1
|
Vieu DL, Golebiewski C, Gastaldi C, Foucher A, Mari B, Rezzonico R, Droit A, Dumont M, Bastien P, Bernerd F, Marionnet C. Identification of miR-141 as a Regulator of Epidermal Homeostasis. J Invest Dermatol 2024:S0022-202X(24)02962-2. [PMID: 39615746 DOI: 10.1016/j.jid.2024.10.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025]
Abstract
MicroRNAs, small endogenous noncoding RNAs, are involved in the regulation of epidermal homeostasis. Among them, miR-203 was the most described and expressed in human epidermis, promoting keratinocyte (KC) differentiation by repressing genes involved in proliferation. To identify other microRNAs involved in this process, the miRNomes of normal human KCs cultured in monolayer (2-dimensional) or in 3-dimensional reconstructed skin were compared. Besides miR-203, miR-141 was one of the most expressed microRNAs in 3-dimensional culture and was overexpressed in 3-dimensional versus 2-dimensional condition, that is, during KC differentiation. Functional experiments revealed that, mostly expressed in the basal layer, miR-141 decreased KC proliferation and clonogenicity while promoting differentiation. Target prediction algorithm coupled with transcriptomic data of KCs overexpressing miR-141 as well as 3' untranslated region luciferase assays highlighted CCND2 mRNA as a direct target of miR-141, leading to its downregulation by miR-141 overexpression. Finally, CCND2 silencing decreased KC proliferation and induced differentiation, revealing that miR-141 action was mediated by CCND2. MiR-141 features were also compared with those of miR-203 in parallel experiments. Although miR-141 displayed functions similar to those of miR-203, it exhibited different localization and targets, suggesting a joint participation of miR-141 and miR-203 in engaging and maintaining KC toward differentiation, respectively.
Collapse
Affiliation(s)
| | | | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Monaco; LIA BAHN, CSM-UVSQ, Monaco, Monaco
| | - Aude Foucher
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Bernard Mari
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
| | - Roger Rezzonico
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
| | - Arnaud Droit
- Genomics Center, CHU de Québec Research Center, Universite Laval, Quebec City, Canada
| | - Martine Dumont
- Genomics Center, CHU de Québec Research Center, Universite Laval, Quebec City, Canada
| | | | | | | |
Collapse
|
2
|
Higashi Y, Yamakuchi M, Ibusuki A, Okubo A, Fukushige T, Hashiguchi T, Kanekura T. Neutrophil-Derived MicroRNA-1290 Promotes Keratinocyte Proliferation in Psoriasis. J Invest Dermatol 2024; 144:1471-1478.e6. [PMID: 38157932 DOI: 10.1016/j.jid.2023.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
The pathological hallmark of psoriasis is the infiltration of neutrophils into the skin. Some neutrophil-derived microRNAs (miRNAs) serve as biomarkers for various diseases, but none have been reported for psoriasis. In this study, we investigated the involvement of miRNAs released from neutrophils in psoriasis pathogenesis. We compared the expression of miRNAs in the sera of patients with psoriasis with that in healthy individuals and found that the expression of 2 miRNAs-miR-223 and miR-1290-was significantly upregulated in the sera of patients with psoriasis. The serum levels of these miRNAs positively correlated with the PASI and CRP levels. We used all-trans retinoic acid to induce the differentiation of human promyelocytic leukemia HL-60 cells into neutrophil-like cells and found that the release of both miRNAs increased during differentiation. Furthermore, the release of miR-1290 was increased by TNF-α in neutrophil-like cells and human neutrophils. Treatment with the miR-1290 precursor promoted the proliferation of human keratinocytes, increased the proportion of S-phase cells, and upregulated the phosphorylation of extracellular signal-regulated kinase 1/2. These results suggest that miR-1290 plays a vital role in regulating neutrophil differentiation and keratinocyte proliferation and could be a serum marker of psoriasis severity.
Collapse
Affiliation(s)
- Yuko Higashi
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Atsuko Ibusuki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Aoi Okubo
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Fukushige
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Lv M, Shao J, Jiang F, Liu J. Curcumol may alleviate psoriasis-like inflammation by inhibiting keratinocyte proliferation and inflammatory gene expression via JAK1/STAT3 signaling. Aging (Albany NY) 2021; 13:18392-18403. [PMID: 34314383 PMCID: PMC8351666 DOI: 10.18632/aging.203287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation and differentiation of keratinocytes. Since curcumol exhibits anti-inflammatory properties in various diseases, we investigated its anti-inflammatory potential in stimulated human keratinocytes. Our data show that curcumol significantly inhibits proliferation and induces cell cycle arrest in NHEK cells stimulated with proinflammatory cytokines (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α; mix M5). In addition, curcumol markedly ameliorates inflammatory response and promotes differentiation of M5-stimulated NHEK cells. Curcumol inhibits activity of JAK1, resulting in the inhibition of STAT3, downregulation of cyclin D2, and cell cycle arrest in stimulated NHEK cells. Together, our data show that curcumol reduces proliferation and inflammatory gene expression in stimulated keratinocytes by inhibiting the JAK1/STAT3 signaling, suggesting that it might serve as a potential therapeutic option for the treatment of psoriasis.
Collapse
Affiliation(s)
- Mingfen Lv
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Junyi Shao
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Fan Jiang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Jingjing Liu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| |
Collapse
|
4
|
Zhang R, Wang YH, Shi X, Ji J, Zhan FQ, Leng H. Sortilin regulates keratinocyte proliferation and apoptosis through the PI3K-AKT signaling pathway. Life Sci 2021; 278:119630. [PMID: 34004257 DOI: 10.1016/j.lfs.2021.119630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/24/2022]
Abstract
Sortilin is found to regulate proliferation and death of different cells, while its role in regulating keratinocyte proliferation and apoptosis is still unknown. In this study, we found that sortilin levels significantly increased in psoriasis patients, and sortilin suppression eliminated the proliferation of HaCaT cells induced by M5 cocktail solution and enhanced the levels of cleaved caspase 3 protein and the Bax/Bcl-2 ratio; however, levels of p-PI3K and p-AKT were decreased. In addition, sortilin silencing remitted the characteristic changes associated with psoriasis-like skin lesions. In summary, suppressed sortilin expression helped inhibit keratinocyte proliferation in HaCaT cells by inactivating PI3K/AKT signaling, which provides a new target for the therapy of psoriasis.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Ye Hua Wang
- Department of Cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou 215123, China
| | - Xin Shi
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China
| | - Fu Qin Zhan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 215004, China
| | - Hong Leng
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou 215004, China.
| |
Collapse
|
5
|
Fung WT, Wu JT, Chan WMM, Chan HH, Pang H. Pathway-based meta-analysis for partially paired transcriptomics analysis. Res Synth Methods 2019; 11:123-133. [PMID: 31682084 DOI: 10.1002/jrsm.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Pathway-based differential expression analysis allows the incorporation of biological domain knowledge into transcriptomics analysis to enhance our understanding of disease mechanisms. To integrate information among multiple studies at the pathway level, pathway-based meta-analysis can be performed. Paired or partially paired samples are common in biomedical research. However, there are currently no existing pathway-based meta-analysis methods appropriate for paired or partially paired study designs. In this study, we developed a pathway-based meta-analysis approach for paired or partially paired samples. Meta-analysis on the transcriptomics profiles were conducted using p-value-based, rank-based, and effect size-based algorithms. The application of our approach was demonstrated using partially paired data from psoriasis transcriptomics studies. Upon combining six transcriptomics studies, genes related to the cell cycle and DNA replication pathways are found to be highly perturbed in psoriatic lesional skin samples. Results were validated externally with independent RNA-Seq data. Comparison with existing pathway meta-analysis methods revealed consistent results, with our method showing higher detection power. This study demonstrated the utility of our newly developed pathway-based meta-analysis that allows the incorporation of partially paired or paired samples. The proposed framework can be applied to omics data including but not limited to transcriptomics data.
Collapse
Affiliation(s)
- Wing Tung Fung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joseph T Wu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Man Mandy Chan
- Division of Dermatology, Department of Medicine, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Henry H Chan
- Division of Dermatology, Department of Medicine, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Herbert Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Henri P, Prevel C, Pellerano M, Lacotte J, Stoebner PE, Morris MC, Meunier L. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br J Dermatol 2019; 182:678-689. [PMID: 31145809 DOI: 10.1111/bjd.18178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cyclin-dependent kinases (CDKs) CDK2 and CDK4 are involved in regulation of cell-cycle progression, and psoriasis is characterized by hyperproliferation of basal epidermal cells. CDK inhibitory proteins (CKIs) such as p16INK 4A (p16) bind CDK4/6 kinases and prevent their interaction with D-type cyclins. CKIs such as p21Cip1 (p21) and p27Kip1 (p27) associate with CDK-cyclin complexes and prevent their activation. OBJECTIVES To gain insight into the molecular implication of CDK2 and CDK4 kinases in psoriasis, we sought to characterize expression of these kinases and associated cyclins, as well as of CKIs, and addressed the status of CDK2 and CDK4 activity in human psoriatic epidermis. METHODS A cohort of 24 patients with psoriasis participated in the study. Biopsies were removed from a chronic plaque and from nonlesional skin. CDK2, CDK4, cyclin D1, cyclin E and CKI protein expression was assessed by immunoblotting, immunohistochemistry and immunofluorescence. CDK4 and CDK2 mRNA expression was determined by real-time polymerase chain reaction. Specific kinase activities of CDK2 and CDK4 were evaluated using fluorescent peptide biosensors. RESULTS CDK2-cyclin E expression and activity were significantly increased in psoriatic epidermis compared with uninvolved adjacent skin. In contrast, CDK4-cyclin D1 activity was inhibited, although its expression was increased in psoriatic epidermis and its transcription slightly inhibited. p27 expression was reduced, while p16 and p21 expression was induced in psoriatic epidermis. CONCLUSIONS Epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations are not associated with changes in CDK transcription and instead involve post-translational control mediated by decreased expression of p27 and p16 overexpression, respectively. What's already known about this topic? Cyclin-dependent kinases (CDKs) are involved in cell-cycle progression. The levels of cyclin partners and CDK inhibitors regulate their activity. Psoriasis is a chronic T-cell-driven inflammatory skin disease characterized by hyperproliferation of basal epidermal cells. What does this study add? Thanks to fluorescent peptide biosensors, this study demonstrates that epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations involve post-translational control mediated by decreased expression of p27, and p16 overexpression, respectively. What is the translational message? CDK2 and CDK4 are involved in regulation of cell-cycle progression, and psoriasis is characterized by hyperproliferation of basal epidermal cells. Epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations are not associated with changes in CDK transcription and instead involve post-translational control mediated by decreased expression of p27 and p16 overexpression, respectively. Pharmacological modulation of CDK2 and CDK4 may constitute a promising therapeutic strategy.
Collapse
Affiliation(s)
- P Henri
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - C Prevel
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - M Pellerano
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - J Lacotte
- Department of Dermatology, Caremeau University Hospital, Nîmes, France
| | - P E Stoebner
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France.,Department of Dermatology, Caremeau University Hospital, Nîmes, France
| | - M C Morris
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - L Meunier
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France.,Department of Dermatology, Caremeau University Hospital, Nîmes, France
| |
Collapse
|
7
|
Belső N, Gubán B, Manczinger M, Kormos B, Bebes A, Németh I, Veréb Z, Széll M, Kemény L, Bata-Csörgő Z. Differential role of D cyclins in the regulation of cell cycle by influencing Ki67 expression in HaCaT cells. Exp Cell Res 2019; 374:290-303. [DOI: 10.1016/j.yexcr.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
8
|
Patel AB, Tsilioni I, Weng Z, Theoharides TC. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol 2018; 27:135-143. [PMID: 29105195 DOI: 10.1111/exd.13461] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Psoriasis is an autoimmune skin disease characterized by keratinocyte hyperproliferation and chronic inflammation. The pathogenesis of psoriasis involves proinflammatory cytokines, such as tumor necrosis factor (TNF), but the mechanism of keratinocyte activation is not well understood. Here, we show that TNF (10 or 50 ng/mL) stimulates a significant (P < .0001) gene expression and secretion of proinflammatory IL-6, CXCL8 and VEGF from both cultured human HaCaT and normal epidermal human keratinocytes (NHEKs). This effect occurs via activation of the mammalian target of rapamycin (mTOR) signalling complex as shown by Western blot analysis and phospho-ELISAs. Pretreatment with the novel natural flavonoid tetramethoxyluteolin (10-100 μmol L-1 ) significantly (P < .0001) inhibits gene expression and secretion (P < .0001) of all 3 mediators in a concentration-dependent manner. Moreover, tetramethoxyluteolin (50 μmol L-1 ) appears to be a potent inhibitor of the phosphorylated mTOR substrates (pmTORSer2448 , pp70S6KThr389 and p4EBP1Thr37/46 ) as compared to known mTOR inhibitors in keratinocytes. The present findings indicate that TNF stimulates skin inflammation via mTOR signalling. Inhibition by tetramethoxyluteolin may be used in the treatment for psoriasis.
Collapse
Affiliation(s)
- Arti B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Zuyi Weng
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
JING HUILING, SUN WENYAN, FAN JINGHUA, ZHANG YANMIN, YANG JIAO, JIA JINJING, LI JICHANG, GUO JIAQI, LUO SUJU, ZHENG YAN. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep 2016; 13:3009-3016. [PMID: 26935874 PMCID: PMC4805065 DOI: 10.3892/mmr.2016.4917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022] Open
Abstract
Shikonin, which is a major ingredient of the traditional Chinese herb Lithospermum erythrorhizon, possesses various biological functions, including antimicrobial, anti-inflammatory, and antitumor activities. The present study aimed to determine the molecular mechanisms underlying the effects of shikonin on HaCaT cell apoptosis. Treatment with shikonin significantly inhibited the viability of HaCaT cells in a dose‑ and time‑dependent manner, and promoted cell cycle arrest at G0/G1 phase and apoptosis. In addition, shikonin treatment reduced the mitochondrial membrane potential and induced reactive oxygen species generation. The results of a western blot analysis demonstrated that shikonin significantly activated caspase 3 expression, downregulated B‑cell lymphoma 2 (Bcl‑2) expression, and upregulated Bcl‑2‑associated X protein and Bcl‑2 homologous antagonist killer expression in a dose‑dependent manner in HaCaT cells. Furthermore, shikonin decreased extracellular signal‑regulated kinase (Erk) and Akt phosphorylation. These results indicated that shikonin may exert its anti‑proliferative effects by inducing apoptosis via activation of the mitochondrial signaling pathway and inactivation of the Akt and Erk pathways in HaCaT cells. Therefore, the present study suggested that shikonin may have potential as a component of therapeutic strategies for the treatment of skin diseases.
Collapse
Affiliation(s)
- HUILING JING
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- Department of Dermatology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710001, P.R. China
| | - WENYAN SUN
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Nutrition and Food Security, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - JINGHUA FAN
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - YANMIN ZHANG
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - JIAO YANG
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - JINJING JIA
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - JICHANG LI
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - JIAQI GUO
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - SUJU LUO
- Department of Dermatology, Tianjin Medical University General Hospital, Tianjin 300070, P.R. China
| | - YAN ZHENG
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
10
|
Wang T, Long S, Zhao N, Wang Y, Sun H, Zou Z, Wang J, Ran X, Su Y. Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair. Int J Mol Sci 2015; 17:ijms17010008. [PMID: 26703592 PMCID: PMC4730255 DOI: 10.3390/ijms17010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Zhongmin Zou
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, School of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Weng Z, Patel AB, Vasiadi M, Therianou A, Theoharides TC. Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS One 2014; 9:e90739. [PMID: 24587411 PMCID: PMC3938790 DOI: 10.1371/journal.pone.0090739] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 01/19/2014] [Indexed: 12/22/2022] Open
Abstract
Psoriasis (Ps) is an autoimmune disease characterized by keratinocyte hyperproliferation and chronic inflammation, with increased expression of tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF). Anti-TNF biologic agents are effective in treating Ps, but are associated with increased risk of infections and blood malignancies. Moreover, keratinocyte hyperproliferation and activation have yet to be addressed. Flavonoids, such as luteolin, are natural compounds with potent anti-inflammatory properties, but their actions on keratinocytes remain unknown. We show that TNF (50 ng/mL) triggers significant production of inflammatory mediators interleukin-6, interleukin-8 and VEGF from both human HaCaT and primary keratinocytes. Pretreatment with the flavonoid luteolin (10–100 µM) significantly inhibits mRNA expression and release of all three mediators in a concentration-dependent manner. More importantly, luteolin decreases TNF-induced phosphorylation, nuclear translocation and DNA binding of the nuclear factor-kappa B (NF-κB) typically involved in inflammatory mediator transcription. We also report that luteolin reduces TNF-induced mRNA expression of two genes (NFKB1 and RELA) encoding two NF-κB subunits (NF-κB p50 and NF-κB p65, respectively). Interestingly, we show that gene expression of RELA is increased in human psoriatic skin. Keratinocyte proliferation, which is a characteristic feature of psoriatic skin, is effectively reduced by luteolin in HaCaT cells, but not in primary keratinocytes. Finally, luteolin does not affect intracellular ATP production or viability. Appropriate formulations of luteolin and related flavones may be promising candidates to be developed into local and systemic treatments for Ps and other inflammatory skin diseases.
Collapse
Affiliation(s)
- Zuyi Weng
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Arti B. Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Magdalini Vasiadi
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Anastasia Therianou
- First Department of Dermatology, A. Sygros Hospital, Athens University Medical School, Athens, Greece
| | - Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Filkor K, Hegedűs Z, Szász A, Tubak V, Kemény L, Kondorosi É, Nagy I. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis. PLoS One 2013. [PMID: 24039940 DOI: 10.71371/journal.pone.0073435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFN-primed iDCs.
Collapse
Affiliation(s)
- Kata Filkor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
14
|
Filkor K, Hegedűs Z, Szász A, Tubak V, Kemény L, Kondorosi É, Nagy I. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis. PLoS One 2013; 8:e73435. [PMID: 24039940 PMCID: PMC3767820 DOI: 10.1371/journal.pone.0073435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022] Open
Abstract
Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFN-primed iDCs.
Collapse
Affiliation(s)
- Kata Filkor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Zenon Bio Ltd., Szeged, Hungary
| | - András Szász
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Dermatological Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
15
|
Szász A, Strifler G, Vörös A, Váczi B, Tubak V, Puskás LG, Belső N, Kemény L, Nagy I. The expression of TAM receptors and their ligand Gas6 is downregulated in psoriasis. J Dermatol Sci 2013; 71:215-6. [PMID: 23684948 DOI: 10.1016/j.jdermsci.2013.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
16
|
Expression and functional studies on the noncoding RNA, PRINS. Int J Mol Sci 2012; 14:205-25. [PMID: 23344029 PMCID: PMC3565259 DOI: 10.3390/ijms14010205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 02/05/2023] Open
Abstract
PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.
Collapse
|
17
|
Characterization of EGFR and ErbB2 expression in atopic dermatitis patients. Arch Dermatol Res 2012; 304:773-80. [DOI: 10.1007/s00403-012-1242-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 04/04/2012] [Accepted: 04/18/2012] [Indexed: 11/26/2022]
|
18
|
Zhou LL, Lin ZX, Fung KP, Cheng CHK, Che CT, Zhao M, Wu SH, Zuo Z. Celastrol-induced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-κB activity. Eur J Pharmacol 2011; 670:399-408. [PMID: 21951963 DOI: 10.1016/j.ejphar.2011.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 09/01/2011] [Accepted: 09/11/2011] [Indexed: 11/24/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 1-3% of the world's population. Traditional Chinese medicines have been extensively used for treating psoriasis with promising clinical results. Celastrol, a triterpenoid isolated from a Chinese herb Celastrus orbiculatus caulis, has been known to have diverse pharmacological effects such as anti-inflammatory, anti-cancer and antioxidant activities. The present study aimed at evaluating the anti-proliferative action of celastrol on cultured HaCaT cells and elucidating the mechanisms of action involved. Celastrol was shown to inhibit HaCaT cells growth with an IC₅₀ value of 1.1 μM as measured by MTT assay. The ability of celastrol to induce apoptosis was studied by flow cytometric and western blot analyses. Celastrol was found to be capable of inducing apoptosis in HaCaT cells as characterized by phosphatidyl-serine (PS) externalization, depolarization of mitochondrial membrane potential and activation of caspase-3. The apoptosis induced by celastrol could be suppressed by Z-IETD-FMK and Z-LEHD-FMK, the respective caspase-8 and caspase-9 inhibitor. In addition, western blot analysis revealed a significant augmentation in the protein expression of Bax and attenuation in Bcl-2, suggesting that the celastrol-induced apoptosis acts through both death receptor and mitochondrial pathways. Moreover, western blot analysis on the expression of Rel/NF-κB demonstrated that the celastrol-mediated apoptosis on HaCaT cells was associated with the inhibition of the NF-κB pathway. Taken together, the present project has for the first time identified celastrol as a naturally occurring compound with potent apoptogenic action on cultured human keratinocytes, rendering it a promising candidate for further development into an anti-psoriatic agent.
Collapse
Affiliation(s)
- Lin-Li Zhou
- School of Chinese Medicine, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gudjonsson JE, Johnston A, Stoll SW, Riblett MB, Xing X, Kochkodan JJ, Ding J, Nair RP, Aphale A, Voorhees JJ, Elder JT. Evidence for altered Wnt signaling in psoriatic skin. J Invest Dermatol 2010; 130:1849-59. [PMID: 20376066 DOI: 10.1038/jid.2010.67] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Wnt gene family encodes a set of highly conserved secreted signaling proteins that have major roles in embryogenesis and tissue homeostasis. Yet the expression of this family of important mediators in psoriasis, a disease characterized by marked changes in keratinocyte growth and differentiation, is incompletely understood. We subjected 58 paired biopsies from lesional and uninvolved psoriatic skin and 64 biopsies from normal skin to global gene expression profiling. WNT5A transcripts were upregulated fivefold in lesional skin, accompanied by increased Wnt-5a protein levels. Notably, WNT5A mRNA was markedly induced by IL-1alpha, tumor necrosis factor-alpha, IFN-gamma, and transforming growth factor-alpha in cultured keratinocytes. Frizzled 2 (FZD2) and FZD5, which encode receptors for Wnt5A, were also increased in lesional psoriatic skin. In contrast, expression of WIF1 mRNA, encoding a secreted antagonist of the Wnt proteins, was downregulated >10-fold in lesional skin, along with decreased WNT inhibitory factor (WIF)-1 immunostaining. Interestingly, pathway analysis along with reduced AXIN2 expression and lack of nuclear translocation of beta-catenin indicated a suppression of canonical Wnt signaling in lesional skin. The results of our study suggest a shift away from canonical Wnt signaling toward noncanonical pathways driven by interactions between Wnt-5a and its cognate receptors in psoriasis, accompanied by impaired homeostatic inhibition of Wnt signaling by WIF-1 and dickkopf.
Collapse
Affiliation(s)
- Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mahmoudabady M, Mathieu M, Touihri K, Hadad I, Da Costa AM, Naeije R, Mc Entee K. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy. BMC Cardiovasc Disord 2009; 9:49. [PMID: 19818143 PMCID: PMC2763849 DOI: 10.1186/1471-2261-9-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/09/2009] [Indexed: 01/18/2023] Open
Abstract
Background Insulin-like growth factor-1 (IGF-1), transforming growth factor β (TGFβ) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Methods Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFβ and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Results Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFβ, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. Conclusion These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.
Collapse
Affiliation(s)
- Maryam Mahmoudabady
- Laboratory of Physiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kinyó A, Kiss-László Z, Hambalkó S, Bebes A, Kiss M, Széll M, Bata-Csörgo Z, Nagy F, Kemény L. COP1 contributes to UVB-induced signaling in human keratinocytes. J Invest Dermatol 2009; 130:541-5. [PMID: 19741714 DOI: 10.1038/jid.2009.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UVB irradiation has been shown to trigger a broad range of changes in gene expression in human skin; however, factors governing these events are still not well understood. In this study, we show that human constitutive photomorphogenic protein-1 (huCOP1), an E3 ligase, contributes to the orchestration of UVB response of keratinocytes. Accordingly, our data show that (i) huCOP1 protein is expressed both in the nucleus and in the cytoplasm of cultured keratinocytes, (ii) UVB reduces the levels of the huCOP1 mRNA and protein, and (iii) induces changes in the subcellular localization of huCOP1. Finally, we show that gene-specific silencing of huCOP1 induces the accumulation of the tumor suppressor p53 protein, which is further increased after UVB irradiation.
Collapse
Affiliation(s)
- Agnes Kinyó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Recent reports have suggested that the hedgehog (Hh) pathway is activated in lesional psoriatic skin, and that treatment with the Hh pathway antagonist cyclopamine may lead to rapid resolution of the disease. To assess Hh pathway activity in psoriasis, we isolated RNA from lesional and uninvolved skin of 58 psoriatic patients, and from 63 normal control subjects, and subjected these samples to global gene expression profiling on Affymetrix HU133 Plus 2.0 gene arrays. We were especially interested in Hh target genes (PTCH1 and GLI1), whose expression is elevated in response to Hh signaling. The microarray data demonstrated downregulation of PTCH1 expression in uninvolved and lesional skin (1.1-fold and 2-fold, respectively; P<0.0001). Additionally GLI1 mRNA was downregulated in lesional skin (1.7 fold; P<0.05). No significant changes were observed between lesional and uninvolved skin for the Hh ligands or Smoothened. Quantitative PCR confirmed these findings. In situ hybridization for GLI1 and PTCH1 was positive in basal cell carcinoma tumor cells, but was negligible in uninvolved or lesional psoriatic skin. The absence of elevated Hh target gene expression in lesional psoriatic skin indicates that the Hh pathway is not activated in this disease, raising questions regarding the proposed use of Hh antagonists as antipsoriatic agents.
Collapse
|