1
|
Eisa EFM, Ezzeldein SAM, Mohammed HA, Abdallah AA, Ghonimi WAM, Abd El Raouf M. Comparison of the therapeutic effect of platelet-rich plasma and injectable platelet-rich fibrin on testicular torsion/detorsion injury in rats. Sci Rep 2024; 14:18045. [PMID: 39103420 PMCID: PMC11300838 DOI: 10.1038/s41598-024-67704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Testicular torsion is a common disorder in males and results in blockage of testicular circulation with subsequent damage of testicular germ cells. The current work aimed to compare the therapeutic effect of platelet-rich plasma (PRP) and injectable platelet-rich fibrin (i-PRF) on torsion/detorsion (T/D) injury in rats. Forty mature male Wister rats were arranged into 4 groups; (1) Control, (2) T/D, (3) T/D + PRP, and (4) T/D+ i-PRF. The right testis was twisting 1080° clockwise for 3 h in groups 2, 3 and 4, then 10 μl of PRP or i-PRF was injected intra-testicular 3 h after detorsion in groups 3 and 4, respectively. After 30 days postoperatively, the semen quality and hormonal assay were improved in PRP and i-PRF-treated groups with superiority of i-PRF (P < 0.001). High significance of Catalase, Glutathione Peroxidase (GPx), Superoxide Dismutase, Interleukin-1β (IL-1β), Caspase-3 and Tumor necrosis factor-α (TNF-α) was reported in treated rats with PRP and i-PRF (P < 0.001) with superiority to i-PRF-treated rats (P < 0.001). Testicular histoarchitectures were improved in PRP and i-PRF-treated rats with superiority of i-PRF-treated rats. It was concluded that PRP and i-PRF have regenerative efficacy on testicular damage after induced T/D injury with a superior efficacy of i-PRF.
Collapse
Affiliation(s)
- Eslam F M Eisa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Shimaa A M Ezzeldein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa A Abdallah
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A M Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mustafa Abd El Raouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Wang J, Matsushita K, Zhong J, Ma LJ, Yang HC, Fogo AB. Low-Dose Erythropoietin Amplifies Beneficial Effects of Angiotensin II Blockade on Glomerulosclerosis. J Transl Med 2023; 103:100015. [PMID: 37039147 PMCID: PMC11610902 DOI: 10.1016/j.labinv.2022.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Exogenous erythropoietin (EPO) is used to treat anemia in patients with chronic kidney disease (CKD). Concerns about the possible adverse effect of EPO on the progression of CKD have been raised owing to nonerythroid cell effects. We investigated the effects of low-dose EPO, independent of correcting anemia, on existing glomerulosclerosis. Adult mice underwent 5/6 nephrectomy and were randomized into the following 4 groups at week 8 after surgery: vehicle (VEH), losartan (angiotensin II type 1 receptor blocker [ARB]), darbepoetin-α (DA), or combination (DA+ARB). Four weeks later, mice were euthanized, followed by evaluation of renal structure and function. Glomerular endothelial cells and podocytes were cultured to evaluate the effects of DA on cell migration, apoptosis, and Akt signaling. ARB reduced blood pressure, albuminuria, and the level of serum creatinine and increased hematocrit compared with VEH, whereas low-dose DA only reduced the level of serum creatinine. Combination treatment showed a trend to increase hematocrit and survival compared with ARB alone. Combination treatment but not ARB alone significantly reduced the progression of glomerulosclerosis compared with VEH. Low-dose DA resulted in more preserved glomerular and peritubular capillary endothelial cells with increased p-Akt and even further endothelial cell preservation in combination with ARB. In cultured glomerular endothelial cells, angiotensin II induced more apoptosis, reduced migration, and decreased p-Flk1, a receptor for the proangiogenic vascular endothelial growth factor. DA counteracted these injuries and increased p-Akt, a key factor in angiogenesis and cell survival. DA also protected cultured podocytes against transforming growth factor β-induced apoptosis and synaptopodin loss. Low-dose EPO directly protects glomerular and peritubular endothelial cells via Akt phosphorylation. Therefore, treatment using a combination of low-dose EPO and ARB results in less progression of glomerulosclerosis in an experimental CKD model.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keizo Matsushita
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Li-Jun Ma
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Aoun M, Sleilaty G, Boueri C, Younes E, Gabriel K, Kahwaji RM, Hilal N, Hawi J, Araman R, Chelala D, Beaini C. Erythropoietin in Acute Kidney Injury (EAKI): a pragmatic randomized clinical trial. BMC Nephrol 2022; 23:100. [PMID: 35279078 PMCID: PMC8917943 DOI: 10.1186/s12882-022-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Treatment with erythropoietin is well established for anemia in chronic kidney disease patients but not well studied in acute kidney injury. Methods This is a multicenter, randomized, pragmatic controlled clinical trial. It included 134 hospitalized patients with anemia defined as hemoglobin < 11 g/dL and acute kidney injury defined as an increase of serum creatinine of ≥ 0.3 mg/dL within 48 h or 1.5 times baseline. One arm received recombinant human erythropoietin 4000 UI subcutaneously every other day (intervention; n = 67) and the second received standard of care (control; n = 67) during the hospitalization until discharge or death. The primary outcome was the need for transfusion; secondary outcomes were death, renal recovery, need for dialysis. Results There was no statistically significant difference in transfusion need (RR = 1.05, 95%CI 0.65,1.68; p = 0.855), in renal recovery full or partial (RR = 0.96, 95%CI 0.81,1.15; p = 0.671), in need for dialysis (RR = 11.00, 95%CI 0.62, 195.08; p = 0.102) or in death (RR = 1.43, 95%CI 0.58,3.53; p = 0.440) between the erythropoietin and the control group. Conclusions Erythropoietin treatment had no impact on transfusions, renal recovery or mortality in acute kidney injury patients with anemia. The trial was registered on ClinicalTrials.gov (NCT03401710, 17/01/2018). Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02727-5.
Collapse
|
4
|
Shin HJ, Ko E, Jun I, Kim HJ, Lim CH. Effects of perioperative erythropoietin administration on acute kidney injury and red blood cell transfusion in patients undergoing cardiac surgery: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28920. [PMID: 35244046 PMCID: PMC8896477 DOI: 10.1097/md.0000000000028920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The renoprotective effects of erythropoietin (EPO) are well-known; however, the optimal timing of EPO administration remains controversial. Red blood cell (RBC) transfusion is an independent risk factor for cardiac surgery-associated acute kidney injury (CSA-AKI). We aimed to evaluate the efficacy of EPO on CSA-AKI and RBC transfusion according to the timing of administration. METHODS We searched the Cochrane Library, EMBASE, and MEDLINE databases for randomized controlled trials. The primary outcome was the incidence of CSA-AKI following perioperative EPO administration, and the secondary outcomes were changes in serum creatinine, S-cystatin C, S-neutrophil gelatinase-associated lipocalin, urinary neutrophil gelatinase-associated lipocalin, length of hospital and intensive care unit (ICU) stay, volume of RBC transfusion, and mortality. The subgroup analysis was stratified according to the timing of EPO administration in relation to surgery. RESULTS Eight randomized controlled trials with 610 patients were included in the study. EPO administration significantly decreased the incidence of CSA-AKI (odds ratio: 0.60, 95% confidence interval [CI]: 0.43-0.85, P = .004; I2 = 52%; P for heterogeneity = .04), intra-operative RBC transfusion (standardized mean difference: -0.30, 95% CI: -0.55 to -0.05, P = .02; I2 = 15%, P for heterogeneity = .31), and hospital length of stay (mean difference: -1.54 days, 95% CI: -2.70 to -0.39, P = .009; I2 = 75%, P for heterogeneity = .001) compared with control groups. Subgroup analyses revealed that pre-operative EPO treatment significantly reduced the incidence of CSA-AKI, intra-operative RBC transfusion, serum creatinine, and length of hospital and ICU stay. CONCLUSION Pre-operative administration of EPO may reduce the incidence of CSA-AKI and RBC transfusion, but not in patients administered EPO during the intra-operative or postoperative period. Therefore, pre-operative EPO treatment can be considered to improve postoperative outcomes by decreasing the length of hospital and ICU stay in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Hyeon Ju Shin
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunji Ko
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Injae Jun
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Preventive Medicine, Institute for Evidence-based Medicine Cochrane Korea, Republic of Korea
| | - Choon Hak Lim
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Tahamtan M, Kohlmeier KA, Faatehi M, Basiri M, Shabani M. Electrophysiological and inflammatory changes of CA1 area in male rats exposed to acute kidney injury: Neuroprotective effects of erythropoietin. Brain Res Bull 2021; 171:25-34. [PMID: 33722647 DOI: 10.1016/j.brainresbull.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The high mortality rate associated with acute kidney injury (AKI) is commonly due to progressive, inflammatory multiple organ dysfunction, which often involves neurological complications. The AKI-stimulated mechanisms leading to brain dysfunction are not well understood, which hinders development of new therapeutic avenues to minimize AKI-mediated neural effects. The hippocampal CA1 area is a particularly vulnerable region during AKI but the electrophysiological and inflammatory mechanisms involved in this vulnerability remain largely unknown. Here, we used immunohistochemistry to quantitatively investigate the number of astrocytes expressing glial fibrillary acidic protein (GFAP) as an indicator of inflammation, and whole cell patch clamp to evaluate electrophysiological changes in CA1 at different time points following induction of bilateral renal ischemia (BRI) in male Wistar rats. Further we evaluated the effectiveness of erythropoietin (EPO, 1000 U/kg i.p.) in mitigating BRI-associated changes. Plasma concentrations of blood urea nitrogen (BUN) were significantly enhanced at 24 h, 72 h and 1 week, and creatinine (Cr) was increased at 24 h after reperfusion, which were changes reduced by EPO. BRI led to an increase in CA1 GFAP-positive cells 24 h and 72 h, but not 1 week, after reperfusion, and EPO reversed this effect of BRI at 24 h. Additionally, BRI caused an increase in the peak amplitude and coefficient of variation of CA1 pyramidal neuronal action potentials, which were changes not seen in presence of EPO. When taken together, altered neuronal electrophysiological properties and astrogliosis could contribute to the neurological complications induced by AKI, and EPO offers hope as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahdiyeh Faatehi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Qin LY, Lin X, Liu J, Dong R, Yuan J, Zha Y. The combination of vitamin D3 and erythropoietin alleviates acute kidney injury induced by ischemia-reperfusion via inhibiting inflammation and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:167-174. [PMID: 33953855 PMCID: PMC8061330 DOI: 10.22038/ijbms.2020.51384.11661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/12/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Acute renal ischemia may cause acute renal dysfunction due to lack of blood supply; the manifestations are renal tubular cell apoptosis, infiltration of macrophages, and microvascular destruction. Many studies have shown that erythropoietin (EPO) and vitamin D3 (VD3) can be used to prevent or treat renal ischemia-reperfusion (I/R) injury, and VD3 may interact with EPO. In the present study, the effects of the combination of VD3 and EPO in I/R acute kidney injury were studied. MATERIALS AND METHODS Rats were divided into 5 groups: sham-operated (SHAM), AKI without treatment (AKI-control), AKI treatment with VD3(AKI+VD3), AKI treatment with EPO(AKI+EPO), AKI treatment with VD3 and EPO(AKI+VD3+EPO). The effects of the combination of VD3 and EPO on AKI were assessed by histologic, inflammation, and apoptosis studies. RESULTS The degree of damage in renal tissue was significantly reduced in VD3, EPO, and combined groups. Combination therapy with VD3 and EPO markedly improved Creatinine clearance rate (CCr). The combined treatment group showed the lowest F4/80+ and CD68+ expressions. The expression of Bcl-2 in the combined treatment group was higher than those in VD3 group and the EPO group, while Bax's expression goes in the opposite direction. CONCLUSION This provides further evidence that VD3 and EPO have beneficial effects in I/R injury via anti-inflammatory and anti-apoptosis pathways. The synergistic protective effect of VD3 and EPO is of profound significance in the development of new strategies for the prevention and treatment of acute kidney injury (AKI).
Collapse
Affiliation(s)
- Long-yan Qin
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Juan Liu
- Department of Operating Room, The First Affiliated Hospital of Guizhou University of traditional Chinese medicine, Guiyang, Guizhou, 550001, P.R. China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People’s Hospital & NHC Key Laboratory of Pulmonary Immunological Disease (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, P.R. China
| |
Collapse
|
7
|
Liu Y, Fang J. Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
Affiliation(s)
- Yuxiang Liu
- Shanxi Medical University, No. 56, Xinjiannan Road, Taiyuan, 030001 Shanxi, China
| | - Jingai Fang
- First Hospital of Shanxi Medical University, No. 85, Jiefangnan Road, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
8
|
Kawasaki R, Tashiro Y, Yogo K, Serizawa K, Aizawa K, Endo K, Hirata M. Prolonged Duration of Erythropoiesis-Stimulating Agents' Action Delays Disease Progression in Anti-Thy 1 Antibody-Induced Chronic Glomerulonephritis Rats. Pharmacology 2020; 106:45-52. [PMID: 32829322 DOI: 10.1159/000506995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although erythropoiesis-stimulating agents (ESAs) exert renoprotective effects in renal disease models, it has not been revealed whether the prolonged duration of action of ESAs contributes to their renoprotective effects. OBJECTIVE We examined whether the prolonged duration of ESAs' action contributes to their renoprotective effects by comparing a divided administration of a short-acting ESA, epoetin beta (EPO), or a single administration of a long-acting ESA, epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.), to a single administration of EPO in chronic glomerulonephritis (GN) rats. MATERIALS AND METHODS Chronic GN was induced by intravenous injection of anti-Thy 1.1 antibody (0.6 mg/kg) into uninephrectomized rats (day 0). Chronic GN rats were intravenously injected once with vehicle (disease control; DC), EPO 5,000 IU/kg (single EPO), or C.E.R.A. 25 μg/kg (single C.E.R.A.) on day 1; or 3 times during the first week with EPO 1,667 IU/kg from day 1 (divided EPO; total 5,000 IU/kg). Hemoglobin (Hb) level and urinary total protein (U-TP) level which are the indexes of hematopoiesis and renoprotective effects, respectively, were measured several times over 8 weeks. RESULTS Divided EPO and single C.E.R.A. increased Hb levels more greatly than did single EPO. In all chronic GN rats, elevated U-TP levels decreased transiently 2 weeks after chronic GN induction and then flared again. Single EPO significantly suppressed this exacerbation of U-TP levels compared to DC. Divided EPO and single C.E.R.A. each significantly suppressed the exacerbation of U-TP levels compared to single EPO. CONCLUSION Prolonged duration of ESAs' action contributed significantly to their renoprotective effects.
Collapse
Affiliation(s)
- Ryohei Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Yoshihito Tashiro
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Kenji Yogo
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Kenichi Serizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Ken Aizawa
- Oncology Lifecycle Management Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Koichi Endo
- Medical Science Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Michinori Hirata
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan,
| |
Collapse
|
9
|
Menger MM, Nalbach L, Wrublewsky S, Glanemann M, Gu Y, Laschke MW, Menger MD, Ampofo E. Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice. Acta Diabetol 2020; 57:1009-1018. [PMID: 32221724 PMCID: PMC8318962 DOI: 10.1007/s00592-020-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
AIMS The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. METHODS Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. RESULTS The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. CONCLUSIONS These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
10
|
Arai H, Yanagita M. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis. KIDNEY360 2020; 1:697-704. [PMID: 35372942 PMCID: PMC8815544 DOI: 10.34067/kid.0001972020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 04/23/2023]
Abstract
Renal fibrosis is a major hallmark of CKD, regardless of the underlying etiology. In fibrosis development and progression, myofibroblasts play a pivotal role, producing extracellular matrix and interacting with various resident cells in the kidney. Over the past decade, the origin of myofibroblasts has been thoroughly investigated. Emerging evidence suggests that renal myofibroblasts originate from several cellular sources, including resident fibroblasts, pericytes, and bone marrow-derived cells. The contribution of resident fibroblasts is most crucial, and currently available data strongly suggest the importance of functional heterogeneity and plasticity of fibroblasts in kidney disease progression. Resident fibroblasts acquire distinct phenotypes based on their local microenvironment and exert multifactorial functions. For example, age-dependent alterations of renal fibroblasts make a significant contribution to the formation of tertiary lymphoid tissues, which promote local inflammation after injury in the aged kidney. In conjunction with fibrosis development, dysfunction of resident fibroblasts provokes unique pathologic conditions including renal anemia and peritubular capillary loss, both of which are major complications of CKD. Although renal fibrosis is considered detrimental in general, recent studies suggest it has beneficial roles, such as maintaining functional crosstalk with injured proximal tubular cells and supporting their regeneration. These findings provide novel insight into the mechanisms of renal fibrosis, which could be regarded as an adaptive process of kidney injury and repair. Precise understanding of the functional heterogeneity of resident fibroblasts and myofibroblasts has the potential to facilitate the development of novel therapeutics against kidney diseases. In this review, we describe the current perspective on the origin of myofibroblasts and fibroblast heterogeneity, with special emphasis on the dual aspects of renal fibrosis, both beneficial and detrimental, in CKD progression.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Guillemet L, Jamme M, Bougouin W, Geri G, Deye N, Vivien B, Varenne O, Pène F, Mira JP, Barat F, Treluyer JM, Hermine O, Carli P, Coste J, Cariou A. Effects of early high-dose erythropoietin on acute kidney injury following cardiac arrest: exploratory post hoc analyses from an open-label randomized trial. Clin Kidney J 2020; 13:413-420. [PMID: 32699621 PMCID: PMC7367106 DOI: 10.1093/ckj/sfz068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is frequent in patients resuscitated from cardiac arrest (CA) and may worsen outcome. Experimental data suggest a renoprotective effect by treating these patients with a high dose of erythropoietin (Epo) analogues. We aimed to evaluate the efficacy of epoetin alpha treatment on renal outcome after CA. METHODS We did a post hoc analysis of the Epo-ACR-02 trial, which randomized patients with a persistent coma after a witnessed out-of-hospital CA. Only patients admitted in one intensive care unit were analysed. In the intervention group, patients received five intravenous injections of Epo spaced 12 h apart during the first 48 h, started as soon as possible after resuscitation. In the control group, patients received standard care without Epo. The main endpoint was the proportion of patients with persistent AKI defined by Kidney Disease: Improving Global Outcomes criteria at Day 2. Secondary endpoints included the occurrence of AKI through Day 7, estimated glomerular filtration rate (eGFR) at Day 28, haematological indices and adverse events. RESULTS A total of 162 patients were included in the primary analysis (74 in the Epo group, 88 in the control group). Baseline characteristics were similar in the two groups. At Day 2, 52.8% of the patients (38/72) in the intervention group had an AKI, as compared with 54.4% of the patients (46/83) in the control group (P = 0.74). There was no significant difference between the two groups regarding the proportion of patients with AKI through Day 7. Among patients with persistent AKI at Day 2, 33% (4/12) in the intervention group had an eGFR <75 mL/min/1.73 m2 compared with 25% (3/12) in the control group at Day 28 (P = 0.99). We found no significant differences in haematological indices or adverse events. CONCLUSION After CA, early administration of Epo did not confer any renal protective effect as compared with standard therapy.
Collapse
Affiliation(s)
- Lucie Guillemet
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
| | - Matthieu Jamme
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
| | - Wulfran Bougouin
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
- INSERM U970 (Team 4), Parisian Cardiovascular Research Center, Paris Descartes University, Paris, France
| | - Guillaume Geri
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
- INSERM U970 (Team 4), Parisian Cardiovascular Research Center, Paris Descartes University, Paris, France
| | - Nicolas Deye
- Medical Intensive Care Unit, Lariboisière Hospital (AP-HP) and INSERM U942, Paris, France
| | - Benoît Vivien
- Paris Descartes University, Paris, France
- SAMU 75, Necker Hospital (AP-HP), Paris, France
| | - Olivier Varenne
- Paris Descartes University, Paris, France
- Cardiology Department, Cochin University Hospital (AP-HP), Paris, France
| | - Frédéric Pène
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
| | - Jean-Paul Mira
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
| | - Florence Barat
- Clinical Trial Unit, Central Pharmacy, AP-HP, Paris, France
| | - Jean-Marc Treluyer
- Paris Descartes University, Paris, France
- Clinical Research Unit, Paris Centre and Paris Descartes University, Paris, France
| | - Olivier Hermine
- Paris Descartes University, Paris, France
- Hematology Department, Necker Hospital (AP-HP)—Imagine institute—INSERM U1123 CNRS erl 8654 - Labex des Globules Rouges Grex, Paris, France
| | - Pierre Carli
- Paris Descartes University, Paris, France
- SAMU 75, Necker Hospital (AP-HP), Paris, France
| | - Joël Coste
- Paris Descartes University, Paris, France
- Biostatistics and Epidemiology Unit, Hôtel-Dieu Hospital (AP-HP), Paris, France
| | - Alain Cariou
- Medical Intensive Care Unit, Cochin Hospital (AP-HP), Paris, France
- Paris Descartes University, Paris, France
- INSERM U970 (Team 4), Parisian Cardiovascular Research Center, Paris Descartes University, Paris, France
| |
Collapse
|
12
|
Park E, Cox M, Scotland K, Buttyan R, Lange D. Erythropoietin promotes functional recovery via anti-apoptotic mechanisms in mouse unilateral ureteral obstruction. Cell Stress Chaperones 2020; 25:245-251. [PMID: 31970695 PMCID: PMC7058756 DOI: 10.1007/s12192-020-01067-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022] Open
Abstract
The purpose of the work was to investigate mechanisms of erythropoietin-induced protection and accelerated recovery of kidneys and ureters from obstructive injury. Unilateral ureteral obstruction was established for 24, 48, and 72 h in C57BL/6 mice using a non-traumatic micro-clip followed by the microscopic quantification of ureteral peristalsis pre- and post-obstruction. Expression of erythropoietin, erythropoietin receptor, β-common receptor, and downstream apoptosis-related markers was assessed by RT-PCR and immunohistochemistry in ureters and kidneys and compared to the respective organs on the contralateral side within each animal. Expression of genes in kidneys and ureters from mice treated with 20 IU of erythropoietin daily for 72 h prior to obstruction was compared to that of untreated mice following obstruction. Apoptosis in ureteral tissues after 72-h obstruction was assessed via TUNEL assay. Ureteral obstruction increased apoptosis in affected ureters, with peristaltic function halted following all periods of obstruction. Erythropoietin treatment suppressed apoptosis in obstructed tissues and increased the percentage of mice retaining ureteral function immediately following obstruction reversal. Erythropoietin, erythropoietin receptor, Bcl-2, and Bcl-xl mRNA expression were down-regulated, while phospho-Nf-ĸb p65 was up-regulated in ureteral epithelia following obstruction. Erythropoietin treatment induced anti-apoptotic signaling via down-regulated Bax mRNA expression and abrogated phospho-Nf-ĸb p65. Erythropoietin-induced protection of ureteral function and accelerated recovery post-obstruction removal is mediated via anti-apoptotic mechanisms. Ureteral function is disrupted even following obstruction removal, negatively affecting renal function due to delayed recovery. Thus, our results represent a potential target for the development of safe therapeutic agents aimed at improving functional recovery from obstructive injury.
Collapse
Affiliation(s)
- Elliya Park
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Cox
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kymora Scotland
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Zhou J, Bai Y, Jiang Y, Tarun P, Feng Y, Huang R, Fu P. Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-κB signaling pathway in macrophages. Immunopharmacol Immunotoxicol 2020; 42:37-47. [PMID: 31971040 DOI: 10.1080/08923973.2019.1706555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: The present study aimed to investigate whether recombinant human erythropoietin (rHuEPO) plays an immunomodulatory function by regulating the TLR4/NF-κB signaling pathway.Materials and methods: C57BL/6 mice were intraperitoneally injected with rHuEPO and, half an hour later, with 50% glycerol at the dose of 7.5 ml/kg to induce crush syndrome (CS)-acute kidney injury (AKI). The levels of TNF-α, IL-1β, IL-6, serum creatinine (Scr), and creatine kinase (CK) were measured. The kidney tissues were analyzed by HE staining, and macrophage infiltration was detected by immunohistochemistry. Double immunofluorescence staining, RT-qPCR, and western blotting were conducted to analyze TLR4/NF-κB p65 expression. Ferrous myoglobin was co-cultured with RAW264.7 cells to mimic crush injury and the production of proinflammatory cytokines. The expression levels of TLR4 and NF-κB p65 were measured.Results: In vivo study results revealed that rHuEPO ameliorated renal function, tissue damage, production of proinflammatory cytokines, and macrophage infiltration in the kidneys. The protein and mRNA expression levels of genes involved in the TLR4/NF-κB signaling pathway in CS-induced AKI mice were upregulated (p < .05). Meanwhile, the expression levels of TLR4, NF-κB p65, and proinflammatory cytokines in RAW264.7 cells were downregulated in CS-AKI mice injected with rHuEPO (p < .05).Conclusions: Our results demonstrated the immunomodulatory capacity of rHuEPO and confirmed that rHuEPO exerts protective effects against CS-induced AKI by regulating the TLR4/NF-κB signaling pathway in macrophages. Therefore, our findings highlight the therapeutic potential of rHuEPO in improving the prognosis of CS-AKI patients.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Division of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajun Bai
- Department of Nephrology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yong Jiang
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Padamata Tarun
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuying Feng
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rongshuang Huang
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
15
|
Güven Bağla A, Içkin Gülen M, Ercan F, Aşgün F, Ercan E, Bakar C. Changes in kidney tissue and effects of erythropoietin after acute heart failure. Biotech Histochem 2018; 93:340-353. [PMID: 29671622 DOI: 10.1080/10520295.2018.1443347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Impairment of cardiac function causes renal damage. Renal failure after heart failure is attributed to hemodynamic derangement including reduced renal perfusion and increased venous pressure. One mechanism involves apoptosis and is defined as cardiorenal syndrome type 1. Erythropoietin (EPO) is a cytokine that induces erythropoiesis under hypoxic conditions. Hypoxia inducible factor 1 alpha (HIF-1α) plays a regulatory role in cellular response to hypoxia. Protective effects of EPO on heart, kidney and nervous system are unrelated to red blood cell production. We investigated early changes in and effects of EPO on renal tissues of rats with myocardial infarction by morphology and immunohistochemistry. Coronary artery ligation was used to induce myocardial infarction in Wistar rats. Group 1 comprised sham operated rats; groups 2, 3 and 4 included rats after coronary artery ligation that were sacrificed 6 h after ligation and that were treated with saline, 5,000 U/kg EPO or 10,000 U/kg EPO, respectively; group 5 included rats sacrificed 1 h after ligation. Group 2 showed increased renal tubule damage. Significantly less tubule damage was observed in EPO treated groups. EPO and EPO receptor (EPO-R) immunostaining intensities increased slightly for group 5 and became more intense for group 2. EPO and EPO-R immunostaining was observed in the interstitial area, glomerular cells and tubule epithelial cells of EPO treated groups. HIF-1α immunostaining was observed in collecting tubules in the medulla only in group 2. Caspase-3 immunostaining is an indicator of apoptosis. Caspase-3 staining intensity decreased in renal medulla of EPO treated groups. EPO treatment may exert a protective effect on the renal tissues of patients with cardiorenal syndrome.
Collapse
Affiliation(s)
- A Güven Bağla
- a Çanakkale Onsekiz Mart University , School of Medicine, Department of Histology and Embryology , Çanakkale
| | - M Içkin Gülen
- a Çanakkale Onsekiz Mart University , School of Medicine, Department of Histology and Embryology , Çanakkale
| | - F Ercan
- b Marmara University , School of Medicine, Department of Histology and Embryology , Istanbul
| | - F Aşgün
- c Çanakkale Onsekiz Mart University , School of Medicine, Department of Cardiovascular Surgery , Çanakkale
| | - E Ercan
- d Department of Cardiology , Medical Park Hospital , Izmir
| | - C Bakar
- e Çanakkale Onsekiz Mart University , School of Medicine, Department of Public Health , Çanakkale , Turkey
| |
Collapse
|
16
|
Borazan A, Camsari T, Cavdar Z, Sarioglu S, Yilmaz O, Oktay G, Sifil A, Celik A, Cavdar C, Aysal A, Kolatan E. The Effects of Darbepoetin on Peritoneal Fibrosis Induced by Chemical Peritonitis and on Peritoneal Tissue Mmp-2 and Timp-2 Levels in Rats. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of this study is to assess the influence of darbepoetin on the development of peritoneal fibrosis in rats induced by Chlorhexidine gluconate (0.1%) and ethanol (15%) and to determine the effect on peritoneal tissue levels of MMP–2 and TIMP–2, possible important factors in progression of peritoneal fibrosis. Twenty-four female Wistar albino rats were divided into three groups. The first group (CH group) received 3 ml/200g daily intraperitoneal injections of Chlorhexidine gluconate (0.1%) and ethanol (15%) dissolved in saline to induce chemical peritonitis; group 2 (ESA group) received 3 ml/200g daily injections of Chlorhexidine gluconate (0.1%) and ethanol (15%) dissolved in saline and also darbepoetin 12.5 microgr/ per kilogram/ day subcutaneously on the first and seventh days; group 3 (Control group) received intraperitoneal 0.9% saline (3 ml/200g/d) through the right lower quadrant by 21 gauge needle. The study duration was fourteen days. On the fifteenth day rats were sacrificed, parietal peritoneum samples were obtained from the left anterior abdominal wall. Pathological samples were examined using Hematoxyline & Eosin (HE) stains. The thickness, vasculpathy, and inflammation were determined by light microscopy. MMP-2 and TIMP-2 were studied immunohistochemically by monoclonal antibody staining. The activity of MMP-2 on peritoneal tissue was studied by gelatin zymography and TIMP–2 protein level was analysed by ELISA, biochemically. The decrease in thickness of parietal peritoneum in group ESA was statistically significant when compared to CH group (p<0.05). Inflammation scores, and vascularization score surfaces were not statistically different between these groups (p>0.05). Immunohistochemically, darbepoetin was shown to decrease MMP-2 expression on parietal peritoneum in CH group (p<0.05), but had no effect on TIMP-2 (p>0.05). Biochemically the ratio of active MMP–2 to proMMP–2 was more significantly increased in the ESA group than in the CH group (p<0.001), however, TIMP- 2 levels in both groups were decreased compared to the control group (p<0.05). Darbepoetin histopathologically reduced peritoneal fibrosis induced by Chlorhexidine gluconate. We can suggest that Darbepoetin does not cause peritoneal fibrosis and may prevent peritoneal fibrosis in rats possibly related to an effect on MMP-2 expression. Further research regarding the utility and dosage should be considered.
Collapse
Affiliation(s)
- A. Borazan
- Department of Nephrology, Faculty of Medicine, Mustafa Kemal University, Hatay
| | - T. Camsari
- Department of Nephrology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Z. Cavdar
- Department of Biochemistry, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - S. Sarioglu
- Department of Pathology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - O. Yilmaz
- Department of Animal Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - G. Oktay
- Department of Biochemistry, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - A. Sifil
- Department of Nephrology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - A. Celik
- Department of Nephrology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - C. Cavdar
- Department of Nephrology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - A. Aysal
- Department of Pathology, Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - E. Kolatan
- Department of Animal Research Center, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
17
|
Bonnas C, Wüstefeld L, Winkler D, Kronstein-Wiedemann R, Dere E, Specht K, Boxberg M, Tonn T, Ehrenreich H, Stadler H, Sillaber I. EV-3, an endogenous human erythropoietin isoform with distinct functional relevance. Sci Rep 2017; 7:3684. [PMID: 28623280 PMCID: PMC5473850 DOI: 10.1038/s41598-017-03167-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Generation of multiple mRNAs by alternative splicing is well known in the group of cytokines and has recently been reported for the human erythropoietin (EPO) gene. Here, we focus on the alternatively spliced EPO transcript characterized by deletion of exon 3 (hEPOΔ3). We show co-regulation of EPO and hEPOΔ3 in human diseased tissue. The expression of hEPOΔ3 in various human samples was low under normal conditions, and distinctly increased in pathological states. Concomitant up-regulation of hEPOΔ3 and EPO in response to hypoxic conditions was also observed in HepG2 cell cultures. Using LC-ESI-MS/MS, we provide first evidence for the existence of hEPOΔ3 derived protein EV-3 in human serum from healthy donors. Contrary to EPO, recombinant EV-3 did not promote early erythroid progenitors in cultures of human CD34+ haematopoietic stem cells. Repeated intraperitoneal administration of EV-3 in mice did not affect the haematocrit. Similar to EPO, EV-3 acted anti-apoptotic in rat hippocampal neurons exposed to oxygen-glucose deprivation. Employing the touch-screen paradigm of long-term visual discrimination learning, we obtained first in vivo evidence of beneficial effects of EV-3 on cognition. This is the first report on the presence of a naturally occurring EPO protein isoform in human serum sharing non-erythropoietic functions with EPO.
Collapse
Affiliation(s)
| | - Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Daniela Winkler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Romy Kronstein-Wiedemann
- German Red Cross Blood Donor Service North-East, Institute of Transfusion Medicine, Dresden, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katja Specht
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Melanie Boxberg
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Torsten Tonn
- German Red Cross Blood Donor Service North-East, Institute of Transfusion Medicine, Dresden, Germany
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Desden, Dresden, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | | | | |
Collapse
|
18
|
Yamashita T, Noiri E, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, Nangaku M, Doi K. Erythropoietin concentration in acute kidney injury is associated with insulin-like growth factor-binding protein-1. Nephrology (Carlton) 2017; 21:693-9. [PMID: 26479890 DOI: 10.1111/nep.12656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
AIM Erythropoietin (EPO) production is stimulated by hypoxia in the kidney. Ischaemic injury plays a crucial role in the pathogenesis of acute kidney injury (AKI). However, EPO concentrations in critically ill patients complicated with AKI have not been evaluated sufficiently. This study was conducted to clarify the factors associated with plasma EPO concentrations in AKI. METHODS This study prospectively enrolled 98 critically ill adult patients treated at the adult mixed ICU. Plasma EPO, insulin-like growth factor-binding protein-1 (IGFBP-1), neutrophil gelatinase-associated lipocalin (NGAL), interleukin-6 (IL-6) and urinary N-acetyl-β-D-glucosaminidase (NAG) were measured on ICU admission. RESULTS Acute kidney injury occurred in 42 (42.9%) patients. Significantly higher plasma EPO in the AKI group was detected than in the non-AKI group (16.13 (9.87-28.47) mIU/mL versus 27.81 (10.16-106.02) mIU/mL, P < 0.05). Plasma IGFBP-1 in the AKI group was also significantly higher than in the non-AKI group (19 208 (8820-50 780) pg/mL versus 63 199 (25 289-147 489) pg/mL, P < 0.05). Plasma EPO concentration was negatively correlated with haemoglobin in the non-AKI group with statistical significance, but not in the AKI group. Multiple logistic regression analysis revealed that plasma EPO in the AKI group was associated significantly with plasma IGFBP-1 and complication of diabetes mellitus, but not the haemoglobin concentration, partial pressure of arterial oxygen (PaO2 ), and IL-6. CONCLUSIONS Not low arterial oxygen tension, haemoglobin concentration, and inflammation evaluated by IL-6 but plasma IGFBP-1 was significantly associated with plasma EPO concentration in AKI, suggesting an unknown mechanism related to systemic stress conditions for EPO regulation in AKI.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Hamasaki
- 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan
| | - Takehiro Matsubara
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ishii
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Yahagi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Zhang L, Xu Y, Xue S, Wang X, Dai H, Qian J, Ni Z, Yan Y. Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury. Int Urol Nephrol 2016; 49:541-550. [PMID: 28035621 PMCID: PMC5321705 DOI: 10.1007/s11255-016-1485-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
Abstract
Purpose Ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) with poor outcomes. While many important functions of microRNAs (miRNAs) have been identified in various diseases, few studies reported miRNAs in acute kidney IRI, especially the dynamic changes in their expression and their implications during disease progression. Methods The expression of miR-192, a specific kidney-enriched miRNA, was assessed in both the plasma and kidney of IRI rats at different time points after kidney injury and compared to renal function and kidney histological changes. The results were validated in the plasma of the selected patients with AKI after cardiac surgery compared with those matched patients without AKI. The performance characteristics of miR-192 were summarized using area under the receiver operator characteristic (ROC) curves (AUC-ROC). Results MiRNA profiling in plasma led to the identification of 42 differentially expressed miRNAs in the IRI group compared to the sham group. MiR-192 was kidney-enriched and chosen for further validation. Real-time PCR showed that miR-192 levels increased by fourfold in the plasma and decreased by about 40% in the kidney of IRI rats. Plasma miR-192 expression started increasing at 3 h and peaked at 12 h, while kidney miR-192 expression started decreasing at 6 h and remained at a low level for 7 days after reperfusion. Plasma miR-192 level in patients with AKI increased at the time of ICU admission, was stable for 2 h and decreased after 24 h. AUC-ROC was 0.673 (95% CI: 0.540–0.806, p = 0.014). Conclusions Plasma miR-192 expression was induced in a time-dependent manner after IRI in rats and patients with AKI after cardiac surgery, comparably to the kidney injury development and recovery process, and may be useful for the detection of AKI.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiac Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xudong Wang
- Department of Cardiac Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Huili Dai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jiaqi Qian
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yucheng Yan
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
20
|
Aggarwal S, Grange C, Iampietro C, Camussi G, Bussolati B. Human CD133 + Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury. Sci Rep 2016; 6:37270. [PMID: 27853265 PMCID: PMC5112528 DOI: 10.1038/srep37270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Cristina Grange
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Corinne Iampietro
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| |
Collapse
|
21
|
Skrypnyk NI, Siskind LJ, Faubel S, de Caestecker MP. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am J Physiol Renal Physiol 2016; 310:F972-84. [PMID: 26962107 PMCID: PMC4889323 DOI: 10.1152/ajprenal.00552.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The current lack of effective therapeutics for patients with acute kidney injury (AKI) represents an important and unmet medical need. Given the importance of the clinical problem, it is time for us to take a few steps back and reexamine current practices. The focus of this review is to explore the extent to which failure of therapeutic translation from animal studies to human studies stems from deficiencies in the preclinical models of AKI. We will evaluate whether the preclinical models of AKI that are commonly used recapitulate the known pathophysiologies of AKI that are being modeled in humans, focusing on four common scenarios that are studied in clinical therapeutic intervention trials: cardiac surgery-induced AKI; contrast-induced AKI; cisplatin-induced AKI; and sepsis associated AKI. Based on our observations, we have identified a number of common limitations in current preclinical modeling of AKI that could be addressed. In the long term, we suggest that progress in developing better preclinical models of AKI will depend on developing a better understanding of human AKI. To this this end, we suggest that there is a need to develop greater in-depth molecular analyses of kidney biopsy tissues coupled with improved clinical and molecular classification of patients with AKI.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky; and
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver Veterans Affairs Medical Center, Aurora, Colorado
| | - Mark P de Caestecker
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
22
|
Han F, Wang O, Cai Q. Anti-apoptotic treatment in mouse models of age-related hearing loss. J Otol 2016; 11:7-12. [PMID: 29937804 PMCID: PMC6002598 DOI: 10.1016/j.joto.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Corresponding author. Key Laboratory for Genetic Hearing Disorders in Shandong, and Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Quanxiang Cai
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| |
Collapse
|
23
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
24
|
Risør LM, Fenger M, Olsen NV, Møller S. Hepatic erythropoietin response in cirrhosis. A contemporary review. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:183-9. [PMID: 26919118 DOI: 10.3109/00365513.2016.1143563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The main function of erythropoietin (EPO) is to maintain red blood cell mass, but in recent years, increasing evidence has suggested a wider biological role not solely related to erythropoiesis, e.g. angiogenesis and tissue protection. EPO is produced in the liver during fetal life, but the main production shifts to the kidney after birth. The liver maintains a production capacity of up to 10% of the total EPO synthesis in healthy controls, but can be up-regulated to 90-100%. However, the hepatic EPO synthesis has been shown not to be adequate for correction of anemia in the absence of renal-derived EPO. Elevated circulating EPO has been reported in a number of diseases, but data from cirrhotic patients are sparse and the level of plasma EPO in patients with cirrhosis is controversial. Cirrhosis is characterized by liver fibrosis, hepatic dysfunction and the release of proinflammatory cytokines, which lead to arterial hypotension, hepatic nephropathy and anemia. An increase in EPO due to renal hypoperfusion, hypoxia and anemia or an EPO-mediated hepato-protective and regenerative mechanism is plausible. However, poor hepatic synthesis capacity, a decreasing co-factor level and inflammatory feedback mechanisms may explain a potential insufficient EPO response in end-stage cirrhosis. Finally, the question remains as to whether a potential increase in EPO production in certain stages of cirrhosis originates from the kidney or liver. This paper aims to review contemporary aspects of EPO relating to chronic liver disease.
Collapse
Affiliation(s)
- Louise Madeleine Risør
- a Department of Clinical Physiology and Nuclear Medicine, Center of Functional and Diagnostic Imaging and Research 260 , Hvidovre Hospital, University of Copenhagen
| | - Mogens Fenger
- b Department of Clinical Biochemistry, Hvidovre; Faculty of Health Sciences , University of Copenhagen
| | - Niels Vidiendal Olsen
- c Department of Neuroanaesthesia, the Neuroscience Centre , University Hospital of Copenhagen (Rigshospitalet), and ;,d Department of Neuroscience and Pharmacology, the Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Søren Møller
- a Department of Clinical Physiology and Nuclear Medicine, Center of Functional and Diagnostic Imaging and Research 260 , Hvidovre Hospital, University of Copenhagen
| |
Collapse
|
25
|
Effect of a Single Bolus of Erythropoietin on Renoprotection in Patients Undergoing Thoracic Aortic Surgery With Moderate Hypothermic Circulatory Arrest. Ann Thorac Surg 2016; 101:690-6. [DOI: 10.1016/j.athoracsur.2015.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/01/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022]
|
26
|
Senger S, Kollmar O, Menger MD, Rupertus K. Darbepoetin-α Promotes Cell Proliferation in Established Extrahepatic Colorectal Tumors after Major Hepatectomy. Eur Surg Res 2015; 56:49-60. [PMID: 26678394 DOI: 10.1159/000442384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The glycoprotein hormone erythropoietin and its analogue darbepoetin-α (DPO) have been shown to reduce the risk of acute liver failure after major hepatectomy. However, previous experimental studies have also shown that DPO significantly enhances neovascularization and tumor cell proliferation in established colorectal liver metastasis in hepatectomized and nonhepatectomized mice. The present study now analyzes whether DPO influences cell proliferation and migration as well as vascularization and growth of established colorectal metastasis at extrahepatic sites after major hepatectomy. METHODS GFP-transfected CT26.WT colorectal cancer cells were implanted into dorsal skinfold chambers of syngeneic BALB/c mice. Five days after tumor cell implantation, the animals received a single dose of DPO (10 µg/kg body weight) or phosphate-buffered saline solution (PBS) intravenously. Additional animals received a 70% hepatectomy and DPO or PBS treatment. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied repetitively over 14 days using intravital fluorescence microscopy, histology and immunohistochemistry. RESULTS DPO did not influence tumor cell migration and apoptosis. In addition, DPO did not stimulate tumor cell infiltration or vascularization; however, significantly increased tumor cell proliferation was detected in hepatectomized animals. CONCLUSION DPO increases cell proliferation in established extrahepatic colorectal metastases after major hepatectomy. Thus, DPO may not be recommended to stimulate regeneration of the remnant liver after major hepatectomy for colorectal liver metastasis.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
27
|
Hirata M, Tashiro Y, Aizawa K, Kawasaki R, Shimonaka Y, Endo K. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats. Physiol Rep 2015; 3:3/12/e12637. [PMID: 26634903 PMCID: PMC4760454 DOI: 10.14814/phy2.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half‐life in blood and strongly suppresses hepcidin‐25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end‐stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8‐OHdG and liver‐type fatty acid–binding protein (L‐FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin‐25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67‐positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L‐FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules.
Collapse
Affiliation(s)
- Michinori Hirata
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshihito Tashiro
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Ken Aizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Ryohei Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yasushi Shimonaka
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Koichi Endo
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| |
Collapse
|
28
|
de Caestecker M, Humphreys BD, Liu KD, Fissell WH, Cerda J, Nolin TD, Askenazi D, Mour G, Harrell FE, Pullen N, Okusa MD, Faubel S. Bridging Translation by Improving Preclinical Study Design in AKI. J Am Soc Nephrol 2015; 26:2905-16. [PMID: 26538634 DOI: 10.1681/asn.2015070832] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite extensive research, no therapeutic interventions have been shown to prevent AKI, accelerate recovery of AKI, or reduce progression of AKI to CKD in patients. This failure in translation has led investigators to speculate that the animal models being used do not predict therapeutic responses in humans. Although this issue continues to be debated, an important concern that has not been addressed is whether improvements in preclinical study design can be identified that might also increase the likelihood of translating basic AKI research into clinical practice using the current models. In this review, we have taken an evidence-based approach to identify common weaknesses in study design and reporting in preclinical AKI research that may contribute to the poor translatability of the findings. We focused on use of N-acetylcysteine or sodium bicarbonate for the prevention of contrast-induced AKI and use of erythropoietin for the prevention of AKI, two therapeutic approaches that have been extensively studied in clinical trials. On the basis of our findings, we identified five areas for improvement in preclinical study design and reporting. These suggested and preliminary guidelines may help improve the quality of preclinical research for AKI drug development.
Collapse
Affiliation(s)
- Mark de Caestecker
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Ben D Humphreys
- Division of Renal Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Kathleen D Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - William H Fissell
- Division of Nephology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jorge Cerda
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Thomas D Nolin
- Renal-Electrolyte Division, Department of Medicine and Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Askenazi
- Department of Pediatrics, Division of Nephrology, University of Alabama, Birmingham, Alabama
| | - Girish Mour
- Renal-Electrolyte Division, Department of Medicine and Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nick Pullen
- Pfizer Global Research and Development, Inflammation & Immunology Research Unit, Cambridge, Massachusetts
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California; Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver Veterans Affairs Medical Center, Aurora, Colorado
| | | |
Collapse
|
29
|
Pedersen L, Wogensen L, Marcussen N, Cecchi CR, Dalsgaard T, Dagnæs-Hansen F. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease. PLoS One 2015; 10:e0128367. [PMID: 26046536 PMCID: PMC4457485 DOI: 10.1371/journal.pone.0128367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/25/2015] [Indexed: 12/16/2022] Open
Abstract
Erythropoietin, Epo, is a 30.4 kDa glycoprotein hormone produced primarily by the fetal liver and the adult kidney. Epo exerts its haematopoietic effects by stimulating the proliferation and differentiation of erythrocytes with subsequent improved tissue oxygenation. Epo receptors are furthermore expressed in non-haematopoietic tissue and today, Epo is recognised as a cytokine with many pleiotropic effects. We hypothesize that hydrodynamic gene therapy with Epo can restore haemoglobin levels in anaemic transgenic mice and that this will attenuate the extracellular matrix accumulation in the kidneys. The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol/L to 9.4 ± 1.2 mmol/L and 10.7 ± 0.3 mmol/L to 15.5 ± 0.5 mmol/L, respectively. We did not observe any effects in the thickness of glomerular or tubular basement membrane, on the expression of different collagen types in the kidneys or in kidney function after prolonged treatment with Epo. Thus, Epo treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function.
Collapse
Affiliation(s)
- Lea Pedersen
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Institute of Clinical Medicine, Aarhus, Denmark
- * E-mail:
| | - Lise Wogensen
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Institute of Clinical Medicine, Aarhus, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Trine Dalsgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
30
|
Ramos AM, González-Guerrero C, Sanz A, Sanchez-Niño MD, Rodríguez-Osorio L, Martín-Cleary C, Fernández-Fernández B, Ruiz-Ortega M, Ortiz A. Designing drugs that combat kidney damage. Expert Opin Drug Discov 2015; 10:541-56. [PMID: 25840605 DOI: 10.1517/17460441.2015.1033394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kidney disease remains one of the last worldwide frontiers in the field of non-communicable human disease. From 1990 to 2013, chronic kidney disease (CKD) was the top non-communicable cause of death with a greatest increase in global years of life lost while mortality of acute kidney injury (AKI) still hovers around 50%. This reflects the paucity (for CKD) or lack of (for AKI) therapeutic approaches beyond replacing renal function. Understanding what the barriers are and what potential pathways may facilitate the design of new drugs to combat kidney disease is a key public health priority. AREAS COVERED The authors discuss the hurdles and opportunities for future drug development for kidney disease in light of experience accumulated with drugs that made it to clinical trials. EXPERT OPINION Inflammation, cell death and fibrosis are key therapeutic targets to combat kidney damage. While the specific targeting of drugs to kidney cells would be desirable, the technology is only working at the preclinical stage and with mixed success. Nanomedicines hold promise in this respect. Most drugs undergoing clinical trials for kidney disease have been repurposed from other indications. Currently, the chemokine receptor inhibitor CCX140 holds promise for CKD and the p53 inhibitor QPI-1002 for AKI.
Collapse
Affiliation(s)
- Adrián M Ramos
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Laboratory of Renal and Vascular Pathology and Diabetes , Av. Reyes Católicos 2, 28040, Madrid , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Erythropoietin Accelerates the Regeneration of Ureteral Function in a Murine Model of Obstructive Uropathy. J Urol 2015; 193:714-21. [DOI: 10.1016/j.juro.2014.08.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
|
32
|
Yamashita T, Doi K, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, Nangaku M, Noiri E. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:716. [PMID: 25524453 PMCID: PMC4300076 DOI: 10.1186/s13054-014-0716-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an emerging acute kidney injury (AKI) biomarker. We evaluated the performance of urinary TIMP-2 in an adult mixed ICU by comparison with other biomarkers that reflect several different pathways of AKI. METHODS In this study, we prospectively enrolled 98 adult critically ill patients who had been admitted to the adult mixed ICU. Urinary TIMP-2 and N-acetyl-β-D-glucosaminidase (NAG) and plasma neutrophil gelatinase-associated lipocalin (NGAL), interleukin-6 (IL-6) and erythropoietin (EPO) were measured on ICU admission. We evaluated these biomarkers' capability of detecting AKI and its severity as determined by using the Kidney Disease Improving Global Outcomes serum creatinine criteria, as well as its capacity to predict in-hospital mortality. The impact of sepsis, the leading cause of AKI in ICUs, was also evaluated. RESULTS We found AKI in 42 patients (42.9%). All biomarkers were significantly higher in AKI than in non-AKI. In total, 27 patients (27.6%) developed severe AKI. Urinary TIMP-2 was able to distinguish severe AKI from non-severe AKI with an area under the receiver operating characteristic curve (AUC-ROC) of 0.80 (95% confidence interval, 0.66 to 0.90). A total of 41 cases (41.8%) were complicated with sepsis. Although plasma NGAL and IL-6 were increased by sepsis, urinary TIMP-2 and NAG were increased not by sepsis, but by the presence of severe AKI. Plasma EPO was increased only by septic AKI. In-hospital mortality was 15.3% in this cohort. Urinary TIMP-2 and NAG, and plasma NGAL, were significantly higher in non-survivors than in survivors, although plasma IL-6 and EPO were not. Among the biomarkers, only urinary TIMP-2 was able to predict in-hospital mortality significantly better than serum creatinine. CONCLUSION Urinary TIMP-2 can detect severe AKI with performance equivalent to plasma NGAL and urinary NAG, with an AUC-ROC value higher than 0.80. Furthermore, urinary TIMP-2 was associated with mortality. Sepsis appeared to have only a limited impact on urinary TIMP-2, in contrast to plasma NGAL.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yoshifumi Hamasaki
- 22nd Century Medical and Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takehiro Matsubara
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takeshi Ishii
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Naoki Yahagi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Japan Science and Technology Agency/Japan International Cooperation Agency (JST/JICA), Science and Technology Research Partnership for Sustainable Development (SATREPS), 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
33
|
Abstract
BACKGROUND To date, there are no known methods for preventing acute kidney injury after cardiac surgery. Increasing evidence suggests that erythropoietin has renal antiapoptotic and tissue protective effects. However, recent human studies have shown conflicting results. The authors aimed to study the effect of a single high-dose erythropoietin preoperatively on renal function after coronary artery bypass grafting in patients with preoperative impaired renal function. METHODS This single-center, randomized, double-blind, placebo-controlled study included 75 patients scheduled for coronary artery bypass grafting with preexisting renal impairment estimated glomerular filtration rate based on p-cystatin C (<60 and >15 ml/min). The patients either received a single high-dose erythropoietin (400 IU/kg) or placebo preoperatively. The primary endpoint was renal protection evaluated by p-cystatin C at the third postoperative day compared to the preoperative values. Incidence of acute kidney injury and other renal biomarker changes were among secondary endpoints. RESULTS There was no statistically significant difference on the third postoperative day for relative p-cystatin C level changes from baseline between the groups, 131 ± 31% (mean ± SD) for the study group and 125 ± 24% for the control group (P = 0.31; 95% CI, -0.6 to 20% for the difference). There were no statistically significant differences in other renal biomarkers or measures between the groups (p-neutrophil gelatinase-associated lipocalin, p-creatinine, p-urea, and estimated glomerular filtration rate). There were no other differences in outcome variables between the groups. CONCLUSION Intravenous administration of a single high-dose (400 IU/kg) erythropoietin did not have a renal protective effect on patients with reduced kidney function undergoing coronary artery bypass surgery.
Collapse
|
34
|
White SM, North LM, Haines E, Goldberg M, Sullivan LM, Pressly JD, Weber DS, Park F, Regner KR. G-protein βγ subunit dimers modulate kidney repair after ischemia-reperfusion injury in rats. Mol Pharmacol 2014; 86:369-77. [PMID: 25028481 PMCID: PMC4164983 DOI: 10.1124/mol.114.092346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022] Open
Abstract
Heterotrimeric G-proteins play a crucial role in the control of renal epithelial cell function during homeostasis and in response to injury. In this report, G-protein βγ subunit (Gβγ) dimer activity was evaluated during the process of tubular repair after renal ischemia-reperfusion injury (IRI) in male Sprague Dawley rats. Rats were treated with a small molecule inhibitor of Gβγ activity, gallein (30 or 100 mg/kg), 1 hour after reperfusion and every 24 hours for 3 additional days. After IRI, renal dysfunction was prolonged after the high-dose gallein treatment in comparison with vehicle treatment during the 7-day recovery period. Renal tubular repair in the outer medulla 7 days after IRI was significantly (P < 0.001) attenuated after treatment with high-dose gallein (100 mg/kg) in comparison with low-dose gallein (30 mg/kg), or the vehicle and fluorescein control groups. Gallein treatment significantly reduced (P < 0.05) the number of proliferating cell nuclear antigen-positive tubular epithelial cells at 24 hours after the ischemia-reperfusion phase in vivo. In vitro application of gallein on normal rat kidney (NRK-52E) proximal tubule cells significantly reduced (P < 0.05) S-phase cell cycle entry compared with vehicle-treated cells as determined by 5'-bromo-2'-deoxyuridine incorporation. Taken together, these data suggest that Gβγ signaling contributes to the maintenance and repair of renal tubular epithelium and may be a novel therapeutic target for the development of drugs to treat acute kidney injury.
Collapse
Affiliation(s)
- Sarah M White
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lauren M North
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Emily Haines
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Megan Goldberg
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lydia M Sullivan
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Jeffrey D Pressly
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - David S Weber
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Frank Park
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Kevin R Regner
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| |
Collapse
|
35
|
Parvin AA, Pranap RA, Shalini U, Devendran A, Baker JE, Dhanasekaran A. Erythropoietin protects cardiomyocytes from cell death during hypoxia/reperfusion injury through activation of survival signaling pathways. PLoS One 2014; 9:e107453. [PMID: 25237819 PMCID: PMC4169563 DOI: 10.1371/journal.pone.0107453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022] Open
Abstract
Hypoxia/Reoxygenation (H/R) cardiac injury is of great importance in understanding Myocardial Infarctions, which affect a major part of the working population causing debilitating side effects and often-premature mortality. H/R injury primarily consists of apoptotic and necrotic death of cardiomyocytes due to a compromise in the integrity of the mitochondrial membrane. Major factors associated in the deregulation of the membrane include fluctuating reactive oxygen species (ROS), deregulation of mitochondrial permeability transport pore (MPTP), uncontrolled calcium (Ca2+) fluxes, and abnormal caspase-3 activity. Erythropoietin (EPO) is strongly inferred to be cardioprotective and acts by inhibiting the above-mentioned processes. Surprisingly, the underlying mechanism of EPO's action and H/R injury is yet to be fully investigated and elucidated. This study examined whether EPO maintains Ca2+ homeostasis and the mitochondrial membrane potential (ΔΨm) in cardiomyocytes when subjected to H/R injury and further explored the underlying mechanisms involved. H9C2 cells were exposed to different concentrations of EPO post-H/R, and 20 U/ml EPO was found to significantly increase cell viability by inhibiting the intracellular production of ROS and caspase-3 activity. The protective effect of EPO was abolished when H/R-induced H9C2 cells were treated with Wortmannin, an inhibitor of Akt, suggesting the mechanism of action through the activation Akt, a major survival pathway.
Collapse
Affiliation(s)
- Asiya A Parvin
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Raj A Pranap
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - U Shalini
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Ajay Devendran
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - John E Baker
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | |
Collapse
|
36
|
Senger S, Kollmar O, Menger MD, Schilling MK, Rupertus K. Darbepoetin-α Accelerates Neovascularization and Engraftment of Extrahepatic Colorectal Metastases. Eur Surg Res 2014; 53:25-36. [DOI: 10.1159/000364944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
|
37
|
Peng HS, Xu XH, Zhang R, He XY, Wang XX, Wang WH, Xu TY, Xiao XR. Multiple low doses of erythropoietin delay the proliferation of hepatocytes but promote liver function in a rat model of subtotal hepatectomy. Surg Today 2014; 44:1109-15. [PMID: 24691936 DOI: 10.1007/s00595-014-0889-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/04/2013] [Indexed: 02/08/2023]
Abstract
PURPOSE The impact of various doses of erythropoietin (EPO) on liver regeneration after partial hepatectomy (PH) in different animal models is still under debate. We investigated the impact of low doses of EPO on liver regeneration in a rat model of subtotal hepatectomy. METHODS We established a 90 % PH rat model with perioperative injections of low-dose EPO (1,000 IU/kg). We analyzed survival and hepatocyte proliferation in animals treated with or without EPO and assessed liver function by blood ammonia measurement and the indocyanine green 15-min retention test. RESULTS Low doses of EPO treatment improved the survival of rats after 90 % PH. Unexpectedly, during the first 24 h after the operation, liver regeneration in the EPO-treated rats was inhibited. DNA synthesis, cell proliferation, and the expression of cyclins and p-STAT3 peaked 48 h after PH, which was delayed by about 24 h vs. the control rats. Furthermore, EPO treatment increased the serum level of IL-6 and protected the hepatocytes from apoptosis. CONCLUSION Low doses of EPO do not stimulate early hepatocyte proliferation in the regenerating liver, but contribute to liver protection by inducing IL-6 and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hua-sheng Peng
- Department of Geriatrics, Chengdu Military General Hospital, Chengdu, 610083, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gobe GC, Bennett NC, West M, Colditz P, Brown L, Vesey DA, Johnson DW. Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury. Am J Physiol Renal Physiol 2014; 306:F681-92. [PMID: 24402097 DOI: 10.1152/ajprenal.00241.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of renal ischemia-reperfusion (IR) injury with recombinant human erythropoietin (rhEPO) reduces acute kidney injury and improves function. We aimed to investigate whether progression to chronic kidney disease associated with acute injury was also reduced by rhEPO treatment, using in vivo and in vitro models. Rats were subjected to bilateral 40-min renal ischemia, and kidneys were studied at 4, 7, and 28 days postreperfusion for renal function, tubular injury and repair, inflammation, and fibrosis. Acute injury was modulated using rhEPO (1,000 or 5,000 IU/kg, intraperitoneally) at the time of reperfusion. Renal tubular epithelial cells or fibroblasts in culture were subjected to hypoxia or oxidative stress, with or without rhEPO (200 IU/ml), and fibrogenesis was studied. The results of the in vivo model confirmed functional and structural improvement with rhEPO at 4 days post-IR (P < 0.05). At 7 days post-IR, fibrosis and myofibroblast stimulation were increased with IR with and without rhEPO (P < 0.01). However, at 28 days post-IR, renal fibrosis and myofibroblast numbers were significantly greater with IR plus rhEPO (P < 0.01) compared with IR only. Mechanistically, rhEPO stimulated profibrotic transforming growth factor-β, oxidative stress (marker 8-hydroxy-deoxyguanosine), and phosphorylation of the signal transduction protein extracellular signal-regulated kinase. In vitro, rhEPO protected tubular epithelium from apoptosis but stimulated epithelial-to-mesenchymal transition and also protected and activated fibroblasts, particularly with oxidative stress. In summary, although rhEPO was protective of renal function and structure in acute kidney injury, the supraphysiological dose needed for renoprotection contributed to fibrogenesis and stimulated chronic kidney disease in the long term.
Collapse
Affiliation(s)
- Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Univ. of Queensland, Translational Research Institute, Kent St., Woolloongabba, Brisbane, Australia 4102..
| | | | | | | | | | | | | |
Collapse
|
39
|
Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney Int 2014; 85:1357-68. [PMID: 24402091 DOI: 10.1038/ki.2013.525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/18/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS-3) is an important intracellular negative regulator of several signaling pathways. We found that SOCS-3 is highly expressed in renal proximal tubules during acute kidney injury. To test the impact of this, conditional proximal tubular knockout mice (SOCS-3(sglt2Δ/sglt2Δ)) were created. These mice had better kidney function than their wild-type counterparts in aristolochic acid nephropathy and after ischemia/reperfusion injury. Kidneys of these knockout mice showed significantly more proximal tubular cell proliferation during the repair phase. A direct effect of SOCS-3 on tubular cell cycling was demonstrated by in vitro experiments showing a JAK/STAT pathway-dependent antimitotic effect of SOCS-3. Furthermore, acute damaged kidneys of the knockout mice contained increased numbers of F4/80(+) cells. Phenotypic analysis of these F4/80(+) cells indicated a polarization from classically activated to alternatively activated macrophages. In vitro, SOCS-3-overexpressing renal epithelial cells directly induced classical activation in cocultured macrophages, supporting the observed in vivo phenomenon. Thus, upregulation of SOCS-3 in stressed proximal tubules plays an important role during acute kidney injury by inhibition of reparative proliferation and by modulation of the macrophage phenotype. Antagonizing SOCS-3 could have therapeutic potential for acute kidney injury.
Collapse
|
40
|
Ahmadiasl N, Banaei S, Alihemmati A, Baradaran B, Azimian E. The anti-inflammatory effect of erythropoietin and melatonin on renal ischemia reperfusion injury in male rats. Adv Pharm Bull 2013; 4:49-54. [PMID: 24409409 DOI: 10.5681/apb.2014.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure (ARF). The purpose of this study was to investigate the anti-inflammatory effect of erythropoietin (EPO) and melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. METHODS Male Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10mg/kg, i.p) and EPO (5000U/kg, i.p) were administered prior to ischemia. After 24 h reperfusion, blood samples were collected for the determination of total antioxidant capacity (TAC), malondialdehyde (MDA) and serum creatinine levels. Also, renal samples were taken for Immunohistochemical evaluation of Bcl2 and TNF-α (tumor necrosis factor-α) expression. RESULTS Ischemia reperfusion increased creatinine, TAC, MDA levels and TNF-α expression, also, IR decreased Bcl2 expression. Treatment with EPO or MEL decreased creatinine, MDA levels, and increased TAC level. Also, MEL up-regulated Bcl2 expression and down-regulated TNF-α expression compared with EPO. CONCLUSION Treatment with EPO and MEL had a curative effect on renal IR injury. These results may indicate that MEL protects against inflammation and apoptosis better than EPO in renal IR injury.
Collapse
Affiliation(s)
- Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shokofeh Banaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Azimian
- Department of Linguistics and Foreign Languages, Payame Noor University, Tehran, Iran
| |
Collapse
|
41
|
van Rijt WG, Nieuwenhuijs-Moeke GJ, van Goor H, Ottens PJ, Ploeg RJ, Leuvenink HGD. Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury. J Transl Med 2013; 11:286. [PMID: 24225194 PMCID: PMC3842642 DOI: 10.1186/1479-5876-11-286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/11/2013] [Indexed: 11/13/2022] Open
Abstract
Background ARA290 is a non-erythropoietic EPO derivative which only binds to the cytoprotective receptor complex (EPOR2-βcR2) consisting of two EPO-receptors (EPOR) and two β common receptors (βcR). ARA290 is renoprotective in renal ischemia/reperfusion (I/R). In a renal I/R model we focussed on timing of post-reperfusional administration of ARA290. Furthermore, we investigated the anti-inflammatory properties of ARA290. Methods Twenty-six male Lewis/HanHsd rats were exposed to unilateral ischemia for 30 minutes, with subsequent removal of the contralateral kidney. Post-reperfusion, ARA290 was administered early (one hour), late (four hours) or repetitive (one and four hours). Saline was used as vehicle treatment. Rats were sacrificed after three days. Results Early ARA290 treatment improved renal function. Late- or repetitive treatment tended to improve clinical markers. Furthermore, early ARA290 treatment reduced renal inflammation and acute kidney injury at three days post-reperfusion. Late- or repetitive treatment did not affect inflammation or acute kidney injury. Conclusions ARA290 attenuated renal ischemia/reperfusion injury. This study showed the anti-inflammatory effect of ARA290 and suggests early administration in the post-reperfusional phase is most effective. ARA290 is a candidate drug for protection against ischemic injury following renal transplantation.
Collapse
Affiliation(s)
- Willem G van Rijt
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713, GZ Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
van Rijt WG, van Goor H, Ploeg RJ, Leuvenink HGD. Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events. Transpl Int 2013; 27:241-8. [PMID: 23964738 DOI: 10.1111/tri.12174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 04/29/2013] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
The protective, nonerythropoietic effects of erythropoietin (EPO) have become evident in preclinical models in renal ischaemia/reperfusion injury and kidney transplantation. However, four recently published clinical trials using high-dose EPO treatment following renal transplantation did not reveal any protective effect for short-term renal function and even reported an increased risk of thrombosis. This review focusses on the current status of protective pathways mediated by EPO, the safety concerns using high EPO dosage and discusses the discrepancies between pre-clinical and clinical studies. The protective effects are mediated by binding of EPO to a heteromeric receptor complex consisting of two β-common receptors and two EPO receptors. An important role for the activation of endothelial nitric oxide synthase is proposed. EPO-mediated cytoprotection still has enormous potential. However, only nonerythropoietic EPO derivatives may induce protection without increasing the risk of cardiovascular events. In preclinical models, nonerythropoietic EPO derivatives, such as carbamoylated EPO and ARA290, have been tested. These EPO derivatives improve renal function and do not affect erythropoiesis. Therefore, nonerythropoietic EPO derivatives may be able to render EPO-mediated cytoprotection useful and beneficial for clinical transplantation.
Collapse
Affiliation(s)
- Willem G van Rijt
- Department of Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
43
|
Abstract
Renal anemia has been recognized as a characteristic complication of chronic kidney disease. Although many factors are involved in renal anemia, the predominant cause of renal anemia is a relative deficiency in erythropoietin (EPO) production. To date, exogenous recombinant human (rh)EPO has been widely used as a powerful drug for the treatment of patients with renal anemia. Despite its clinical effectiveness, a potential risk for increased mortality has been suggested in patients who receive rhEPO, in addition to the economic burden of rhEPO administration. The induction of endogenous EPO is another therapeutic approach that might have advantages over rhEPO administration. However, the physiological and pathophysiological regulation of EPO are not fully understood, and this lack of understanding has hindered the development of an endogenous EPO inducer. In this review, we will discuss the current treatment for renal anemia and its drawbacks, provide an overview of EPO regulation in healthy and diseased conditions, and propose future directions for therapeutic trials that more directly target the underlying pathophysiology of renal anemia.
Collapse
Affiliation(s)
- Yuki Sato
- 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
44
|
Bartnicki P, Kowalczyk M, Rysz J. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection. Med Sci Monit 2013; 19:599-605. [PMID: 23872600 PMCID: PMC3724571 DOI: 10.12659/msm.889023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin (EPO) is traditionally described as a hematopoietic cytokine or growth hormone regulating proliferation, differentiation, and survival of erythroid progenitors. The use of EPO in patients with chronic kidney disease (CKD) was a milestone achievement in the treatment of anemia. However, EPO involves some degree of risk, which increases with increasing hemoglobin levels. A growing number of studies have assessed the renoprotective effects of EPO in acute kidney injury (AKI) or CKD. Analysis of the biological effects of erythropoietin and pathophysiology of CKD in these studies suggests that treatment with erythropoiesis-stimulating agents (ESAs) may exert renoprotection by pleiotropic actions on several targets and directly or indirectly slow the progression of CKD. By reducing ischemia and oxidative stress or strengthening anti-apoptotic processes, EPO may prevent the development of interstitial fibrosis and the destruction of tubular cells. Furthermore, it could have a direct protective impact on the integrity of the interstitial capillary network through its effects on endothelial cells and promotion of vascular repair, or modulate inflammation response. Thus, it is biologically plausible to suggest that correcting anemia with ESAs could slow the progression of CKD. The aim of this article is to discuss these possible renoprotection mechanisms and provide a comprehensive overview of erythropoietin and its derivatives.
Collapse
Affiliation(s)
- Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Łódź, Łódź, Poland.
| | | | | |
Collapse
|
45
|
Gobe GC, Morais C, Vesey DA, Johnson DW. Use of high-dose erythropoietin for repair after injury: A comparison of outcomes in heart and kidney. J Nephropathol 2013; 2:154-65. [PMID: 24475445 DOI: 10.12860/jnp.2013.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/25/2012] [Indexed: 11/20/2022] Open
Abstract
CONTEXT There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. CONCLUSIONS A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.
Collapse
Affiliation(s)
- Glenda C Gobe
- Centre for Kidney Disease Research and ; Discipline of Medicine, School of Medicine. The University of Queensland, Brisbane, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research and ; Discipline of Medicine, School of Medicine. The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Centre for Kidney Disease Research and ; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Johnson
- Centre for Kidney Disease Research and ; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
46
|
The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int 2013; 84:468-81. [PMID: 23636173 PMCID: PMC3758776 DOI: 10.1038/ki.2013.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 12/22/2022]
Abstract
Although the role of the erythropoietin (EPO) receptor (EpoR) in erythropoiesis has been known for decades, its role in nonhematopoietic tissues is still not well defined. Klotho has been shown and EPo has been suggested to protect against acute ischemia-reperfusion injury in the kidney. Here we found in rat kidney and in a rat renal tubular epithelial cell line (NRK cells) EpoR transcript and antigen, and EpoR activity signified as EPo-induced phosphorylation of Jak2, ErK, Akt, and Stat5 indicating the presence of functional EpoR. Transgenic overexpression of Klotho or addition of exogenous recombinant Klotho increased kidney EpoR protein and transcript. In NRK cells, Klotho increased EpoR protein, enhanced EPo-triggered phosphorylation of Jak2 and Stat5, the nuclear translocation of phospho-Stat5, and protected NRK cells from hydrogen peroxide cytotoxicity. Knockdown of endogenous EpoR rendered NRK cells more vulnerable, and overexpression of EpoR more resistant to peroxide-induced cytotoxicity, indicating that EpoR mitigates oxidative damage. Knockdown of EpoR by siRNA abolished Epo-induced Jak2, and Stat5 phosphorylation, and blunted the protective effect of Klotho against peroxide-induced cytotoxicity. Thus in the kidney, EpoR and its activity are downstream effectors of Klotho enabling it to function as a cytoprotective protein against oxidative injury.
Collapse
|
47
|
Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the β-common receptor. Kidney Int 2013; 84:482-90. [PMID: 23594675 DOI: 10.1038/ki.2013.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 12/24/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
The β-common receptor (βcR) plays a pivotal role in the nonhematopoietic tissue-protective effects of erythropoietin (EPO). Here we determined whether EPO reduces the acute kidney injury (AKI) caused by sepsis and whether this effect is mediated by the βcR. In young (2 months old) C57BL/6 wild-type and βcR knockout mice, lipopolysaccharide caused a significant increase in serum urea and creatinine, hence AKI. This AKI was not associated with any overt morphological alterations in the kidney and was attenuated by EPO given 1 h after lipopolysaccharide in wild-type but not in βcR knockout mice. In the kidneys of endotoxemic wild-type mice, EPO enhanced the phosphorylation of Akt, glycogen synthase kinase-3β, and endothelial nitric oxide synthase, and inhibited the activation of nuclear factor-κB. All these effects of EPO were lost in βcR knockout mice. Since sepsis is more severe in older animals or patients, we tested whether EPO was renoprotective in 8-month-old wild-type and βcR knockout mice that underwent cecal ligation and puncture. These older mice developed AKI at 24 h, which was attenuated by EPO treatment 1 h post cecal ligation and puncture in wild-type mice but not in βcR knockout mice. Thus, activation of the βcR by EPO is essential for the observed reduction in AKI in either endotoxemic young mice or older mice with polymicrobial sepsis, and for the activation of well-known signaling pathways by EPO.
Collapse
|
48
|
The effect of erythropoietin on ischemia/reperfusion injury after testicular torsion/detorsion: a randomized experimental study. ISRN UROLOGY 2013; 2013:351309. [PMID: 23710369 PMCID: PMC3654238 DOI: 10.1155/2013/351309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/07/2013] [Indexed: 01/10/2023]
Abstract
This study was conducted to investigate the protective effect of erythropoietin (EPO) on ischemia/reperfusion related changes after testicular torsion/detorsion. In a randomized experimental trial 30 male rats were randomly allocated into six equal groups of five rats each. Group I (orchiectomy for histopathologic examination), group II (sham operation), group III (torsion for 2 hours, and ischemia/detorsion for 24 hours, and orchiectomy); group IV (torsion for 2 hours, ischemia/detorsion for 24 hours with erythropoietin injection then orchiectomy), group V (torsion for 2 hours and detorsion and EPO injection and orchiectomy 1 week later, group VI (torsion for 2 hours/detorsion and orchiectomy 1 week later). Two groups (groups 4 and 5) received different protocols of erythropoietin administration after testicular torsion/distortion. other groups were not receiving erythropoietin. Johnsen's spermatogenesis scoring method and Cosentino's histologic staging method were used to assess main outcome measures of the study. After the experimentation, Johnsen's score in EPO Groups was statistically different from the score in some groups not receiving erythropoietin. Cosentino's score in EPO groups was statistically different from the score in all groups not receiving erythropoietin. Neovascularization, vascular necrosis, vascular congestion, edema, hemorrhage, and acute inflammation were observed in some groups. This study shows short-term protective efficacy of erythropoietin on rat testicular injury after ischemia/reperfusion.
Collapse
|
49
|
Matějková Š, Scheuerle A, Wagner F, McCook O, Matallo J, Gröger M, Seifritz A, Stahl B, Vcelar B, Calzia E, Georgieff M, Möller P, Schelzig H, Radermacher P, Simon F. Carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine kidney ischemia/reperfusion injury. Intensive Care Med 2013; 39:497-510. [PMID: 23291730 DOI: 10.1007/s00134-012-2766-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/22/2012] [Indexed: 01/03/2023]
Abstract
PURPOSE To test the hypothesis that a carbamylated EPO-FC fusion protein (cEPO-FC) or recombinant human erythropoietin (rhEPO) would protect against kidney ischemia/reperfusion (I/R) injury in pigs with atherosclerosis. METHODS Anesthetized and mechanically ventilated animals received cEPO-FC (50 μg kg(-1)), rhEPO (5,000 IU kg(-1)), or vehicle (n = 9 per group) prior to 120 min of aortic occlusion and over 4 h of reperfusion. During aortic occlusion, mean arterial pressure (MAP) was maintained at 80-120 % of baseline values by esmolol, nitroglycerin, and ATP. During reperfusion, noradrenaline was titrated to keep MAP at pre-ischemic levels. Blood creatinine and neutrophil gelatinase-associated lipocalin (NGAL) levels, creatinine clearance, fractional Na(+) excretion, and HE and PAS staining were used to assess kidney function and histological damage. Plasma interleukin-6, tumor necrosis factor-α, nitrate + nitrite and 8-isoprostane levels were measured to assess systemic inflammation, and nitrosative and oxidative stress. RESULTS I/R caused acute kidney injury with reduced creatinine clearance, increased fractional Na(+) excretion and NGAL levels, moderate to severe glomerular and tubular damage and apoptosis, systemic inflammation and oxidative and nitrosative stress, but there were no differences between the treatment groups. Pre-ischemia nitrate + nitrite and 8-isoprostanes levels were lower and higher, respectively, than in healthy animals of a previous study, and immune histochemistry showed higher endothelial nitric oxide synthase and lower EPO receptor expression in pre-ischemia kidney biopsies than in biopsies from healthy animals. CONCLUSIONS In swine with atherosclerosis, rhEPO and cEPO-FC failed to attenuate prolonged ischemia-induced kidney injury within an 8-h reperfusion period, possibly due to reduced EPO receptor expression resulting from pre-existing oxidative stress and/or reduced NO release.
Collapse
Affiliation(s)
- Šárka Matějková
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Helmholtzstrasse 8-1, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Han F, Yu H, Zheng T, Ma X, Zhao X, Li P, Le L, Su Y, Zheng QY. Otoprotective effects of erythropoietin on Cdh23erl/erl mice. Neuroscience 2013; 237:1-6. [PMID: 23384607 DOI: 10.1016/j.neuroscience.2013.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The Cdh23(erl/erl) mice are a novel mouse model for DFNB12 and are characterized by progressive hearing loss. In this study, erythropoietin (EPO) was given to the Cdh23(erl/erl) mice by intraperitoneal injection every other day from P7 for 7 weeks. Phosphate-buffered saline-treated or untreated Cdh23(erl/erl) mice were used as controls. Auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) were measured in the mouse groups at the age of 4, 6 and 8 weeks. The results show that EPO can significantly decrease the ABR thresholds in the Cdh23(erl/erl) mice as compared with those of the untreated mice at stimulus frequencies of click, 8-, 16- and 32-kHz at three time points. Meanwhile, DPOAE amplitudes in the EPO-treated Cdh23(erl/erl) mouse group were significantly higher than those of the untreated groups at f2 frequency of 15383 Hz at the three time points. Furthermore, the mean percentage of outer hair cell loss at middle through basal turns of cochleae was significantly lower in EPO-treated Cdh23(erl/erl) mice than in the untreated mice (P<0.05). This is the first report that EPO acts as an otoprotectant in a DFNB12 mouse model with progressive hearing loss.
Collapse
Affiliation(s)
- F Han
- Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|