P, Pajares MA, Pérez-Sala D. Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biol 2022; 55:102415. [PMID: 35933901 PMCID: PMC9364016 DOI: 10.1016/j.redox.2022.102415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Alexander disease is a fatal neurological disorder caused by mutations in the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP), which is key for astrocyte homeostasis. These mutations cause GFAP aggregation, astrocyte dysfunction and neurodegeneration. Remarkably, most of the known GFAP mutations imply a change by more nucleophilic amino acids, mainly cysteine or histidine, which are more susceptible to oxidation and lipoxidation. Therefore, we hypothesized that a higher susceptibility of Alexander disease GFAP mutants to oxidative or electrophilic damage, which frequently occurs during neurodegeneration, could contribute to disease pathogenesis. To address this point, we have expressed GFP-GFAP wild type or the harmful Alexander disease GFP-GFAP R239C mutant in astrocytic cells. Interestingly, GFAP R239C appears more oxidized than the wild type under control conditions, as indicated both by its lower cysteine residue accessibility and increased presence of disulfide-bonded oligomers. Moreover, GFP-GFAP R239C undergoes lipoxidation to a higher extent than GFAP wild type upon treatment with the electrophilic mediator 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Importantly, GFAP R239C filament organization is altered in untreated cells and is earlier and more severely disrupted than GFAP wild type upon exposure to oxidants (diamide, H2O2) or electrophiles (4-hydroxynonenal, 15d-PGJ2), which exacerbate GFAP R239C aggregation. Furthermore, H2O2 causes reversible alterations in GFAP wild type, but irreversible damage in GFAP R239C expressing cells. Finally, we show that GFAP R239C expression induces a more oxidized cellular status, with decreased free thiol content and increased mitochondrial superoxide generation. In addition, mitochondria show decreased mass, increased colocalization with GFAP and altered morphology. Notably, a GFP-GFAP R239H mutant recapitulates R239C-elicited alterations whereas an R239G mutant induces a milder phenotype. Together, our results outline a deleterious cycle involving altered GFAP R239C organization, mitochondrial dysfunction, oxidative stress, and further GFAP R239C protein damage and network disruption, which could contribute to astrocyte derangement in Alexander disease.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
4
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
6
|
Gamdzyk M, Lenahan C, Tang J, Zhang JH. Role of peroxisome proliferator-activated receptors in stroke prevention and therapy-The best is yet to come? J Neurosci Res 2020; 98:2275-2289. [PMID: 32772463 DOI: 10.1002/jnr.24709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
Abstract
Role of peroxisome proliferator-activated receptors (PPARs) in the pathophysiology of stroke and protective effects of PPAR ligands have been widely investigated in the last 20 years. Activation of all three PPAR isoforms, but especially PPAR-γ, was documented to limit postischemic injury in the numerous in vivo, as well as in in vitro studies. PPARs have been demonstrated to act on multiple mechanisms and were shown to activate multiple protective pathways related to inflammation, apoptosis, BBB protection, neurogenesis, and oxidative stress. The aim of this review was to summarize two decades of PPAR research in stroke with emphasis on in vivo animal studies. We focus on each PPAR receptor separately and detail their implication in stroke. This review also discusses recent clinical efforts in the field and the epidemiological data with regard to role of PPAR polymorphisms in susceptibility to stroke, and tries to draw conclusions and describe future perspectives.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
7
|
Boujon V, Uhlemann R, Wegner S, Wright MB, Laufs U, Endres M, Kronenberg G, Gertz K. Dual PPARα/γ agonist aleglitazar confers stroke protection in a model of mild focal brain ischemia in mice. J Mol Med (Berl) 2019; 97:1127-1138. [PMID: 31147725 PMCID: PMC6647083 DOI: 10.1007/s00109-019-01801-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Abstract Peroxisome proliferator-activated receptors (PPARs) control the expression of genes involved in glucose homeostasis, lipid metabolism, inflammation, and cell differentiation. Here, we analyzed the effects of aleglitazar, a dual PPARα and PPARγ agonist with balanced affinity for either subtype, on subacute stroke outcome. Healthy young adult mice were subjected to transient 30 min middle cerebral artery occlusion (MCAo)/reperfusion. Daily treatment with aleglitazar was begun on the day of MCAo and continued until sacrifice. Blood glucose measurements and lipid profile did not differ between mice receiving aleglitazar and mice receiving vehicle after MCAo. Aleglitazar reduced the size of the ischemic lesion as assessed using NeuN immunohistochemistry on day 7. Sensorimotor performance on the rotarod was impaired during the first week after MCAo, an effect that was significantly attenuated by treatment with aleglitazar. Smaller lesion volume in mice treated with aleglitazar was accompanied by a decrease in mRNA transcription of IL-1β, Vcam-1, and Icam-1, suggesting that reduced proinflammatory signaling and reduced vascular inflammation in the ischemic hemisphere contribute to the beneficial effects of aleglitazar during the first week after stroke. Further experiments in primary murine microglia confirmed that aleglitazar reduces key aspects of microglia activation including NO production, release of proinflammatory cytokines, migration, and phagocytosis. In aggregate, a brief course of PPARα/γ agonist aleglitazar initiated post-event affords stroke protection and functional recovery in a model of mild brain ischemia. Our data underscores the theme of delayed injury processes such as neuroinflammation as promising therapeutic targets in stroke. Key messages PPARα/γ agonist aleglitazar improves stroke outcome after transient brain ischemia. Aleglitazar attenuates inflammatory responses in post-ischemic brain. Aleglitazar reduces microglia migration, phagocytosis, and release of cytokines. Beneficial effects of aleglitazar independent of glucose regulation. Aleglitazar provides extended window of opportunity for stroke treatment.
Collapse
Affiliation(s)
- Valérie Boujon
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Ria Uhlemann
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Stephanie Wegner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthew B Wright
- pRED, Pharma Research & Early Development, F. Hoffmann-La Roche AG, Strekin AG, Basel, Switzerland
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), 10115, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 10117, Berlin, Germany
| | - Golo Kronenberg
- College of Life Sciences, University of Leicester, and Leicestershire Partnership NHS Trust, Leicester, UK
| | - Karen Gertz
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
9
|
Bioactive Lipids in Inflammation After Central Nervous System Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:181-194. [PMID: 31140179 DOI: 10.1007/978-3-030-11488-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progress made over the last decades to understand the mechanisms underlying tissue damage and neurological deficits after neurotrauma, there are currently no effective treatments in the clinic. It is well accepted that the inflammatory response in the CNS after injury exacerbates tissue loss and functional impairments. Unfortunately, the use of potent anti-inflammatory drugs, such as methylprednisolone, fails to promote therapeutic recovery and also gives rise to several undesirable side effects related to immunosuppression. The injury-induced inflammatory response is complex, and understanding the mechanisms that regulate this inflammation is therefore crucial in the quest to develop effective treatments. Bioactive lipids have emerged as potent molecules in controlling the initiation, coordination, and resolution of inflammation and in promoting tissue repair and recovery of homeostasis. These bioactive lipids are produced by cells involved in the inflammatory response, and their defective synthesis leads to persistent chronic inflammation, tissue damage, and fibrosis. The present chapter discusses recent evidence for the role of some of these bioactive lipids, in particular, eicosanoid and pro-resolving lipid mediators, in the regulation of inflammation after neurotrauma and highlights the therapeutic potential of some of these lipids in enhancing neurological outcomes after CNS injuries.
Collapse
|
10
|
Yun SJ, Kim H, Jung SH, Kim JH, Ryu JE, Singh NJ, Jeon J, Han JK, Kim CH, Kim S, Jang SK, Kim WJ. The mechanistic insight of a specific interaction between 15d-Prostaglandin-J2 and eIF4A suggests an evolutionary conserved role across species. Biol Open 2018; 7:bio035402. [PMID: 30257829 PMCID: PMC6262856 DOI: 10.1242/bio.035402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory/anti-neoplastic prostaglandin that functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A (Kim et al., 2007). Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A, which leads to the formation of stress granules (SGs), which then cluster mRNAs with inhibited translation. Here, we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail plays a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets may uncover new therapeutic approaches in anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- So Jeong Yun
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyunjoon Kim
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Hyun Kim
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jeong Eun Ryu
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - N Jiten Singh
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jouhyun Jeon
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin-Kwan Han
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sanguk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Woo Jae Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| |
Collapse
|
11
|
Viedma-Poyatos Á, de Pablo Y, Pekny M, Pérez-Sala D. The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization. Free Radic Biol Med 2018; 120:380-394. [PMID: 29635011 DOI: 10.1016/j.freeradbiomed.2018.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Abstract
The type III intermediate filament protein glial fibrillary acidic protein (GFAP) contributes to the homeostasis of astrocytes, where it co-polymerizes with vimentin. Conversely, alterations in GFAP assembly or degradation cause intracellular aggregates linked to astrocyte dysfunction and neurological disease. Moreover, injury and inflammation elicit extensive GFAP organization and expression changes, which underline reactive gliosis. Here we have studied GFAP as a target for modification by electrophilic inflammatory mediators. We show that the GFAP cysteine, C294, is targeted by lipoxidation by cyclopentenone prostaglandins (cyPG) in vitro and in cells. Electrophilic modification of GFAP in cells leads to a striking filament rearrangement, with retraction from the cell periphery and juxtanuclear condensation in thick bundles. Importantly, the C294S mutant is resistant to cyPG addition and filament disruption, thus highlighting the critical role of this residue as a sensor of oxidative damage. However, GFAP C294S shows defective or delayed network formation in GFAP-deficient cells, including SW13/cl.2 cells and GFAP- and vimentin-deficient primary astrocytes. Moreover, GFAP C294S does not effectively integrate with and even disrupts vimentin filaments in the short-term. Interestingly, short-spacer bifunctional cysteine crosslinking produces GFAP-vimentin heterodimers, suggesting that a certain proportion of cysteine residues from both proteins are spatially close. Collectively, these results support that the conserved cysteine residue in type III intermediate filament proteins serves as an electrophilic stress sensor and structural element. Therefore, oxidative modifications of this cysteine could contribute to GFAP disruption or aggregation in pathological situations associated with oxidative or electrophilic stress.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C. Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9 A, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9 A, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Newcastle, New South Wales, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Physiological and Pathological Roles of 15-Deoxy-Δ12,14-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 2017; 55:2227-2248. [PMID: 28299574 DOI: 10.1007/s12035-017-0435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
|
13
|
Sapkota A, Gaire BP, Cho KS, Jeon SJ, Kwon OW, Jang DS, Kim SY, Ryu JH, Choi JW. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 2017; 12:e0171479. [PMID: 28178289 PMCID: PMC5298292 DOI: 10.1371/journal.pone.0171479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against focal cerebral ischemia through the reduction of microglial activation.
Collapse
Affiliation(s)
- Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Kyu Suk Cho
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Oh Wook Kwon
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Dae Sik Jang
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Koma H, Yamamoto Y, Nishii A, Yagami T. 15-Deoxy-Δ 12,14-prostaglandin J 2 induced neurotoxicity via suppressing phosphoinositide 3-kinase. Neuropharmacology 2016; 113:416-425. [PMID: 27771378 DOI: 10.1016/j.neuropharm.2016.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/21/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
Abstract
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces neuronal cell death via apoptosis independently of its receptors. 15d-PGJ2 inhibits growth factor-induced cell proliferation of primary astrocytes via down-regulating phosphoinositide 3-kinase (PI3K)-Akt pathway. Although 15d-PGJ2-reduced cell viability is accompanied with attenuation of the PI3K signaling in neuroblastoma, it has not been sufficiently clarified how 15d-PGJ2 induces cell death in primary neurons. Here, we found that 15d-PGJ2 exhibited neurotoxicity via inhibiting the PI3K signaling in the primary culture of rat cortical neurons. A PI3K inhibitor induced neuronal cell death regardless serum throughout maturation, confirming that PI3K is required for neuronal cell survival. The inhibitor disrupted neuronal cell bodies, shortened neurites thinly, damaged plasma membranes and activated caspase-3 similarly to 15d-PGJ2. Little additive or synergistic neurotoxicity was detected between 15d-PGJ2 and the PI3K inhibitor. A PI3K activator prevented neurons from undergoing the 15d-PGJ2-induced cell death in vitro. In vivo, the PI3K signaling is required for contextual memory retrieval, which was impaired by bilateral injection of 15d-PGJ2 into hippocampus. The activator suppressed the 15d-PGJ2-impaired memory retrieval significantly. In neurons as well as primary astrocytes and neuroblastomas, 15d-PGJ2 exhibited cytotoxicity via suppressing the PI3K-Akt pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Hiromi Koma
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Yasuhiro Yamamoto
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Ayaka Nishii
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Tatsurou Yagami
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan.
| |
Collapse
|
15
|
Macedo CG, Napimoga MH, Rocha-Neto LM, Abdalla HB, Clemente-Napimoga JT. The role of endogenous opioid peptides in the antinociceptive effect of 15-deoxy(Δ12,14)-prostaglandin J2 in the temporomandibular joint. Prostaglandins Leukot Essent Fatty Acids 2016; 110:27-34. [PMID: 27255640 DOI: 10.1016/j.plefa.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
We have previously demonstrated that peripheral administration of 15d-PGJ2 in the Temporomandibular joint (TMJ) of rats can prevent nociceptor sensitization, mediated by peroxisome proliferator activated receptor-γ (PPAR-γ), and κ- and δ- opioid receptors. However, the mechanism that underlies the signaling of PPAR-γ (upon activation by 15d-PGJ2) to induce antinociception, and how the opioid receptors are activated via 15d-PGJ2 are not fully understood. This study demonstrates that peripheral antinociceptive effect of 15d-PGJ2 is mediated by PPAR-γ expressed in the inflammatory cells of TMJ tissues. Once activated by 15d-PGJ2, PPAR-γ induces the release of β-endorphin and dynorphin, which activates κ- and δ-opioid receptors in primary sensory neurons to induce the antinociceptive effect.
Collapse
Affiliation(s)
- C G Macedo
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - M H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Rua José Rocha Junqueira, 13 - Campinas, SP 13045-755, Brazil
| | - L M Rocha-Neto
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - H B Abdalla
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - J T Clemente-Napimoga
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
16
|
Li XG, Lin XJ, Du JH, Xu SZ, Lou XF, Chen Z. Combination of methylprednisolone and rosiglitazone promotes recovery of neurological function after spinal cord injury. Neural Regen Res 2016; 11:1678-1684. [PMID: 27904502 PMCID: PMC5116850 DOI: 10.4103/1673-5374.193250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Methylprednisolone exhibits anti-inflammatory antioxidant properties, and rosiglitazone acts as an anti-inflammatory and antioxidant by activating peroxisome proliferator-activated receptor-γ in the spinal cord. Methylprednisolone and rosiglitazone have been clinically used during the early stages of secondary spinal cord injury. Because of the complexity and diversity of the inflammatory process after spinal cord injury, a single drug cannot completely inhibit inflammation. Therefore, we assumed that a combination of methylprednisolone and rosiglitazone might promote recovery of neurological function after secondary spinal cord injury. In this study, rats were intraperitoneally injected with methylprednisolone (30 mg/kg) and rosiglitazone (2 mg/kg) at 1 hour after injury, and methylprednisolone (15 mg/kg) at 24 and 48 hours after injury. Rosiglitazone was then administered once every 12 hours for 7 consecutive days. Our results demonstrated that a combined treatment with methylprednisolone and rosiglitazone had a more pronounced effect on attenuation of inflammation and cell apoptosis, as well as increased functional recovery, compared with either single treatment alone, indicating that a combination better promoted recovery of neurological function after injury.
Collapse
Affiliation(s)
- Xi-Gong Li
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiang-Jin Lin
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jun-Hua Du
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - San-Zhong Xu
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xian-Feng Lou
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D. Activation of RXR/PPARγ underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res 2015; 102:298-307. [PMID: 26546745 DOI: 10.1016/j.phrs.2015.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The identification of novel drug targets for the treatment of ischemic stroke is currently an urgent challenge. Recent experimental findings have highlighted the neuroprotective potential of immunomodulatory strategies, based on polarization of myeloid cells toward non-inflammatory, beneficial phenotypes. Given the role of retinoid X receptors (RXR) in myeloid cells differentiation and polarization, here we have explored the neuroprotective potential of the RXR agonist bexarotene in mice subjected to focal cerebral ischemia. Acute administration of bexarotene significantly reduced blood brain barrier leakage, brain infarct damage and neurological deficit produced by transient middle cerebral artery occlusion in mice, without affecting cerebral blood flow. The rexinoid exerted neuroprotection with a wide time-window, being effective when administered up to 4.5h after the insult. The amelioration of histological outcome, as well as the ability of bexarotene to revert middle cerebral artery occlusion (MCAo)-induced spleen atrophy, was antagonised by BR1211, a pan-RXR antagonist, or by the selective peroxisome proliferator-activated receptor (PPAR)γ antagonist bisphenol A diglycidyl ether (BADGE), highlighting the involvement of the RXR/PPARγ heterodimer in the beneficial effects exerted by the drug. Immunofluorescence analysis revealed that bexarotene elevates Ym1-immunopositive N2 neutrophils both in the ipsilateral hemisphere and in the spleen of mice subjected to transient middle cerebral artery occlusion, pointing to a major role for peripheral neutrophil polarization in neuroprotection. Thus, our findings suggest that the RXR agonist bexarotene exerts peripheral immunomodulatory effects under ischemic conditions to be effectively repurposed for the acute therapy of ischemic stroke.
Collapse
Affiliation(s)
- Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Shinobu Sakurada
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
18
|
Niro S, Hennebert O, Morfin R. A native steroid hormone derivative triggers the resolution of inflammation. Horm Mol Biol Clin Investig 2015; 1:11-9. [PMID: 25961967 DOI: 10.1515/hmbci.2010.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/27/2009] [Indexed: 12/12/2022]
Abstract
Inflamed tissues produce both prostaglandins (PGs) and 7α-hydroxylated derivatives of native circulating 3β-hydroxysteroids. These 7α-hydroxysteroids are in turn transformed into 7β-hydroxylated epimers by 11β-hydroxysteroid dehydrogenase type 1 in the tissue. 7β-Hydroxy-epiandrosterone (7β-hydroxy-EpiA) affects PG production in two models of inflammation, dextran sodium sulfate-induced colitis in the rat and TNF-α-induced activation of PG production and PG synthase expression in cultured human peripheral blood monocytes (hPBMC). Treatment with 7β-hydroxy-EpiA led to a shift from high to low colonic PGE2 levels and from low to high 15-deoxy-Δ12-14-PGJ2 (15d-PGJ2) levels, together with changes in the expression of the respective PG synthases and resolution of colonic inflammation. Addition of 7β-hydroxy-EpiA to hPBMC also changed the expression of PG synthases and decreased PGE2 while increasing 15d-PGJ2 production. These effects were only observed with 7β-hydroxy-EpiA and not with 7α-hydroxy- or 7β-hydroxy-dehydroepiandrosterone (7α-hydroxy-DHEA and 7β-hydroxy-DHEA). 15d-PGJ2, which is the native ligand for peroxisome proliferator-activated receptor subtype γ, contributes to cell protection and to the resolution of inflammation. Our results therefore suggest that 7β-hydroxy-EpiA may facilitate inflammatory resolution by shifting PG production from PGE2 to PGD2 and 15d-PGJ2. The finding that 7β-hydroxy-EpiA was effective at nM concentrations, whereas the two structurally closely related hydroxysteroids 7α-hydroxy-DHEA and 7β-hydroxy-DHEA were inactive suggests that the effects of 7β-hydroxy-EpiA are specific to this steroid and may be mediated by a specific receptor.
Collapse
|
19
|
Allahtavakoli M, Amin F, Esmaeeli-Nadimi A, Shamsizadeh A, Kazemi-Arababadi M, Kennedy D. Ascorbic Acid Reduces the Adverse Effects of Delayed Administration of Tissue Plasminogen Activator in a Rat Stroke Model. Basic Clin Pharmacol Toxicol 2015; 117:335-9. [PMID: 25899606 DOI: 10.1111/bcpt.12413] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Delayed treatment of stroke with recombinant tissue plasminogen activator (r-tPA) induces overexpression of matrix metalloproteinase 9 (MMP-9) which leads to breakdown of the blood-brain barrier (BBB) and causes more injuries to the brain parenchyma. In this study, the effect of ascorbic acid (AA), an antioxidant agent, on the delayed administration of r-tPA in a rat model of permanent middle cerebral artery occlusion (MCAO) was investigated. Forty male rats were randomly divided into four groups: untreated control rats (ischaemic animals), AA-treated (500 mg/kg; 5 hr after stroke) rats, r-tPA-treated (5 hr after stroke 1 mg/kg) rats and rats treated with the combination of AA and r-tPA. Middle cerebral artery occlusion was induced by occluding the right middle cerebral artery (MCA). Infarct size, BBB, brain oedema and the levels of MMP-9 were measured at the end of study. Neurological deficits were evaluated at 24 and 48 hr after stroke. Compared to the control or r-tPA-treated animals, AA alone (p < 0.001) or in combination with r-tPA (p < 0.05) significantly decreased infarct volume. Ascorbic acid alone or r-tPA + AA significantly reduced BBB permeability (p < 0.05), levels of MMP-9 (p < 0.05 versus control; p < 0.01 versus r-tPA) and brain oedema (p < 0.001) when compared to either the control or the r-tPA-treated animals. Latency to the removal of sticky labels from the forepaw was also significantly decreased after the administration of AA + r-tPA (p < 0.05) at 24 or 48 hr after stroke. Based on our data, acute treatment with AA may be considered as a useful candidate to reduce the side effects of delayed application of r-tPA in stroke therapy.
Collapse
Affiliation(s)
- Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Esmaeeli-Nadimi
- Department of Cardiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi-Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University Nathan, Nathan, Qld, Australia
| |
Collapse
|
20
|
Carpéné C, Bizou M, Tréguer K, Hasnaoui M, Grès S. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition. J Physiol Biochem 2015; 71:487-96. [PMID: 25572340 DOI: 10.1007/s13105-014-0379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM U1048), Toulouse, France,
| | | | | | | | | |
Collapse
|
21
|
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2014; 63:635-51. [PMID: 25452166 DOI: 10.1002/glia.22774] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Macrophage activation and persistent inflammation contribute to the pathological process of spinal cord injury (SCI). It was reported that M2 macrophages were induced at 3-7 days after SCI but M2 markers were reduced or eliminated after 1 week. By contrast, M1 macrophage response is rapidly induced and then maintained at injured spinal cord. However, factors that modulate macrophage phenotype and function are poorly understood. We developed a model to distinguish bone-marrow derived macrophages (BMDMs) from residential microglia and explored how BMDMs change their phenotype and functions in response to the lesion-related factors in injured spinal cord. Infiltrating BMDMs expressing higher Mac-2 and lower CX3CR1 migrate to the epicenter of injury, while microglia expressing lower Mac-2 but higher CX3CR1 distribute to the edges of lesion. Myelin debris at the lesion site switches BMDMs from M2 phenotype towards M1-like phenotype. Myelin debris activates ATP-binding cassette transporter A1 (ABCA1) for cholesterol efflux in response to myelin debris loading in vitro. However, this homeostatic mechanism in injured site is overwhelmed, leading to the development of foamy macrophages and lipid plaque in the lesion site. The persistence of these cells indicates a pro-inflammatory environment, associated with enhanced neurotoxicity and impaired wound healing. These foamy macrophages have poor capacity to phagocytose apoptotic neutrophils resulting in uningested neutrophils releasing their toxic contents and further tissue damage. In conclusion, these data demonstrate for the first time that myelin debris generated in injured spinal cord modulates macrophage activation. Lipid accumulation following macrophage phenotype switch contributes to SCI pathology.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey; Institute of Neurosciences, the Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Han J, Sun L, Xu Y, Liang H, Cheng Y. Activation of PPARγ by 12/15-lipoxygenase during cerebral ischemia-reperfusion injury. Int J Mol Med 2014; 35:195-201. [PMID: 25395029 DOI: 10.3892/ijmm.2014.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/20/2014] [Indexed: 11/05/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) expression and activity are increased in brain ischemic injury and its agonists have shown potential for brain injury protection. The influence of 12/15-lipoxygenase (12/15-LOX) on the activity of PPARγ in oxygen-glucose deprivation (OGD) and ischemia-reperfusion (I/R) was investigated. A middle cerebral artery occlusion/reperfusion model with Sprague Dawley (SD) rats was established. For I/R intervention, the rats were treated with the 12/15-LOX-derived product 12-hydroxyeicosatetraenoic acid (12-HETE) for 30 min before cerebral artery occlusion. Primary cortical neurons from SD rats were used to establish an OGD cell model. 12-HETE or a 12/15-LOX antisense oligonucleotide (asON-12/15-LOX) was added to OGD-treated neurons. Western blots, immunofluorescence and enzyme-linked immunosorbent assays detected protein. Reverse transcription-polymerase chain reaction analyzed the expression of the PPARγ target genes. PPARγ-DNA binding activity was determined by peroxisome proliferator responsive element luciferase reporter vectors. 12/15-LOX total protein increased significantly with I/R, and expression of 12-HETE was also upregulated. 12-HETE treatment increased PPARγ protein expression and inhibited inducible nitric oxide synthase protein expression, which was upregulated with I/R. PPARγ nuclear protein and 12/15-LOX total protein expression in OGD-treated neurons increased significantly. 12-HETE treatment increased the expression of PPARγ nuclear protein, upregulated the mRNA levels of PPARγ target genes (lipoprotein lipase and acyl-CoA oxidase) and enhanced PPARγ-DNA binding activity. asON-12/15-LOX treatment inhibited 12/15-LOX and PPARγ protein expression and lipoprotein lipase mRNA. Cerebral I/R injury in rats and OGD treatment in neurons promoted 12/15-LOX expression, and 12-HETE activated PPARγ. Therefore, PPARγ can be activated by the 12/15-LOX pathway during cerebral I/R injury.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Neurology Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Li Sun
- Tianjin Neurology Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yanwei Xu
- Department of Neurology, Tianjin Neurology Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Hao Liang
- Tianjin Neurology Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yan Cheng
- Department of Neurology, Tianjin Neurology Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
23
|
Extract of Antrodia camphorata exerts neuroprotection against embolic stroke in rats without causing the risk of hemorrhagic incidence. ScientificWorldJournal 2014; 2014:686109. [PMID: 25140341 PMCID: PMC4130302 DOI: 10.1155/2014/686109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022] Open
Abstract
In this study, the neuroprotective effect of an extract of Antrodia camphorata (A. camphorata), a fungus commonly used in Chinese folk medicine for treatment of viral hepatitis and cancer, alone or in combination with aspirin was investigated in a rat embolic stroke model. An ischemic stroke was induced in rats by a selective occlusion of the middle cerebral artery (MCA) with whole blood clots and then orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone and combined with aspirin (5 mg/kg/day). Sixty days later, the brains were removed, sectioned, and stained with triphenyltetrazolium chloride and analysed by a commercial image processing software program. Brain infarct volume, neurobehavioral score, cerebral blood perfusion, and subarachnoid and intracerebral hemorrhage incidence were perceived. In addition, potential bleeding side effect of the combinative therapy was assessed by measuring hemoglobin (Hb) content during intracerebral hemorrhage and gastric bleeding, prothrombin time (PT), and occlusion time (OT) after oral administration. Posttreatment with high dose A. camphorata significantly reduced infarct volume and improved neurobehavioral score (P < 0.05). Since A. camphorata alone or with aspirin did not alter the Hb level, this treatment is safe and does not cause hemorrhagic incident. Remarkably, the combination of A. camphorata and aspirin did not show a significant effect on the bleeding time, PT and OT increase suggesting that A. camphorata may have the neuroprotective effect without the prolongation of bleeding time or coagulation time. From these observations, we suggest that combinative therapy of A. camphorata and aspirin might offer enhanced neuroprotective efficacies without increasing side effects.
Collapse
|
24
|
Moezi L, Janahmadi Z, Amirghofran Z, Nekooeian AA, Dehpour AR. The increased gastroprotective effect of pioglitazone in cholestatic rats: role of nitric oxide and tumour necrosis factor alpha. Int J Exp Pathol 2014; 95:78-85. [PMID: 24456333 DOI: 10.1111/iep.12067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022] Open
Abstract
The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30 mg/kg) for 7 days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-α), IL-1β and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-α in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-α.
Collapse
Affiliation(s)
- Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
25
|
Farshbaf MJ, Ghaedi K, Shirani M, Nasr-Esfahani MH. Peroxisome proliferator activated receptor gamma (PPARγ) as a therapeutic target for improvement of cognitive performance in Fragile-X. Med Hypotheses 2013; 82:291-4. [PMID: 24456944 DOI: 10.1016/j.mehy.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/03/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
Rare disorders leading to intellectual disability, such as Fragile X syndrome (FXS) alter synaptic plasticity. Ligand identification of orphan nuclear receptors has led to the discovery of many signaling pathways and has revealed a direct link of nuclear receptors with human conditions such as mental retardation and neurodegenerative diseases. PPARγ agonists can act as neuroprotective agents, promoting synaptic plasticity and neurite outgrowth. Therefore, selective PPARγ agonists are good candidates for therapeutic evaluation in intellectual disabilities. Preliminary results suggest that PPARγ agonists such as Pioglitazone, Rosiglitazone and synthetic agonist, GW1929, are used as the therapeutic agent in neurological disorders. These components interact with intracellular transduction signals (e.g. GSK3β, PI3K/Akt, Wnt/β-Catenin, Rac1 and MMP-9). It seems that interaction with these pathways can improve memory recognition in FXS animal models. The present hypothesis consists of enhancing synaptic plasticity that may then rescue the learning and memory in FXS. This will open many new therapeutic avenues for a variety of human diseases.
Collapse
Affiliation(s)
- Mohammad Jodeiri Farshbaf
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mahsa Shirani
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
26
|
Abstract
Reperfusion of ischemic brain can reduce injury and improve outcome, but secondary injury due to inflammatory mechanisms limits the efficacy and time window of such treatments for stroke. This review summarizes the cellular and molecular basis of inflammation in ischemic injury as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
27
|
Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013; 2013:945034. [PMID: 24288627 PMCID: PMC3833318 DOI: 10.1155/2013/945034] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) triggers inflammation with activation of innate immune responses that contribute to secondary injury including oligodendrocyte apoptosis, demyelination, axonal degeneration, and neuronal death. Macrophage activation, accumulation, and persistent inflammation occur in SCI. Macrophages are heterogeneous cells with extensive functional plasticity and have the capacity to switch phenotypes by factors present in the inflammatory microenvironment of the injured spinal cord. This review will discuss the role of different polarized macrophages and the potential effect of macrophage-based therapies for SCI.
Collapse
|
28
|
Wojtowicz AK, Szychowski KA, Kajta M. PPAR-γ agonist GW1929 but not antagonist GW9662 reduces TBBPA-induced neurotoxicity in primary neocortical cells. Neurotox Res 2013; 25:311-22. [PMID: 24132472 PMCID: PMC3936120 DOI: 10.1007/s12640-013-9434-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/15/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022]
Abstract
Tetrabromobisphenol A (2,2-bis(4-hydroxy-3,5-dibromophenyl)propane; TBBPA) is a widely used brominated flame retardant. TBBPA induces neuronal damage, but the mechanism by which this occurs is largely unknown. We studied the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in TBBPA-induced apoptosis and toxicity in mouse primary neuronal cell cultures. TBBPA enhanced both, caspase-3 activity and lactate dehydrogenase (LDH) release in neocortical cells after 6 and 24 h of exposition. These data were supported at the cellular level with Hoechst 33342 staining. Immunoblot analyses showed that, compared with control cells, 10 μM TBBPA decreased the expression of PPAR-γ protein in neocortical neurons after 1-24 h of exposure. Co-treatment with TBBPA and GW1929 inhibited the TBBPA-induced caspase-3 activity, apoptotic body formation, and LDH release as well as TBBPA-induced decrease in PPAR-γ protein expression. Thus, our data support neuroprotective potential of PPAR-γ agonists. The PPAR-γ antagonist GW9662 prevented the TBBPA-induced decrease in PPAR-γ protein level, but it potentiated TBBPA-induced apoptotic and neurotoxic effects, which suggest that the mechanism of TBBPA action in neuronal cells is not only PPAR-γ-dependent. Therefore, further studies of the mechanism of TBBPA action in the nervous system are needed.
Collapse
Affiliation(s)
- Anna K Wojtowicz
- Laboratory of Genomics and Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248, Krakow, Poland,
| | | | | |
Collapse
|
29
|
Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbí ÁL, Lizasoain I, Moro MA. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 2013; 44:3498-508. [PMID: 24135932 DOI: 10.1161/strokeaha.113.002470] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Neutrophils have been traditionally recognized as major mediators of a deleterious inflammatory response in acute ischemic stroke, but their potential as a therapeutic target remains unexplored. Recent evidence indicates that neutrophils may acquire different phenotypes and contribute to resolution of inflammation through the release of anti-inflammatory mediators. Thus, similar to M2 macrophages, neutrophils have been proposed to shift toward an N2 phenotype, a polarization that is peroxisome proliferator-activated receptor-γ dependent in macrophages. We hypothesize that peroxisome proliferator-activated receptor-γ activation with rosiglitazone induces changes in neutrophilic mobilization and phenotype that might influence stroke outcome. METHODS Brain sections and cell suspensions were prepared from mice exposed to permanent distal middle cerebral artery occlusion. Double immunostaining with stereological counting of brain sections and flow-cytometry analysis of brain cell suspensions were performed. RESULTS Rosiglitazone accelerated neutrophil infiltration to the ischemic core, concomitantly to neuroprotection. Some neutrophils (≈31%) expressed M2 markers, namely Ym1 and CD206 (mannose receptor). After treatment with the peroxisome proliferator-activated receptor-γ agonist rosiglitazone, most neutrophils (≈77%) acquired an N2 phenotype. Interestingly, rosiglitazone increased neutrophil engulfment by microglia/macrophages, a clearance that preferentially affected the N2 subset. CONCLUSIONS We present the first evidence of neutrophil reprogramming toward an N2 phenotype in brain inflammation, which can be modulated by activation of the peroxisome proliferator-activated receptor-γ nuclear receptor. We also show that N2 polarization is associated with an increased neutrophil clearance, thus suggesting that this switch is a crucial event for resolution of inflammation that may participate in neuroprotection.
Collapse
Affiliation(s)
- María Isabel Cuartero
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain (M.I.C., I.B., A.M., I.L., M.A.M.); Servicio de Neurología and Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain (F.N., J.V.); Arthritis and Inflammation Research Centre, University of Melbourne and Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia (J.A.H.); and Centro de Investigaciones Biológicas, CSIC, Madrid, Spain (A.L.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of secretory phospholipase A₂ in the central nervous system and neurological diseases. Mol Neurobiol 2013; 49:863-76. [PMID: 24113843 DOI: 10.1007/s12035-013-8565-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022]
Abstract
Secretory phospholipase A2 (sPLA2s) are small secreted proteins (14-18 kDa) and require submillimolar levels of Ca(2+) for liberating arachidonic acid from cell membrane lipids. In addition to the enzymatic function, sPLA2 can exert various biological responses by binding to specific receptors. Physiologically, sPLA2s play important roles on the neurotransmission in the central nervous system and the neuritogenesis in the peripheral nervous system. Pathologically, sPLA2s are involved in the neurodegenerative diseases (e.g., Alzheimer's disease) and cerebrovascular diseases (e.g., stoke). The common pathology (e.g., neuronal apoptosis) of Alzheimer's disease and stroke coexists in the mixed dementia, suggesting common pathogenic mechanisms of the two neurological diseases. Among mammalian sPLA2s, sPLA2-IB and sPLA2-IIA induce neuronal apoptosis in rat cortical neurons. The excess influx of calcium into neurons via L-type voltage-dependent Ca(2+) channels mediates the two sPLA2-induced apoptosis. The elevated concentration of intracellular calcium activates PKC, MAPK and cytosolic PLA2. Moreover, it is linked with the production of reactive oxygen species and apoptosis through activation of the superoxide producing enzyme NADPH oxidase. NADPH oxidase is involved in the neurotoxicity of amyloid β peptide, which impairs synaptic plasticity long before its deposition in the form of amyloid plaques of Alzheimer's disease. In turn, reactive oxygen species from NADPH oxidase can stimulate ERK1/2 phosphorylation and activation of cPLA2 and result in a release of arachidonic acid. sPLA2 is up-regulated in both Alzheimer's disease and cerebrovascular disease, suggesting the involvement of sPLA2 in the common pathogenic mechanisms of the two diseases. Thus, our review presents evidences for pathophysiological roles of sPLA2 in the central nervous system and neurological diseases.
Collapse
|
31
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
32
|
Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, Chang WJ, Chen JN, Tseng YJ, Lin YH, Lee W, Yeh SP, Hsu JL, Yang CC, Hung SC, Hung MC. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 2013; 5:531-47. [PMID: 23526793 PMCID: PMC3628108 DOI: 10.1002/emmm.201201783] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/20/2022] Open
Abstract
EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed that EZH2 downregulation enhances neuron differentiation of human mesenchymal stem cells (hMSCs); however, the underlying mechanisms of EZH2-regulated neuron differentiation are still unclear. Here, we identify Smurf2 as the E3 ubiquitin ligase responsible for the polyubiquitination and proteasome-mediated degradation of EZH2, which is required for neuron differentiation. A ChIP-on-chip screen combined with gene microarray analysis revealed that PPARγ was the only gene involved in neuron differentiation with significant changes in both its modification and expression status during differentiation. Moreover, knocking down PPARγ prevented cells from undergoing efficient neuron differentiation. In animal model, rats implanted with intracerebral EZH2-knocked-down hMSCs or hMSCs plus treatment with PPARγ agonist (rosiglitazone) showed better improvement than those without EZH2 knockdown or rosiglitazone treatment after a stroke. Together, our results support Smurf2 as a regulator of EZH2 turnover to facilitate PPARγ expression, which is specifically required for neuron differentiation, providing a molecular mechanism for clinical applications in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu H, Li W, Ahmad M, Rose ME, Miller TM, Yu M, Chen J, Pascoe JL, Poloyac SM, Hickey RW, Graham SH. Increased generation of cyclopentenone prostaglandins after brain ischemia and their role in aggregation of ubiquitinated proteins in neurons. Neurotox Res 2013; 24:191-204. [PMID: 23355003 DOI: 10.1007/s12640-013-9377-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 11/26/2022]
Abstract
The cyclopentenone prostaglandin (CyPG) J₂ series, including prostaglandin J₂ (PGJ₂), Δ¹²-PGJ₂, and 15-deoxy-∆¹²,¹⁴-prostaglandin J₂ (15d-PGJ₂), are active metabolites of PGD₂, exerting multiple effects on neuronal function. However, the physiologic relevance of these effects remains uncertain as brain concentrations of CyPGs have not been precisely determined. In this study, we found that free PGD₂ and the J₂ series CyPGs (PGJ₂, Δ¹²-PGJ₂, and 15d-PGJ₂) were increased in post-ischemic rat brain as detected by UPLC-MS/MS with 15d-PGJ₂ being the most abundant CyPG. These increases were attenuated by pre-treating with the cyclooxygenase (COX) inhibitor piroxicam. Next, effects of chronic exposure to 15d-PGJ₂ were examined by treating primary neurons with 15d-PGJ₂, CAY10410 (a 15d-PGJ₂ analog lacking the cyclopentenone ring structure), or vehicle for 24 to 96 h. Because we found that the concentration of free 15d-PGJ₂ decreased rapidly in cell culture medium, freshly prepared medium containing 15d-PGJ₂, CAY10410, or vehicle was changed twice daily to maintain steady extracellular concentrations. Incubation with 2.5 μM 15d-PGJ₂, but not CAY10410, increased the neuronal cell death without the induction of caspase-3 or PARP cleavage, consistent with a primarily necrotic mechanism for 15d-PGJ₂-induced cell death which was further supported by TUNEL assay results. Ubiquitinated protein accumulation and aggregation was observed after 96 h 15d-PGJ₂ incubation, accompanied by compromised 20S proteasome activity. Unlike another proteasome inhibitor, MG132, 15d-PGJ₂ treatment did not activate autophagy or induce aggresome formation. Therefore, the cumulative cytotoxic effects of increased generation of CyPGs after stroke may contribute to delayed post-ischemic neuronal injury.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Education and Clinical Center 00-GR-H, V.A. Pittsburgh Healthcare, 7180 Highland Drive, Pittsburgh, PA 15206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Haskew-Layton RE, Payappilly JB, Xu H, Bennett SAL, Ratan RR. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) protects neurons from oxidative death via an Nrf2 astrocyte-specific mechanism independent of PPARγ. J Neurochem 2013. [DOI: 10.1111/jnc.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Renée E. Haskew-Layton
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Jimmy B. Payappilly
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Hongbin Xu
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Rajiv R. Ratan
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| |
Collapse
|
35
|
Moezi L, Heidari R, Amirghofran Z, Nekooeian AA, Monabati A, Dehpour AR. Enhanced anti-ulcer effect of pioglitazone on gastric ulcers in cirrhotic rats: The role of nitric oxide and IL-1β. Pharmacol Rep 2013; 65:134-43. [DOI: 10.1016/s1734-1140(13)70971-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 10/15/2012] [Indexed: 02/09/2023]
|
36
|
Prevention of JNK phosphorylation as a mechanism for rosiglitazone in neuroprotection after transient cerebral ischemia: activation of dual specificity phosphatase. J Cereb Blood Flow Metab 2013; 33:106-14. [PMID: 23032483 PMCID: PMC3597369 DOI: 10.1038/jcbfm.2012.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rosiglitazone, a synthetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist, prevents cell death after cerebral ischemia in animal models, but the underlying mechanism has not been clarified. In this study, we examined how rosiglitazone protects neurons against ischemia. Mice treated with rosiglitazone were subjected to 60 minutes of focal ischemia followed by reperfusion. Rosiglitazone reduced infarct volume after ischemia and reperfusion. We show that this neuroprotective effect was reversed with a PPARγ antagonist. Western blot analysis showed a significant increase in expression of phosphorylated stress-activated protein kinases (c-Jun N-terminal kinase (JNK) and p38) in ischemic brain tissue. Rosiglitazone blocked this increase. Furthermore, we observed that rosiglitazone increased expression of the dual-specificity phosphatase 8 (DUSP8) protein and messenger RNA in ischemic brain tissue. Dual-specificity phosphatase 8 is a mitogen-activated protein kinase phosphatase that can dephosphorylate JNK and p38. Another key finding of the present study was that knockdown of DUSP8 in primary cultured cortical neurons that were subjected to oxygen-glucose deprivation diminished rosiglitazone's effect on downregulation of JNK phosphorylation. Thus, rosiglitazone's neuroprotective effect after ischemia is mediated by blocking JNK phosphorylation induced by ischemia via DUSP8 upregulation.
Collapse
|
37
|
Nicholson JD, Puche AC, Guo Y, Weinreich D, Slater BJ, Bernstein SL. PGJ(2) provides prolonged CNS stroke protection by reducing white matter edema. PLoS One 2012; 7:e50021. [PMID: 23284631 PMCID: PMC3527449 DOI: 10.1371/journal.pone.0050021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Few clinically effective approaches reduce CNS-white matter injury. After early in-vivo white matter infarct, NFκB-driven pro-inflammatory signals can amplify a relatively small amount of vascular damage, resulting in progressive endothelial dysfunction to create a severe ischemic lesion. This process can be minimized by 15-deoxy-Δ(12,14)-prostaglandin J2 (PGJ(2)), an analog of the metabolically active PGD(2) metabolite. We evaluated PGJ(2)'s effects and mechanisms using rodent anterior ischemic optic neuropathy (rAION); an in vivo white matter ischemia model. PGJ(2) administration systemically administered either acutely or 5 hours post-insult results in significant neuroprotection, with stereologic evaluation showing improved neuronal survival 30 days post-infarct. Quantitative capillary vascular analysis reveals that PGJ(2) improves perfusion at 1 day post-infarct by reducing tissue edema. Our results suggest that PGJ(2) acts by reducing NFκB signaling through preventing p65 nuclear localization and inhibiting inflammatory gene expression. Importantly, PGJ(2) showed no in vivo toxicity structurally as measured by optic nerve (ON) myelin thickness, functionally by ON-compound action potentials, on a cellular basis by oligodendrocyte precursor survival or changes in ON-myelin gene expression. PGJ(2) may be a clinically useful neuroprotective agent for ON and other CNS infarcts involving white matter, with mechanisms of action enabling effective treatment beyond the currently considered maximal time for intervention.
Collapse
Affiliation(s)
- James D. Nicholson
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Weinreich
- Department of Pharmacology, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Bernard J. Slater
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Steven L. Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Davidson J, Rotondo D, Rizzo MT, Leaver HA. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol 2012; 166:1193-210. [PMID: 22364602 DOI: 10.1111/j.1476-5381.2012.01900.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly unsaturated fatty acids (HUFAs), particularly oxygenated metabolites such as prostaglandins. HUFAs, esterified in cell membranes, act as critical signalling molecules in many pathological processes. Currently, agents affecting HUFA metabolism are widely prescribed in diseases involving disordered cell death signalling. However, partly due to rapid metabolism, their role in cell death signalling pathways is poorly characterized. Recently, HUFA-derived mediators, the resolvins/protectins and endocannabinoids, have added opportunities to target selective signals and pathways. This review will focus on the control of cell death by HUFA, eicosanoid (C20 fatty acid metabolites) and docosanoid (C22 metabolites), HUFA-derived lipid mediators, signalling elements in the micro-environment and their potential therapeutic applications. Further therapeutic approaches will involve cell and molecular biology, the multiple hit theory of disease progression and analysis of system plasticity. Advances in the cell biology of eicosanoid and docosanoid metabolism, together with structure/function analysis of HUFA-derived mediators, will be useful in developing therapeutic agents in pathologies characterized by alterations in cell death signalling.
Collapse
Affiliation(s)
- J Davidson
- SIPBS, Strathclyde University, Glasgow, UK
| | | | | | | |
Collapse
|
39
|
Salehi-Sadaghiani M, Javadi-Paydar M, Gharedaghi MH, Zandieh A, Heydarpour P, Yousefzadeh-Fard Y, Dehpour AR. NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice. Psychopharmacology (Berl) 2012; 223:345-355. [PMID: 22547332 DOI: 10.1007/s00213-012-2722-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/09/2012] [Indexed: 01/21/2023]
Abstract
RATIONALE Previously, we showed that pioglitazone exerts its antidepressant-like effect through peroxisome proliferator-activated receptor gamma receptors and demonstrated the possible involvement of calcium-dependent nitric oxide synthase inhibitors. Based upon the in vitro results, pioglitazone reduces N-methyl-D-aspartate (NMDA)-mediated calcium currents in hippocampal neurons. OBJECTIVE In this study, we evaluated the involvement of the NMDA receptor (NMDAR) on the antidepressant-like effect of pioglitazone in the forced swimming test (FST) in mice. METHOD After the assessment of locomotor activity in the open-field test, mice were forced to swim individually and the immobility time of the last 4 min was evaluated. Pioglitazone was administered orally with doses of 5, 10, and 20 mg/kg 4 h before FST. To assess the involvement of NMDARs in the possible antidepressant-like effect of pioglitazone, a selective glutamate receptor agonist, NMDA (75 mg/kg, intraperitoneally [i.p.] or 20 ng/mouse, intracerebroventricularly [i.c.v.]), was administered before pioglitazone (20 mg/kg). To further determine a possible role of NMDARs in this effect, a noncompetitive antagonist of the NMDA, MK-801 (0.05 mg/kg, i.p. or 100 ng/mouse, i.c.v.), was coadministered with pioglitazone (10 mg/kg) 4 h prior to FST. RESULTS Pioglitazone (20 mg/kg) administered 4 h prior to FST significantly reduced the immobility time. Coadministration of the noneffective doses of pioglitazone and MK-801 revealed an antidepressant-like effect in FST. Moreover, NMDA significantly reversed the antidepressant-like effect of pioglitazone administered 4 h prior to FST. CONCLUSION The antidepressant-like effect of pioglitazone in the FST is mediated partly through NMDAR signaling. This study provides a new approach for the treatment of depression.
Collapse
Affiliation(s)
- Mohammad Salehi-Sadaghiani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
40
|
Modulating Microglia Activity with PPAR-γ Agonists: A Promising Therapy for Parkinson’s Disease? Neurotox Res 2012; 23:112-23. [DOI: 10.1007/s12640-012-9342-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
|
41
|
Abstract
Metabolic syndrome (MetS) is a heterogeneous clinical entity represented by the occurrence of central obesity, hyperlipidaemia, hyperglycaemia and hypertension. The results of previous studies have shown that the probable common underlying pathophysiological factor for MetS is the insulin resistance phenomenon. However, the pathogenesis of the syndrome is still not well known. We present substantial information on MetS and the relationships between stroke and MetS as a compound entity, while individual components of MetS are well known risk factors for both first-in-life and recurrent ischaemic stroke. We also discuss primary and secondary stroke prevention in subjects with MetS.
Collapse
|
42
|
Hurtado O, Ballesteros I, Cuartero M, Moraga A, Pradillo J, Ramírez-Franco J, Bartolomé-Martín D, Pascual D, Torres M, Sánchez-Prieto J, Salom J, Lizasoain I, Moro M. Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem Int 2012; 61:119-27. [DOI: 10.1016/j.neuint.2012.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
|
43
|
David S, Greenhalgh AD, López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res 2012; 349:249-67. [PMID: 22581384 DOI: 10.1007/s00441-012-1430-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Inflammation is considered to be an important contributor to secondary damage after spinal cord injury (SCI). This secondary damage leads to further exacerbation of tissue loss and functional impairments. The immune responses that are triggered by injury are complex and are mediated by a variety of factors that have both detrimental and beneficial effects. In this review, we focus on the diverse effects of the phospholipase A(2) (PLA(2)) superfamily and the downstream pathways that generate a large number of bioactive lipid mediators, some of which have pro-inflammatory and demyelinating effects, whereas others have anti-inflammatory and pro-resolution properties. For each of these lipid mediators, we provide an overview followed by a discussion of their expression and role in SCI. Where appropriate, we have compared the latter with their role in other neurological conditions. The PLA(2) pathway provides a number of targets for therapeutic intervention for the treatment of SCI and other neurological conditions.
Collapse
Affiliation(s)
- Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada, H3G 1A4,
| | | | | |
Collapse
|
44
|
Clemente-Napimoga JT, Moreira JA, Grillo R, de Melo NFS, Fraceto LF, Napimoga MH. 15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sci 2012; 90:944-9. [PMID: 22564409 DOI: 10.1016/j.lfs.2012.04.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/16/2022]
Abstract
AIMS To verify whether the nanoencapsulation of 15d-PGJ(2) in poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules (15d-PGJ(2)-NC) might potentialize its antinociceptive activity into rats' temporomandibular joint (TMJ). MAIN METHODS Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to evaluate the morphology and suspension of the PLGA nanocapsules. Rats were pretreated (15 min) with an intra-TMJ injection of unloaded 15d-PGJ(2) or 15d-PGJ(2)-NC at concentrations of 10, 100 or 1000 pg followed by an ipsilateral intra-TMJ injection of 1.5% formalin. The nociceptive behavioral response was observed during 45 min; animals were then sacrificed and the periarticular tissue was removed for IL-1β measurements. KEY FINDING TEM and AFM analyses showed that 15d-PGJ(2)-NC is spherical without any aggregates or adhesion confirming that this formulation is a good drug carrier system for 15d-PGJ(2). Pretreatment with 15d-PGJ(2)-NC (100 and 1000 pg/TMJ), but not unloaded 15d-PGJ(2), was found to significantly decrease the release of IL-1β cytokine and the animals' nociceptive behavioral response induced by intra-TMJ injection of formalin. SIGNIFICANCE The compound 15d-PGJ(2)-NC might be used as a potential antinociceptive and anti-inflammatory agent to treat temporomandibular disorders in clinical practice.
Collapse
Affiliation(s)
- Juliana T Clemente-Napimoga
- Laboratory of Orofacial Pain, Department of Physiology, Piracicaba Dental School, State University of Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Quinteiro M, Napimoga M, Mesquita K, Clemente-Napimoga J. The indirect antinociceptive mechanism of 15d-PGJ2 on rheumatoid arthritis-induced TMJ inflammatory pain in rats. Eur J Pain 2012; 16:1106-15. [DOI: 10.1002/j.1532-2149.2012.00114.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M.S. Quinteiro
- Laboratory of Biopathology and Molecular Biology; University of Uberaba; Brazil
| | | | - K.P. Mesquita
- Laboratory of Biopathology and Molecular Biology; University of Uberaba; Brazil
| | | |
Collapse
|
46
|
Gonzales NR, Shah J, Sangha N, Sosa L, Martinez R, Shen L, Kasam M, Morales MM, Hossain MM, Barreto AD, Savitz SI, Lopez G, Misra V, Wu TC, El Khoury R, Sarraj A, Sahota P, Hicks W, Acosta I, Sline MR, Rahbar MH, Zhao X, Aronowski J, Grotta JC. Design of a prospective, dose-escalation study evaluating the Safety of Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC). Int J Stroke 2012; 8:388-96. [PMID: 22340518 DOI: 10.1111/j.1747-4949.2011.00761.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RATIONALE : Preclinical work demonstrates that the transcription factor peroxisome proliferator-activated receptor gamma plays an important role in augmenting phagocytosis while modulating oxidative stress and inflammation. We propose that targeted stimulation of phagocytosis to promote efficient removal of the hematoma without harming surrounding brain cells may be a therapeutic option for intracerebral hemorrhage. AIMS : The primary objective is to assess the safety of the peroxisome proliferator-activated receptor gamma agonist, pioglitazone, in increasing doses for three-days followed by a maintenance dose, when administered to patients with spontaneous intracerebral hemorrhage within 24 h of symptom onset compared with standard care. We will determine the maximum tolerated dose of pioglitazone. STUDY DESIGN : This is a prospective, randomized, blinded, placebo-controlled, dose-escalation safety trial in which patients with spontaneous intracerebral hemorrhage are randomly allocated to placebo or treatment. The Continual Reassessment Method for dose finding is used to determine the maximum tolerated dose of pioglitazone. Hematoma and edema resolution is evaluated with serial magnetic resonance imaging (MRI) at specified time points. Functional outcome will be evaluated at three- and six-months. OUTCOMES : The primary safety outcome is mortality at discharge. Secondary safety outcomes include mortality at three-months and six-months, symptomatic cerebral edema, clinically significant congestive heart failure, edema, hypoglycemia, anemia, and hepatotoxicity. Radiographic outcomes will explore the time frame for resolution of 25%, 50%, and 75% of the hematoma. Clinical outcomes are measured by the National Institutes of Health Stroke Scale (NIHSS), the Barthel Index, modified Rankin Scale, Stroke Impact Scale-16, and EuroQol at three- and six-months.
Collapse
Affiliation(s)
- Nicole R Gonzales
- Department of Neurology, UT Health, University of Texas Medical School-Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
David S, López-Vales R, Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:485-502. [PMID: 23098732 DOI: 10.1016/b978-0-444-52137-8.00030-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spinal cord injury (SCI) results in immediate damage followed by a secondary phase of tissue damage that occurs over a period of several weeks. The mechanisms underlying this secondary damage are multiple and not fully understood. A number of studies suggest that the local inflammatory response in the spinal cord that occurs after SCI contributes importantly to secondary damage. This response is mediated by cells normally found in the central nervous system (CNS) as well as infiltrating leukocytes. While the inflammatory response mediated by these cells is required for efficient clearance of tissue debris, and promotes wound healing and tissue repair, they also release various factors that can be detrimental to neurons, glia, axons, and myelin. In this chapter we provide an overview of the inflammatory response at the cell and molecular level after SCI, and review the current state of knowledge about its contribution to tissue damage and repair. Additionally, we discuss how some of this work is leading to the development and testing of drugs that modulate inflammation to treat acute SCI in humans.
Collapse
Affiliation(s)
- Samuel David
- McGill University Health Centre, Montreal, Canada.
| | | | | |
Collapse
|
48
|
Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR. Antidepressant-like effect of pioglitazone in the forced swimming test in mice: The role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 2011; 224:336-43. [DOI: 10.1016/j.bbr.2011.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/07/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
|
49
|
Carta AR, Pisanu A, Carboni E. Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy? PARKINSON'S DISEASE 2011; 2011:689181. [PMID: 21603186 PMCID: PMC3096077 DOI: 10.4061/2011/689181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/27/2011] [Indexed: 12/24/2022]
Abstract
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor (PPAR)-γ agonists commonly used as insulin-sensitizing drugs for the treatment of type 2 diabetes. In the last decade, PPAR-γ agonists have received increasing attention for their neuroprotective properties displayed in a variety of neurodegenerative diseases, including Parkinson's disease (PD), likely related to the anti-infammatory activity of these compounds. Recent studies indicate that neuroinflammation, specifically reactive microglia, plays important roles in PD pathogenesis. Moreover, after the discovery of infiltrating activated Limphocytes in the substantia nigra (SN) of PD patients, most recent research supports a role of immune-mediated mechanisms in the pathological process leading to chronic neuroinflammation and dopaminergic degeneration. PPAR-γ are highly expressed in cells of both central and peripheral immune systems, playing a pivotal role in microglial activation as well as in monocytes and T cells differentiation, in which they act as key regulators of immune responses. Here, we review preclinical evidences of PPAR-γ-induced neuroprotection in experimental PD models and highlight relative anti-inflammatory mechanisms involving either central or peripheral immunomodulatory activity. Specific targeting of immune functions contributing to neuroinflammation either directly (central) or indirectly (peripheral) may represent a novel therapeutic approach for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Anna R. Carta
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Augusta Pisanu
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Ezio Carboni
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
50
|
Neuroprotective effects of KR-62980, a new PPARγ agonist, against chemical ischemia–reperfusion in SK-N-SH cells. Brain Res 2011; 1372:103-14. [DOI: 10.1016/j.brainres.2010.11.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
|