1
|
Espanhol-Soares M, Romano MP, Silva FS, Apolinário Silva MR, Gimenes R. Toxic compounds in a cutlery microenterprise: A case study. Work 2020; 65:377-390. [PMID: 31985480 DOI: 10.3233/wor-203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize solid particulate aerosol derived from a cutlery microenterprise and to investigate substances associated with activities performed within the work environment. OBJECTIVE Suspended particulate matter (SPM) was collected at different locations in the cutlery workshop and near machines used by workers, using passive sampling devices fitted with polytetrafluoroethylene filters, onto which total particulate material was deposited. The substances present in the SPM were analyzed using gas chromatography-mass spectrometry (GC-MS). RESULTS Identification of the substances was performed using the National Institute of Standards (NIST) library and automated mass spectral deconvolution and identification system. (AMDIS) software, considering at least 70% probability. The concentration of total dust, obtained using a gravimetric method, was approximately 1 mg.m-3. CONCLUSION The toxic substances found in the SPM included halogenated hydrocarbons (containing chlorine, fluorine, and iodine) and aromatic hydrocarbons. The toxic substances included naphthalene, which is classified as carcinogenic.
Collapse
|
2
|
Han W, Wang S, Li M, Jiang L, Wang X, Xie K. The protective effect of diallyl trisulfide on cytopenia induced by benzene through modulating benzene metabolism. Food Chem Toxicol 2018; 112:393-399. [PMID: 29305270 DOI: 10.1016/j.fct.2017.12.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 02/02/2023]
Abstract
It has been known that metabolism of benzene is necessary for its toxicity. The purpose of our study is to investigate the effect of diallyl trisulfide (DATS) on attenuating cytopenia in peripheral blood introduced by benzene through regulating benzene metabolism in rats. We established benzene poisoning model with benzene (1.3 g/kg), while the DATS treatment groups were treated with DATS plus benzene (15 or 30 mg/kg) for 28 days, respectively. The results of blood parameters and concentration of metabolites of benzene (t, t-MA and SPMA) determination in urine showed that DATS could effectively attenuate the cytopenia induced by benzene through regulating benzene metabolism. Western blot and chemical method were used to detect the activities and protein expression levels of enzymes CYP2E1 and GSTT1 in liver and enzymes MPO and NQO1 in bone marrow were tested. The results suggested that the inhibition of bioactivation in liver and bone marrow catalyzed by CYP2E1 and MPO and the activation of detoxification catalyzed by GSTT1 and NQO1 might be the critical mechanism, through which DATS modulated benzene metabolism to prevent benzene-induced cytopenia.
Collapse
Affiliation(s)
- Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Carbonari D, Chiarella P, Mansi A, Pigini D, Iavicoli S, Tranfo G. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects. Biomark Med 2016; 10:145-63. [PMID: 26764284 DOI: 10.2217/bmm.15.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.
Collapse
Affiliation(s)
- Damiano Carbonari
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Pieranna Chiarella
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Antonella Mansi
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Daniela Pigini
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Sergio Iavicoli
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| | - Giovanna Tranfo
- INAIL Reaserch, Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00040 Monte Porzio Catone (RM), Italy
| |
Collapse
|
4
|
De Palma G, Manno M. Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art. Toxicol Lett 2014; 231:194-204. [PMID: 25447454 DOI: 10.1016/j.toxlet.2014.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Current levels of occupational exposure to benzene, a genotoxic human carcinogen, in Western countries are reduced by two-three orders of magnitude (from ppm to ppb) as compared to the past. However, as benzene toxicity is strongly dependent on biotransformation and recent evidence underlines a higher efficiency of bio-activation pathways at lower levels of exposure, toxic effects at low doses could be higher than expected, particularly in susceptible individuals. Currently, biological monitoring can allow accurate exposure assessment, relying on sensitive and specific enough biomarkers of internal dose. The availability of similarly reliable biomarkers of early effect or susceptibility could greatly improve the risk assessment process to such an extent that risk could even be assessed at the individual level. As to susceptibility biomarkers, functional genetic polymorphisms of relevant biotransformation enzymes may modulate the risk of adverse effects (NQO1) and the levels of biomarkers of internal dose, in particular S-phenylmercapturic acid (GSTM1, GSTT1, GSTA1). Among biomarkers of early effect, genotoxicity indicators, although sensitive in some cases, are too aspecific for routine use in occupational health surveillance programmes. Currently only the periodical blood cell count seems suitable enough to be applied in the longitudinal monitoring of effects from benzene exposure. Novel biomarkers of early effect are expected from higher collaboration among toxicologists and clinicians, also using advanced "omics" techniques.
Collapse
Affiliation(s)
- G De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - M Manno
- Department of Public Health, Section of Occupational Medicine and Toxicology, University of Napoli Federico II, Via S. Pansini, 5, 80131 Napoli, Italy
| |
Collapse
|
5
|
Rappaport SM, Kim S, Thomas R, Johnson BA, Bois FY, Kupper LL. Low-dose metabolism of benzene in humans: science and obfuscation. Carcinogenesis 2012; 34:2-9. [PMID: 23222815 DOI: 10.1093/carcin/bgs382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Benzene is a ubiquitous air pollutant that causes human leukemia and hematotoxic effects. Although the mechanism by which benzene causes toxicity is unclear, metabolism is required. A series of articles by Kim et al. used air and biomonitoring data from workers in Tianjin, China, to investigate the dose-specific metabolism (DSM) of benzene over a wide range of air concentrations (0.03-88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest at air concentrations <1 p.p.m. This provocative finding motivated the American Petroleum Institute to fund a study by Price et al. to reanalyze the original data. Although their formal 'reanalysis' reproduced Kim's finding of enhanced DSM at sub-p.p.m. benzene concentrations, Price et al. argued that Kim's methods were inappropriate for assigning benzene exposures to low exposed subjects (based on measurements of urinary benzene) and for adjusting background levels of metabolites (based on median values from the 60 lowest exposed subjects). Price et al. then performed uncertainty analyses under alternative approaches, which led them to conclude that '… the Tianjin data appear to be too uncertain to support any conclusions …' regarding the DSM of benzene. They also argued that the apparent low-dose metabolism of benzene could be explained by 'lung clearance.' In addressing these criticisms, we show that the methods and arguments presented by Price et al. are scientifically unsound and that their results are unreliable.
Collapse
Affiliation(s)
- Stephen M Rappaport
- Superfund Research Program and Center for Exposure Biology, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Rappaport SM, Kim S, Lan Q, Li G, Vermeulen R, Waidyanatha S, Zhang L, Yin S, Smith MT, Rothman N. Human benzene metabolism following occupational and environmental exposures. Chem Biol Interact 2010; 184:189-95. [PMID: 20026321 PMCID: PMC3072712 DOI: 10.1016/j.cbi.2009.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/04/2009] [Accepted: 12/14/2009] [Indexed: 11/16/2022]
Abstract
We previously reported evidence that humans metabolize benzene via two enzymes, including a hitherto unrecognized high-affinity enzyme that was responsible for an estimated 73% of total urinary metabolites [sum of phenol (PH), hydroquinone (HQ), catechol (CA), E,E-muconic acid (MA), and S-phenylmercapturic acid (SPMA)] in nonsmoking females exposed to benzene at sub-saturating (ppb) air concentrations. Here, we used the same Michaelis-Menten-like kinetic models to individually analyze urinary levels of PH, HQ, CA and MA from 263 nonsmoking Chinese women (179 benzene-exposed workers and 84 control workers) with estimated benzene air concentrations ranging from less than 0.001-299 ppm. One model depicted benzene metabolism as a single enzymatic process (1-enzyme model) and the other as two enzymatic processes which competed for access to benzene (2-enzyme model). We evaluated model fits based upon the difference in values of Akaike's Information Criterion (DeltaAIC), and we gauged the weights of evidence favoring the two models based upon the associated Akaike weights and Evidence Ratios. For each metabolite, the 2-enzyme model provided a better fit than the 1-enzyme model with DeltaAIC values decreasing in the order 9.511 for MA, 7.379 for PH, 1.417 for CA, and 0.193 for HQ. The corresponding weights of evidence favoring the 2-enzyme model (Evidence Ratios) were: 116.2:1 for MA, 40.0:1 for PH, 2.0:1 for CA and 1.1:1 for HQ. These results indicate that our earlier findings from models of total metabolites were driven largely by MA, representing the ring-opening pathway, and by PH, representing the ring-hydroxylation pathway. The predicted percentage of benzene metabolized by the putative high-affinity enzyme at an air concentration of 0.001 ppm was 88% based upon urinary MA and was 80% based upon urinary PH. As benzene concentrations increased, the respective percentages of benzene metabolized to MA and PH by the high-affinity enzyme decreased successively to 66 and 77% at 0.1 ppm, 20 and 58% at 1 ppm, and 2.7 and 17% at 10 ppm. This indicates that the putative high-affinity enzyme was active primarily below 1 ppm and favored the ring-opening pathway.
Collapse
Affiliation(s)
- Stephen M Rappaport
- School of Public Health, University of California, Berkeley, CA 94720-7356, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Weisel CP. Benzene exposure: an overview of monitoring methods and their findings. Chem Biol Interact 2010; 184:58-66. [PMID: 20056112 DOI: 10.1016/j.cbi.2009.12.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person's total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites, differences in metabolic rates compared to occupational or animal doses, and the presence of polymorphisms need to be considered when evaluating risks from environmental exposures to individuals or potentially susceptible populations.
Collapse
Affiliation(s)
- Clifford P Weisel
- Environmental and Occupational Health Sciences Institute, EOHSI, RWJMS/UMDNJ, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
8
|
Rappaport SM, Kim S, Lan Q, Vermeulen R, Waidyanatha S, Zhang L, Li G, Yin S, Hayes RB, Rothman N, Smith MT. Evidence that humans metabolize benzene via two pathways. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:946-52. [PMID: 19590688 PMCID: PMC2702411 DOI: 10.1289/ehp.0800510] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/18/2009] [Indexed: 05/07/2023]
Abstract
BACKGROUND Recent evidence has shown that humans metabolize benzene more efficiently at environmental air concentrations than at concentrations > 1 ppm. This led us to speculate that an unidentified metabolic pathway was mainly responsible for benzene metabolism at ambient levels. OBJECTIVE We statistically tested whether human metabolism of benzene is better fitted by a kinetic model having two pathways rather than one. METHODS We fit Michaelis-Menten-like models to levels of urinary benzene metabolites and the corresponding air concentrations for 263 nonsmoking Chinese females. Estimated benzene concentrations ranged from less than 0.001 ppm to 299 ppm, with 10th and 90th percentile values of 0.002 ppm and 8.97 ppm, respectively. RESULTS Using values of Akaike's information criterion obtained under the two models, we found strong statistical evidence favoring two metabolic pathways, with respective affinities (benzene air concentrations analogous to K(m) values) of 301 ppm for the low-affinity pathway (probably dominated by cytochrome P450 enzyme 2E1) and 0.594 ppm for the high-affinity pathway (unknown). The exposure-specific metabolite level predicted by our two-pathway model at nonsaturating concentrations was 184 muM/ppm of benzene, a value close to an independent estimate of 194 muM/ppm for a typical nonsmoking Chinese female. Our results indicate that a nonsmoking woman would metabolize about three times more benzene from the ambient environment under the two-pathway model (184 muM/ppm) than under the one-pathway model (68.6 muM/ppm). In fact, 73% of the ambient benzene dose would be metabolized via the unidentified high-affinity pathway. CONCLUSION Because regulatory risk assessments have assumed nonsaturating metabolism of benzene in persons exposed to air concentrations well above 10 ppm, our findings suggest that the true leukemia risks could be substantially greater than currently thought at ambient levels of exposure-about 3-fold higher among nonsmoking females in the general population.
Collapse
Affiliation(s)
- Stephen M Rappaport
- School of Public Health, University of California at Berkeley, Berkeley, California 94720-7356, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nakayama A, Isono T, Kikuchi T, Ohnishi I, Igarashi J, Yoneda M, Morisawa S. Benzene risk estimation using radiation equivalent coefficients. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2009; 29:380-392. [PMID: 19192235 DOI: 10.1111/j.1539-6924.2008.01174.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We estimated benzene risk using a novel framework of risk assessment that employed the measurement of radiation dose equivalents to benzene metabolites and a PBPK model. The highest risks for 1 microg/m(3) and 3.2 mg/m(3) life time exposure of benzene estimated with a linear regression were 5.4 x 10(-7) and 1.3 x 10(-3), respectively. Even though these estimates were based on in vitro chromosome aberration test data, they were about one-sixth to one-fourteenth that from other studies and represent a fairly good estimate by using radiation equivalent coefficient as an "internal standard."
Collapse
Affiliation(s)
- Aki Nakayama
- Kyoto University, Graduate School of Engineering, Urban and Environmental Engineering, Kyoto Daigaku Katsura 4, Nishikyo, Kyoto, 615-8540, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mutlib AE. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol 2008; 21:1672-89. [PMID: 18702535 DOI: 10.1021/tx800139z] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable isotope-labeled compounds have been synthesized and utilized by scientists from various areas of biomedical research during the last several decades. Compounds labeled with stable isotopes, such as deuterium and carbon-13, have been used effectively by drug metabolism scientists and toxicologists to gain better understanding of drugs' disposition and their potential role in target organ toxicities. The combination of stable isotope-labeling techniques with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, which allows rapid acquisition and interpretation of data, has promoted greater use of these stable isotope-labeled compounds in absorption, distribution, metabolism, and excretion (ADME) studies. Examples of the use of stable isotope-labeled compounds in elucidating structures of metabolites and delineating complex metabolic pathways are presented in this review. The application of labeled compounds in mechanistic toxicity studies will be discussed by providing an example of how strategic placement of a deuterium atom in a drug molecule mitigated specific-specific renal toxicity. Other examples from the literature demonstrating the application of stable isotope-labeled compounds in understanding metabolism-mediated toxicities are presented. Furthermore, an example of how a stable isotope-labeled compound was utilized to better understand some of the gene changes in toxicogenomic studies is discussed. The interpretation of large sets of data produced from toxicogenomics studies can be a challenge. One approach that could be used to simplify interpretation of the data, especially from studies designed to link gene changes with the formation of reactive metabolites thought to be responsible for toxicities, is through the use of stable isotope-labeled compounds. This is a relatively unexplored territory and needs to be further investigated. The employment of analytical techniques, especially mass spectrometry and NMR, used in conjunction with stable isotope-labeled compounds to establish and understand mechanistic link between reactive metabolite formation, genomic, and proteomic changes and onset of toxicity is proposed. The use of stable isotope-labeled compounds in early human ADME studies as a way of identifying and possibly quantifying all drug-related components present in systemic circulation is suggested.
Collapse
Affiliation(s)
- Abdul E Mutlib
- Biotransformation Department, Drug Safety and Metabolism, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| |
Collapse
|