1
|
Sanghvi G, R R, Kashyap A, Sabarivani A, Ray S, Bhakuni PN. Identifying the function of kinesin superfamily proteins in gastric cancer: Implications for signal transduction, clinical significance, and potential therapeutic approaches. Clin Res Hepatol Gastroenterol 2025; 49:102571. [PMID: 40064398 DOI: 10.1016/j.clinre.2025.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Gastric cancer (GC), a leading cause of cancer-related mortality, poses a significant global health challenge. Given its complex etiology, understanding the molecular pathways driving GC progression is crucial for developing innovative therapeutic strategies. Among the diverse proteins involved in cellular transport and mitotic regulation, kinesin superfamily proteins (KIFs) have emerged as key players in tumor biology. These motor proteins mediate intracellular transport along microtubules and are essential for processes such as cell division, signaling, and organelle distribution. Evidence indicates that specific KIFs are dysregulated in GC, potentially driving cancer cell proliferation, metastasis, and chemoresistance. Moreover, aberrant KIF expression has been associated with poorer prognoses, highlighting their potential as biomarkers for early diagnosis and therapeutic intervention. This review explores the roles of KIFs in GC and assesses their implications for research and clinical applications. By elucidating the significance of KIFs in GC, this discussion aims to inspire novel insights in cancer biology and advance targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
| |
Collapse
|
2
|
Boisvert M, Lungu O, Pilon F, Dumais A, Potvin S. Regional cerebral blood flow at rest in schizophrenia and major depressive disorder: A functional neuroimaging meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111720. [PMID: 37804739 DOI: 10.1016/j.pscychresns.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Severe mental disorders (SMDs) such as schizophrenia (SCZ), major depressive disorder (MDD) and bipolar disorder (BD) are associated with altered brain function. Neuroimaging studies have illustrated spontaneous activity alterations across SMDs, but no meta-analysis has directly compared resting-state regional cerebral blood flow (rCBF) with one another. We conducted a meta-analysis of PET, SPECT and ASL neuroimaging studies to identify specific alterations of rCBF at rest in SMDs. Included are 20 studies in MDD, and 18 studies in SCZ. Due to the insufficient number of studies in BD, this disorder was left out of the analyses. Compared to controls, the SCZ group displayed reduced rCBF in the triangular part of the left inferior frontal gyrus and in the medial orbital part of the bilateral superior frontal gyrus. After correction, only a small cluster in the right inferior frontal gyrus exhibited reduced rCBF in MDD, compared to controls. Differences were found in these brain regions between SCZ and MDD. SCZ displayed reduced rCBF at rest in regions associated with default-mode, reward processing and language processing. MDD was associated with reduced rCBF in a cluster involved in response inhibition. Our meta-analysis highlights differences in the resting-state rCBF alterations between SCZ and MDD.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Florence Pilon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada; Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Guo J. Robust dual-module velocity-selective arterial spin labeling (dm-VSASL) with velocity-selective saturation and inversion. Magn Reson Med 2023; 89:1026-1040. [PMID: 36336852 PMCID: PMC9792445 DOI: 10.1002/mrm.29513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Compared to conventional arterial spin labeling (ASL) methods, velocity-selective ASL (VSASL) is more sensitive to artifacts from eddy currents, diffusion attenuation, and motion. Background suppression is typically suboptimal in VSASL, especially of CSF. As a result, the temporal SNR and quantification accuracy of VSASL are compromised, hindering its application despite its advantage of being delay-insensitive. METHODS A novel dual-module VSASL (dm-VSASL) strategy is developed to improve the SNR efficiency and the temporal SNR with a more balanced gradient configuration in the label/control image acquisition. This strategy applies for both VS saturation (VSS) and VS inversion (VSI) labeling. The dm-VSASL schemes were compared with single-module labeling and a previously developed multi-module schemes for the SNR performance, background suppression efficacy, and sensitivity to artifacts in simulation and in vivo experiments, using pulsed ASL as the reference. RESULTS Dm-VSASL enabled more robust labeling and efficient backgroud suppre across brain tissues, especially of CSF, resulting in significantly reduced artifacts and improved temporal SNR. Compared to single-module labeling, dm-VSASL significantly improved the temporal SNR in gray (by 90.8% and 94.9% for dm-VSS and dm-VSI, respectively; P < 0.001) and white (by 41.5% and 55.1% for dm-VSS and dm-VSI, respectively; P < 0.002) matter. Dm-VSI also improved the SNR of VSI by 5.4% (P = 0.018). CONCLUSION Dm-VSASL can significantly improve the robustness of VS labeling, reduce artifacts, and allow efficient background suppression. When implemented with VSI, it provides the highest SNR efficiency among VSASL methods. Dm-VSASL is a powerful ASL method for robust, accurate, and delay-insensitive perfusion mapping.
Collapse
Affiliation(s)
- Jia Guo
- Correspondence Jia Guo, PhD, Department of Bioengineering, 900 University Ave, University of California Riverside, Riverside, CA 92521, USA,
| |
Collapse
|
4
|
Zun Z, Shin T. Velocity-selective excitation: Principles and applications. NMR IN BIOMEDICINE 2023; 36:e4820. [PMID: 35994473 PMCID: PMC9845137 DOI: 10.1002/nbm.4820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Velocity-selective (VS) excitation is a relatively new type of excitation that can be useful for generating image contrast based on spin's motion. This review aims to explain the principles of VS excitation and their utilization for clinical applications. We first review the generalized excitation k-space formalism, which reveals a Fourier relationship between sequence parameters and excitation profiles for spins with arbitrary spatial location, off-resonance, and velocity. Based on the k-space framework, we analyze practical VS excitation pulse sequences that yield sinusoidal or sinc-shaped velocity profiles. Then we demonstrate how these two types of VS excitation can be used as magnetization preparation for clinical applications, including saturation- or inversion-based arterial spin labeling and black- or bright-blood angiography. We also discuss practical considerations and issues for each application, including the determination of design parameters and the effects of MR system errors, such as magnetic field offsets and eddy currents.
Collapse
Affiliation(s)
- Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Qin Q, Alsop DC, Bolar DS, Hernandez‐Garcia L, Meakin J, Liu D, Nayak KS, Schmid S, van Osch MJP, Wong EC, Woods JG, Zaharchuk G, Zhao MY, Zun Z, Guo J. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magn Reson Med 2022; 88:1528-1547. [PMID: 35819184 PMCID: PMC9543181 DOI: 10.1002/mrm.29371] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David C. Alsop
- Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | | | - James Meakin
- Department of Radiology, Nuclear Medicine and AnatomyRadboud University Medical CenterNijmegenThe Netherlands
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Krishna S. Nayak
- Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sophie Schmid
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Eric C. Wong
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Joseph G. Woods
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Zungho Zun
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | |
Collapse
|
6
|
Chen X, Jiang Y, Choi S, Pohmann R, Scheffler K, Kleinfeld D, Yu X. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol 2021; 19:e3000923. [PMID: 34499636 PMCID: PMC8454982 DOI: 10.1371/journal.pbio.3000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level-dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow-related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra-high-field fMRI.
Collapse
Affiliation(s)
- Xuming Chen
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Sangcheon Choi
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California at San Diego, La Jolla, California, United States of America
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| |
Collapse
|
7
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Schmid S, Hendrikse J, Moonen C, van Stralen M, Bos C. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med 2021; 86:131-142. [PMID: 33538350 PMCID: PMC8048977 DOI: 10.1002/mrm.28683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Purpose Velocity‐selective arterial spin labeling (VSASL) has been proposed for renal perfusion imaging to mitigate planning challenges and effects of arterial transit time (ATT) uncertainties. In VSASL, label generation may shift in the vascular tree as a function of cutoff velocity. Here, we investigate label dynamics and especially the ATT of renal VSASL and compared it with a spatially selective pulsed arterial spin labeling technique, flow alternating inversion recovery (FAIR). Methods Arterial spin labeling data were acquired in 7 subjects, using free‐breathing dual VSASL and FAIR with five postlabeling delays: 400, 800, 1200, 2000, and 2600 ms. The VSASL measurements were acquired with cutoff velocities of 5, 10, and 15 cm/s, with anterior–posterior velocity‐encoding direction. Cortical perfusion‐weighted signal, temporal SNR, quantified renal blood flow, and arterial transit time were reported. Results In contrast to FAIR, renal VSASL already showed fairly high signal at the earliest postlabeling delays, for all cutoff velocities. The highest VSASL signal and temporal SNR was obtained with a cutoff velocity of 10 cm/s at postlabeling delay = 800 ms, which was earlier than for FAIR at 1200 ms. Fitted ATT on VSASL was ≤ 0 ms, indicating ATT insensitivity, which was shorter than for FAIR (189 ± 79 ms, P < .05). Finally, the average cortical renal blood flow measured with cutoff velocities of 5 cm/s (398 ± 84 mL/min/100 g) and 10 cm/s (472 ± 160 mL/min/100 g) were similar to renal blood flow measured with FAIR (441 ± 84 mL/min/100 g) (P > .05) with good correlations on subject level. Conclusion Velocity‐selective arterial spin labeling in the kidney reduces ATT sensitivity compared with the recommended pulsed arterial spin labeling method, as well as if cutoff velocity is increased to reduce spurious labeling due to motion. Thus, VSASL has potential as a method for time‐efficient, single‐time‐point, free‐breathing renal perfusion measurements, despite lower tSNR than FAIR.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Guo J, Das S, Hernandez-Garcia L. Comparison of velocity-selective arterial spin labeling schemes. Magn Reson Med 2020; 85:2027-2039. [PMID: 33128484 DOI: 10.1002/mrm.28572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE In velocity-selective (VS) arterial spin labeling, strategies using multiple saturation modules or using VS inversion (VSI) pulse can provide improved SNR efficiency compared to the original labeling scheme using one VS saturation (VSS) module. Their performance improvement, however, has not been directly compared. METHODS Different VS labeling schemes were evaluated by Bloch simulation for their SNR efficiency, eddy current sensitivity, and robustness against B1 and B0 variation. These schemes included dual-module double-refocused hyperbolic secant and symmetric 8-segment B1 -insensitive rotation (sBIR8-) VSS pulses, the original and modified Fourier transform-based VSI pulses. A subset of the labeling schemes was examined further in phantom and in vivo experiments for their eddy current sensitivity and SNR performance. An additional sBIR8-VSS with a built-in inversion (sBIR8-VSS-inversion) was evaluated for the effects of partial background suppression to allow a fairer comparison to VSI. RESULTS According to the simulations, the sBIR8-VSS was the most robust against field imperfections and had similarly high SNR efficiency (dual-module, dual-sBIR8-VSS) compared with the best VSI pulse (sinc-modulated, sinc-VSI). These were confirmed by the phantom and in vivo data. Without additional background suppression, the sinc-VSI pulses had the highest temporal SNR, closely followed by the sBIR8-VSS-inversion pulse, both benefited from partial background suppression effects. CONCLUSION Dual-sBIR8-VSS and sinc-VSI measured the highest SNR efficiency among the VS labeling schemes. Dual-sBIR8-VSS was the most robust against field imperfections, whereas sinc-VSI may provide a higher SNR efficiency if its immunity to field imperfections can be improved.
Collapse
Affiliation(s)
- Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | - Shaurov Das
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | - Luis Hernandez-Garcia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,FMRI Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Gur RC, Butler ER, Moore TM, Rosen AFG, Ruparel K, Satterthwaite TD, Roalf DR, Gennatas ED, Bilker WB, Shinohara RT, Port A, Elliott MA, Verma R, Davatzikos C, Wolf DH, Detre JA, Gur RE. Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. Cereb Cortex 2020; 31:1444-1463. [PMID: 33119049 DOI: 10.1093/cercor/bhaa282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.
Collapse
Affiliation(s)
- Ruben C Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ellyn R Butler
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adon F G Rosen
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David R Roalf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Efstathios D Gennatas
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren B Bilker
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Allison Port
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel H Wolf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Hendrikse J, Moonen C, van Stralen M, Bos C. Influence of labeling parameters and respiratory motion on velocity-selective arterial spin labeling for renal perfusion imaging. Magn Reson Med 2020; 84:1919-1932. [PMID: 32180263 PMCID: PMC7384062 DOI: 10.1002/mrm.28252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Purpose Arterial transit time uncertainties and challenges during planning are potential issues for renal perfusion measurement using spatially selective arterial spin labeling techniques. To mitigate these potential issues, a spatially non‐selective technique, such as velocity‐selective arterial spin labeling (VSASL), could be an alternative. This article explores the influence of VSASL sequence parameters and respiratory induced motion on VS‐label generation. Methods VSASL data were acquired in human subjects (n = 15), with both single and dual labeling, during paced‐breathing, while essential sequence parameters were systematically varied; (1) cutoff velocity, (2) labeling gradient orientation and (3) post‐labeling delay (PLD). Pseudo‐continuous ASL was acquired as a spatially selective reference. In an additional free‐breathing single VSASL experiment (n = 9) we investigated respiratory motion influence on VS‐labeling. Absolute renal blood flow (RBF), perfusion weighted signal (PWS), and temporal signal‐to‐noise ratio (tSNR) were determined. Results (1) With decreasing cutoff velocity, tSNR and PWS increased. However, undesired tissue labeling occurred at low cutoff velocities (≤ 5.4 cm/s). (2) Labeling gradient orientation had little effect on tSNR and PWS. (3) For single VSASL high signal appeared in the kidney pedicle at PLD < 800 ms, and tSNR and PWS decreased with increasing PLD. For dual VSASL, maximum tSNR occurred at PLD = 1200 ms. Average cortical RBF measured with dual VSASL (264 ± 34 mL/min/100 g) at a cutoff velocity of 5.4 cm/s, and feet‐head labeling was slightly lower than with pseudo‐continuous ASL (283 ± 55 mL/min/100 g). Conclusion With well‐chosen sequence parameters, tissue labeling induced by respiratory motion can be minimized, allowing to obtain good quality RBF maps using planning‐free labeling with dual VSASL.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Harteveld AA, Hutter J, Franklin SL, Jackson LH, Rutherford M, Hajnal JV, van Osch MJP, Bos C, De Vita E. Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Magn Reson Med 2020; 84:1828-1843. [PMID: 32141655 PMCID: PMC7384055 DOI: 10.1002/mrm.28240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 01/15/2023]
Abstract
Purpose Placental function is key for successful human pregnancies. Perfusion may be a sensitive marker for the in vivo assessment of placental function. Arterial spin labeling (ASL) MRI enables noninvasive measurement of tissue perfusion and it was recently suggested that ASL with velocity‐selective (VS) labeling could be advantageous in the placenta. We systematically evaluated essential VS‐ASL sequence parameters to determine optimal settings for efficient placental perfusion measurements. Methods Eleven pregnant women were scanned at 3T using VS‐ASL with 2D multislice echo planar imaging (EPI)‐readout. One reference VS‐ASL scan was acquired in all subjects; within subgroups the following parameters were systematically varied: cutoff velocity, velocity encoding direction, and inflow time. Visual evaluation and region of interest analyses were performed to compare perfusion signal differences between acquisitions. Results In all subjects, a perfusion pattern with clear hyperintense focal regions was observed. Perfusion signal decreased with inflow time and cutoff velocity. Subject‐specific dependence on velocity encoding direction was observed. High temporal signal‐to‐noise ratios with high contrast on the perfusion images between the hyperintense regions and placental tissue were seen at ~1.6 cm/s cutoff velocity and ~1000 ms inflow time. Evaluation of measurements at multiple inflow times revealed differences in blood flow dynamics between placental regions. Conclusion Placental perfusion measurements are feasible at 3T using VS‐ASL with 2D multislice EPI‐readout. A clear dependence of perfusion signal on VS labeling parameters and inflow time was demonstrated. Whereas multiple parameter combinations may advance the interpretation of placental circulation dynamics, this study provides a basis to select an effective set of parameters for the observation of placenta perfusion natural history and its potential pathological changes.
Collapse
Affiliation(s)
- Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jana Hutter
- Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Suzanne L Franklin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laurence H Jackson
- Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Mary Rutherford
- Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Matthias J P van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clemens Bos
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Enrico De Vita
- Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Bolar DS, Gagoski B, Orbach DB, Smith E, Adalsteinsson E, Rosen BR, Grant PE, Robertson RL. Comparison of CBF Measured with Combined Velocity-Selective Arterial Spin-Labeling and Pulsed Arterial Spin-Labeling to Blood Flow Patterns Assessed by Conventional Angiography in Pediatric Moyamoya. AJNR Am J Neuroradiol 2019; 40:1842-1849. [PMID: 31694821 PMCID: PMC6975103 DOI: 10.3174/ajnr.a6262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/21/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Imaging CBF is important for managing pediatric moyamoya. Traditional arterial spin-labeling MR imaging detects delayed transit thorough diseased arteries but is inaccurate for measuring perfusion because of these delays. Velocity-selective arterial spin-labeling is insensitive to transit delay and well-suited for imaging Moyamoya perfusion. This study assesses the accuracy of a combined velocity-selective arterial spin-labeling and traditional pulsed arterial spin-labeling CBF approach in pediatric moyamoya, with comparison to blood flow patterns on conventional angiography. MATERIALS AND METHODS Twenty-two neurologically stable pediatric patients with moyamoya and 5 asymptomatic siblings without frank moyamoya were imaged with velocity-selective arterial spin-labeling, pulsed arterial spin-labeling, and DSA (patients). Qualitative comparison was performed, followed by a systematic comparison using ASPECTS-based scoring. Quantitative pulsed arterial spin-labeling CBF and velocity-selective arterial spin-labeling CBF for the middle cerebral artery, anterior cerebral artery, and posterior cerebral artery territories were also compared. RESULTS Qualitatively, velocity-selective arterial spin-labeling perfusion maps reflect the DSA parenchymal phase, regardless of postinjection timing. Conversely, pulsed arterial spin-labeling maps reflect the DSA appearance at postinjection times closer to the arterial spin-labeling postlabeling delay, regardless of vascular phase. ASPECTS comparison showed excellent agreement (88%, κ = 0.77, P < .001) between arterial spin-labeling and DSA, suggesting velocity-selective arterial spin-labeling and pulsed arterial spin-labeling capture key perfusion and transit delay information, respectively. CBF coefficient of variation, a marker of perfusion variability, was similar for velocity-selective arterial spin-labeling in patient regions of delayed-but-preserved perfusion compared to healthy asymptomatic sibling regions (coefficient of variation = 0.30 versus 0.26, respectively, Δcoefficient of variation = 0.04), but it was significantly different for pulsed arterial spin-labeling (coefficient of variation = 0.64 versus 0.34, Δcoefficient of variation = 0.30, P < .001). CONCLUSIONS Velocity-selective arterial spin-labeling offers a powerful approach to image perfusion in pediatric moyamoya due to transit delay insensitivity. Coupled with pulsed arterial spin-labeling for transit delay information, a volumetric MR imaging approach capturing key DSA information is introduced.
Collapse
Affiliation(s)
- D S Bolar
- From the Department of Radiology (D.S.B.)
- Center for Functional Magnetic Resonance Imaging (D.S.B.), UC San Diego, La Jolla, California
| | - B Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center (B.G., P.E.G.)
- Department of Radiology (B.G., D.B.O., P.E.G., R.L.R.)
| | - D B Orbach
- Department of Radiology (B.G., D.B.O., P.E.G., R.L.R.)
- Division of Neurointerventional Radiology (D.B.O.)
| | - E Smith
- Department of Neurosurgery (E.S.)
| | - E Adalsteinsson
- Department of Electrical Engineering & Computer Science (E.A.), Massachusetts Institute of Technology, Cambridge, Massachusetts
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging (E.A., B.R.R.), Charlestown, Massachusetts
| | - B R Rosen
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging (E.A., B.R.R.), Charlestown, Massachusetts
| | - P E Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center (B.G., P.E.G.)
- Department of Radiology (B.G., D.B.O., P.E.G., R.L.R.)
- Division of Newborn Medicine (P.E.G.), Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - R L Robertson
- Department of Radiology (B.G., D.B.O., P.E.G., R.L.R.)
| |
Collapse
|
13
|
Franklin SL, Schmid S, Bos C, van Osch MJP. Influence of the cardiac cycle on velocity selective and acceleration selective arterial spin labeling. Magn Reson Med 2019; 83:872-882. [PMID: 31483531 PMCID: PMC6900074 DOI: 10.1002/mrm.27973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
Abstract
Purpose In this study, the influence of the cardiac cycle on the amount of label produced by a velocity‐selective (VSASL) and acceleration‐selective arterial spin labeling (AccASL) module was investigated. Methods A short‐PLD sequence was developed where a single VSASL‐ or AccASL‐module was preceded by pCASL labeling to isolate the arterial blood pool. ASL subtraction was performed with label/control images with similar cardiac phase and time‐of‐measurement, followed by retrospective binning in 10 cardiac phase bins. ASL signal variation over the heart cycle was evaluated and tested for significance using a permutation test. Results VSASL and AccASL showed significant arterial signal fluctuations over the cardiac cycle of up to ~36% and ~64%, respectively, mainly in areas containing large arteries. pCASL also showed significant signal fluctuations, of up to ~25% in arteries. Raw label/control images confirmed that the observed signal fluctuations were caused by the amount of label produced during the cardiac cycle, rather than inflow‐effects, because the raw images did not all show equal cardiac phase dependence. No significant effects of the cardiac cycle were found on the gray matter ASL‐signal. Conclusion Significant influence of the cardiac cycle on the generated label was found for spatially nonselective ASL‐sequences. Hence, to become independent of the cardiac cycle, sufficient averages need to be taken. Alternatively, these findings could be highly interesting for the purpose of quantifying pulsatility more distally in the vascular tree.
Collapse
Affiliation(s)
- Suzanne L Franklin
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands.,Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Sophie Schmid
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage 2019; 187:3-16. [PMID: 29305164 PMCID: PMC6030511 DOI: 10.1016/j.neuroimage.2017.12.095] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 11/26/2022] Open
Abstract
This article aims to provide the reader with an overview of recent developments in Arterial Spin Labeling (ASL) MRI techniques. A great deal of progress has been made in recent years in terms of the SNR and acquisition speed. New strategies have been introduced to improve labeling efficiency, reduce artefacts, and estimate other relevant physiological parameters besides perfusion. As a result, ASL techniques has become a reliable workhorse for researchers as well as clinicians. After a brief overview of the technique's fundamentals, this article will review new trends and variants in ASL including vascular territory mapping and velocity selective ASL, as well as arterial blood volume imaging techniques. This article will also review recent processing techniques to reduce partial volume effects and physiological noise. Next the article will examine how ASL techniques can be leveraged to calculate additional physiological parameters beyond perfusion and finally, it will review a few recent applications of ASL in the literature.
Collapse
Affiliation(s)
| | - Anish Lahiri
- FMRI Laboratory, University of Michigan, United States
| | | |
Collapse
|
15
|
Hernandez-Garcia L, Nielsen JF, Noll DC. Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 2018; 81:1004-1015. [PMID: 30187951 DOI: 10.1002/mrm.27461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE This work aims to investigate the utility of velocity selective inversion pulses for perfusion weighted functional MRI. METHODS Tracer kinetic properties of velocity selective inversion (VSI) pulses as an input function for an arterial spin labeling (ASL) experiment were characterized in a group of healthy participants. Numerical simulations were conducted to search for a robust set of timing parameters for FMRI time series acquisition with maximal signal to noise ratio efficiency. The performance of three VSI pulse sequences with different timing parameters was compared with a pseudocontinuous ASL sequence in a simple FMRI experiment conducted on healthy participants. RESULTS The fit to the tracer kinetic model yielded arterial CBV of 1.24% ± 0.52% and 0.45 ± 0.11% and perfusion rates of 60.8 ± 32.3 and 34.4 ± 5.4 mL/min/100 g for gray and white matter, respectively. Bolus arrival times were estimated as 75.7 ± 21 ms and 349 ± 78 ms for gray and white matter, respectively. The FMRI experiments showed that VSI pulses yield comparable sensitivity to PCASL with similar timing parameters (TR = 4 s). However, VSI pulses could be used at a faster acquisition speed (TR = 3 s) and were more sensitive to neuronal activity than PCASL pulses, as evidenced by the 31% higher Z scores obtained on average in the active regions. CONCLUSION VSI pulses can be very beneficial for perfusion weighted functional MRI because of their tracer kinetic characteristics, which allow a faster acquisition rate while maintaining an efficient labeling input function.
Collapse
Affiliation(s)
| | | | - Douglas C Noll
- University of Michigan FMRI Laboratory, Ann Arbor, Michigan
| |
Collapse
|
16
|
van Osch MJ, Teeuwisse WM, Chen Z, Suzuki Y, Helle M, Schmid S. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab 2018; 38:1461-1480. [PMID: 28598243 PMCID: PMC6120125 DOI: 10.1177/0271678x17713434] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.
Collapse
Affiliation(s)
- Matthias Jp van Osch
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Wouter M Teeuwisse
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Zhensen Chen
- 3 Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuriko Suzuki
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Helle
- 4 Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Sophie Schmid
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
17
|
Comparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography. J Cereb Blood Flow Metab 2015; 35:1296-303. [PMID: 25785831 PMCID: PMC4528003 DOI: 10.1038/jcbfm.2015.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022]
Abstract
In the last decade spatially nonselective arterial spin labeling (SNS-ASL) methods such as velocity-selective ASL (VS-ASL) and acceleration-selective ASL have been introduced, which label spins based on their flow velocity or acceleration rather than spatial localization. Since labeling also occurs within the imaging plane, these methods suffer less from transit delay effects than traditional ASL methods. However, there is a need for validation of these techniques. In this study, a comparison was made between these SNS-ASL techniques with [(15)O]H2O positron emission tomography (PET), which is regarded as gold standard to measure quantitatively cerebral blood flow (CBF) in humans. In addition, the question of whether these techniques suffered from sensitivity to arterial cerebral blood volume (aCBV), as opposed to producing pure CBF contrast, was investigated. The results show high voxelwise intracranial correlation (0.72 to 0.89) between the spatial distribution of the perfusion signal from the SNS-ASL methods and the PET CBF maps. A similar gray matter (GM) CBF was measured by dual VS-ASL compared with PET (46.7 ± 4.1 versus 47.1 ± 6.5 mL/100 g/min, respectively). Finally, only minor contribution of aCBV patterns in GM to all SNS-ASL methods was found compared with pseudo-continuous ASL. In conclusion, VS-ASL provides a similar quantitative CBF, and all SNS-ASL methods provide qualitatively similar CBF maps as [(15)O]H2O PET.
Collapse
|
18
|
Decorte N, Buehler T, Caldas de Almeida Araujo E, Vignaud A, Carlier PG. Noninvasive estimation of oxygen consumption in human calf muscle through combined NMR measurements of ASL perfusion and T₂ oxymetry. J Vasc Res 2014; 51:360-8. [PMID: 25531648 DOI: 10.1159/000368194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
The objective of this work was to demonstrate the feasibility of measuring muscle O2 consumption (V˙O2) noninvasively with a combination of functional nuclear magnetic resonance (NMR) imaging methods, and to verify that changes in muscle V˙O2 can be detected with a temporal resolution compatible with physiological investigation and patient ease. T2-based oxymetry of arterial and venous blood was combined with the arterial-spin labeling (ASL)-based determination of muscle perfusion. These measurements were performed on 8 healthy volunteers under normoxic and hypoxic conditions in order to assess the sensitivity of measurements over a range of saturation values. Blood samples were drawn simultaneously and used to titrate blood T2 measurements versus hemoglobin O2 saturation (%HbO2) in vitro. The in vitro calibration curve of blood T2 fitted very well with the %HbO2 (r(2): 0.95). The in vivo venous T2 measurements agreed well with the in vitro measurements (intraclass correlation coefficient 0.82, 95% confidence interval 0.61-0.91). Oxygen extraction at rest decreased in the calf muscles subjected to hypoxia (p = 0.031). The combination of unaltered muscle perfusion and pinched arteriovenous O2 difference (p = 0.038) pointed towards a reduced calf muscle V˙O2 during transient hypoxia (p = 0.018). The results of this pilot study confirmed that muscle O2 extraction and V˙O2 can be estimated noninvasively using a combination of functional NMR techniques. Further studies are needed to confirm the usefulness in a larger sample of volunteers and patients.
Collapse
|
19
|
Zun Z, Hargreaves BA, Rosenberg J, Zaharchuk G. Improved multislice perfusion imaging with velocity-selective arterial spin labeling. J Magn Reson Imaging 2014; 41:1422-31. [PMID: 24797337 DOI: 10.1002/jmri.24652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To improve the multislice performance of velocity-selective arterial spin labeling (VS-ASL) imaging for cerebral blood flow (CBF) measurement such that it might be routinely applied for clinical applications with whole brain coverage. MATERIALS AND METHODS VS-ASL was performed with improvements such as timing optimization, stimulated echo removal, and slice profile sharpening. Each improvement was evaluated in volunteers by measuring temporal noise in the CBF measurement. VS-ASL with all these improvements was performed in 20 patients with Moyamoya disease some of whom also underwent xenon-enhanced CT (xeCT) imaging which was the reference standard for CBF measurement. RESULTS Sequence timing optimization and inter-slice crosstalk reduction using stimulated echo removal and slice profile sharpening all contributed to reduction of temporal noise. VS-ASL imaging with all these improvements performed in Moyamoya disease patients showed significant reduction of temporal noise (P < 0.0001) and increased correlation coefficient with xeCT CBF imaging (from 0.07 to 0.62). CONCLUSION We demonstrated that timing optimization, stimulated echo removal, and slice profile improvement have a large effect on image quality and robustness of VS-ASL in clinical imaging applications.
Collapse
Affiliation(s)
- Zungho Zun
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
20
|
Schmid S, Ghariq E, Teeuwisse WM, Webb A, van Osch MJP. Acceleration-selective arterial spin labeling. Magn Reson Med 2013; 71:191-9. [PMID: 23483624 DOI: 10.1002/mrm.24650] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/07/2012] [Accepted: 12/31/2012] [Indexed: 11/08/2022]
Abstract
In this study, a new arterial spin labeling (ASL) method with spatially nonselective labeling is introduced, based on the acceleration of flowing spins, which is able to image brain perfusion with minimal contamination from venous signal. This method is termed acceleration-selective ASL (AccASL) and resembles velocity-selective ASL (VSASL), with the difference that AccASL is able to discriminate between arterial and venous components in a single preparation module due to the higher acceleration on the arterial side of the microvasculature, whereas VSASL cannot make this distinction unless a second labeling module is used. A difference between AccASL and VSASL is that AccASL is mainly cerebral blood volume weighted, whereas VSASL is cerebral blood flow weighted. AccASL exploits the principles of acceleration-encoded magnetic resonance angiography by using motion-sensitizing gradients in a T2 -preparation module. This method is demonstrated in healthy volunteers for a range of cutoff accelerations. Additionally, AccASL is compared with VSASL and pseudo-continuous ASL, and its feasibility in functional MRI is demonstrated. Compared with VSASL with a single labeling module, a strong and significant reduction in venous label is observed. The resulting signal-to-noise ratio is comparable to pseudo-continuous ASL and robust activation of the visual cortex is observed.
Collapse
Affiliation(s)
- Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging 2012; 2012:818456. [PMID: 22966219 PMCID: PMC3432878 DOI: 10.1155/2012/818456] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.
Collapse
|
22
|
Ouyang C, Sutton BP. Localized blood flow imaging using quantitative flow-enhanced signal intensity. Magn Reson Med 2011; 67:660-8. [PMID: 21713979 DOI: 10.1002/mrm.23046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/05/2011] [Accepted: 05/23/2011] [Indexed: 11/10/2022]
Abstract
Flow-enhanced signal intensity (FENSI) was previously introduced as a novel functional imaging method for measuring changes in localized blood flow in response to a stimulus. However, FENSI was limited to a qualitative functional MRI tool, due to magnetization transfer effects and different tagging plane profiles between tag and control images. In this work, a revised FENSI acquisition is proposed to enable quantitative imaging, which is capable of providing absolute localized blood flow maps free from magnetization transfer and slice profile errors. The feasibility and accuracy of measuring microvascular (arteriole, capillary, and venule) blood flow by using quantitative FENSI was validated by our phantom studies. Additionally, localized cerebral blood flow, 366 ± 45 μL/min/cm(2) in gray matter and 153 ± 23 μL/min/cm(2) in white matter, was measured in healthy subjects during resting state, whereas a flow change of 73 ± 13% was detected during a visual task.
Collapse
Affiliation(s)
- Cheng Ouyang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
23
|
Chen W, Song X, Beyea S, D'Arcy R, Zhang Y, Rockwood K. Advances in perfusion magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 2010; 7:185-96. [DOI: 10.1016/j.jalz.2010.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/31/2010] [Accepted: 04/21/2010] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Chen
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of RadiologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xiaowei Song
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Division of Geriatric MedicineDepartment of Medicine, Dalhousie UniversityHalifaxCanada
| | - Steven Beyea
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of PhysicsDalhousie UniversityHalifaxCanada
| | - Ryan D'Arcy
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of PsychologyDalhousie UniversityHalifaxCanada
- Neuroscience Institute, Dalhousie UniversityHalifaxCanada
| | - Yunting Zhang
- Department of RadiologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Kenneth Rockwood
- Division of Geriatric MedicineDepartment of Medicine, Dalhousie UniversityHalifaxCanada
- Centre for Health Care of the Elderly, Queen Elizabeth II Health Sciences CentreHalifaxCanada
| |
Collapse
|
24
|
Abstract
Advances in medical and surgical care of the high-risk neonate have led to increased survival. A significant number of these neonates suffer from neurodevelopmental delays and failure in school. The focus of clinical research has shifted to understanding events contributing to neurological morbidity in these patients. Assessing changes in cerebral oxygenation and regulation of cerebral blood flow (CBF) is important in evaluating the status of the central nervous system. Traditional CBF imaging methods fail for both ethical and logistical reasons. Optical near infrared spectroscopy (NIRS) is increasingly being used for bedside monitoring of cerebral oxygenation and blood volume in both very low birth weight infants and neonates with congenital heart disease. Although trends in CBF may be inferred from changes in cerebral oxygenation and/or blood volume, NIRS does not allow a direct measure of CBF in these populations. Two relatively new modalities, arterial spin-labeled perfusion magnetic resonance imaging and optical diffuse correlation spectroscopy, provide direct, noninvasive measures of cerebral perfusion suitable for the high-risk neonates. Herein we discuss the instrumentation, applications, and limitations of these noninvasive imaging techniques for measuring and/or monitoring CBF.
Collapse
Affiliation(s)
- Donna A. Goff
- Department of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Erin M. Buckley
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Turgut Durduran
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, Institut de Ciències Fotòniques, Castelldefels (Barcelona), Spain, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Jiongjong Wang
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel J. Licht
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
25
|
Measuring arterial and tissue responses to functional challenges using arterial spin labeling. Neuroimage 2010; 49:478-87. [DOI: 10.1016/j.neuroimage.2009.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 11/23/2022] Open
|
26
|
Ances BM, Sisti D, Vaida F, Liang CL, Leontiev O, Perthen JE, Buxton RB, Benson D, Smith DM, Little SJ, Richman DD, Moore DJ, Ellis RJ. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology 2009; 73:702-8. [PMID: 19720977 DOI: 10.1212/wnl.0b013e3181b59a97] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). METHODS This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV- subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. RESULTS rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV- subjects. A 2-tiered CART approach using either LN rCBF < or =50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF < or =37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV- controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. CONCLUSION Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment.
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, Washington University in St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sutton BP, Ouyang C, Karampinos DC, Miller GA. Current trends and challenges in MRI acquisitions to investigate brain function. Int J Psychophysiol 2009; 73:33-42. [PMID: 19236896 DOI: 10.1016/j.ijpsycho.2008.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies using the blood oxygenation level dependent (BOLD) response have become a widely used tool for noninvasive assessment of functional organization of the brain. Yet the technique is still fairly new, with many significant challenges remaining. Capitalizing on additional contrast mechanisms available with MRI, several other functional imaging techniques have been developed that potentially provide improved quantification or specificity of neuronal function. This article reviews the challenges and the current state of the art in MRI-based methods of imaging cognitive function.
Collapse
Affiliation(s)
- Bradley P Sutton
- Bioengineering Department, University of Illinois at Urbana-Champaign, 3120 DCL, 1304 W Springfield Avenue, Urbana, IL 61801 United States.
| | | | | | | |
Collapse
|