1
|
Liu B, Song F, Zhou X, Wu C, Huang H, Wu W, Li G, Wang Y. NEDD4L is a promoter for angiogenesis and cell proliferation in human umbilical vein endothelial cells. J Cell Mol Med 2024; 28:1-11. [PMID: 38526036 PMCID: PMC10962128 DOI: 10.1111/jcmm.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.
Collapse
Affiliation(s)
- Binghong Liu
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Huizhu Huang
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Yan Wang
- Medical CollegeGuangxi UniversityNanningGuangxiChina
- Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
2
|
Niu ZJ, Yao S, Zhang X, Mu JJ, Du MF, Zou T, Chu C, Liao YY, Hu GL, Chen C, Wang D, Ma Q, Yan Y, Jia H, Wang KK, Sun Y, Yan RC, Man ZY, Ren DF, Wang L, Gao WH, Li H, Wu YX, Li CH, Gao K, Zhang J, Yang TL, Wang Y. Associations of genetic variations in NEDD4L with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Clin Hypertens (Greenwich) 2022; 24:1381-1389. [PMID: 36039789 PMCID: PMC9581093 DOI: 10.1111/jch.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), a member of the E3 ubiquitin-protein ligases, encoded by NEDD4L gene, was found to be involved in in salt sensitivity by regulating sodium reabsorption in salt-sensitive rats. The authors aimed to explore the associations of NEDD4L genetic variants with salt sensitivity, blood pressure (BP) changes and hypertension incidence in Chinese adults. Participants from 124 families in Northern China in the Baoji Salt-Sensitive Study Cohort in 2004, who received the chronic salt intake intervention, including a 7-day low-salt diet (3.0 g/day) and a 7-day high-salt diet (18 g/day), were analyzed. Besides, the development of hypertension over 14 years was evaluated. NEDD4L single nucleotide polymorphism (SNP) rs74408486 was shown to be significantly associated with systolic BP (SBP), diastolic BP (DBP) and mean arterial pressure (MAP) responses to low-salt diet, while SNPs rs292449 and rs2288775 were significantly associated with pulse pressure (PP) response to high-salt diet. In addition, SNP rs4149605, rs73450471, and rs482805 were significantly associated with the longitudinal changes in SBP, DBP, MAP, or PP at 14 years of follow-up. SNP rs292449 was significantly associated with hypertension incidence over the 14-year follow-up. Finally, this gene-based analysis found that NEDD4L was significantly associated with longitudinal BP changes and the incidence of hypertension over the 14-year follow-up. This study indicated that gene polymorphism in NEDD4L serve an important function in salt sensitivity, longitudinal BP change and development of hypertension in the Chinese population.
Collapse
Affiliation(s)
- Ze-Jiaxin Niu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Ming-Fei Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Ting Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Chao Chu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yue-Yuan Liao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Gui-Lin Hu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yu Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke-Ke Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yue Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Rui-Chen Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Zi-Yue Man
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan-Feng Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Wang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wei-Hua Gao
- Department of Cardiology, Xi'an No.1 Hospital, Xi'an, China
| | - Hao Li
- Department of Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong-Xing Wu
- Department of Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hua Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an, China
| | - Ke Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhang
- Department of Cardiology, Xi'an People's Hospital, Xi'an, China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| |
Collapse
|
3
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
4
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ishigami T, Kino T, Minegishi S, Araki N, Umemura M, Ushio H, Saigoh S, Sugiyama M. Regulators of Epithelial Sodium Channels in Aldosterone-Sensitive Distal Nephrons (ASDN): Critical Roles of Nedd4L/Nedd4-2 and Salt-Sensitive Hypertension. Int J Mol Sci 2020; 21:ijms21113871. [PMID: 32485919 PMCID: PMC7312533 DOI: 10.3390/ijms21113871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a representative, reversible biological process of the post-translational modification of various proteins with multiple catalytic reaction sequences, including ubiquitin itself, in addition to E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, E3 ubiquitin ligase, deubiquitinating enzymes, and proteasome degradation. The ubiquitin–proteasome system is known to play a pivotal role in various molecular life phenomena, including the cell cycle, protein quality, and cell surface expressions of ion-transporters. As such, the failure of this system can lead to cancer, neurodegenerative diseases, cardiovascular diseases, and hypertension. This review article discusses Nedd4-2/NEDD4L, an E3-ubiquitin ligase involved in salt-sensitive hypertension, drawing from detailed genetic dissection analysis and the development of genetically engineered mice model. Based on our analyses, targeting therapeutic regulations of ubiquitination in the fields of cardio-vascular medicine might be a promising strategy in future. Although the clinical applications of this strategy are limited, compared to those of kinase systems, many compounds with a high pharmacological activity were identified at the basic research level. Therefore, future development could be expected.
Collapse
|
6
|
Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev 2020; 24:343-357. [PMID: 30645721 PMCID: PMC6476827 DOI: 10.1007/s10741-018-09765-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Sihle Mabhida
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Faghri February
- Department of Haematology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| |
Collapse
|
7
|
Zhang J, Gong WY, Liu M, Zhou W, Rao J, Li YQ, Wu JH, Luo D, Wang C, Peng H. A Variant in the NEDD4L Gene Associates With Hypertension in Chronic Kidney Disease in the Southeastern Han Chinese Population. Am J Hypertens 2020; 33:341-349. [PMID: 31993646 DOI: 10.1093/ajh/hpaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND "Neuronal precursor cell expressed developmentally down-regulated 4-like" (NEDD4L) is considered a candidate gene for hypertension-both functionally and genetically-through the regulation of the ubiquitination of the epithelial sodium channel (ENaC). This study explores the relationship between genetic variation in NEDD4L and hypertension with chronic kidney disease (CKD) in the southeastern Han Chinese population. METHODS We recruited 623 CKD patients and measured ambulatory blood pressure monitoring (ABPM), and the rs4149601 and rs2288774 polymorphisms in NEDD4L were genotyped using quantitative polymerase chain reaction. RESULTS For rs4149601, significant differences in genotype frequencies in an additive model (GG vs. GA vs. AA) were observed between normotensive patients and hypertensive patients when hypertension was classified into ambulatory hypertension, clinical hypertension, and ambulatory systolic hypertension (P = 0.038, 0.005, and 0.006, respectively). In a recessive model (GG + GA vs. AA), the frequency of the AA genotype of rs4149601 in the hypertension groups was all higher than that in the normotensive groups. The genotype distribution of rs2288774 did not differ significantly between the normotensive and hypertensive patients. In both the full cohort and the propensity score matching (PSM) cohort, the AA genotype of rs4149601 (compared with the GG + GA genotype group) was independently correlated with ambulatory hypertension, clinical hypertension, and ambulatory systolic hypertension by multivariate logistic regression analysis. CONCLUSIONS The present study indicates that the AA genotype of rs4149601 associates with hypertension in CKD. Consequently, the rs4149601 A allele might be a risk factor for hypertension with CKD.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wen-yu Gong
- Division of Nephrology, Department of Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Man Liu
- Division of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenying Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jialing Rao
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan-qing Li
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-hao Wu
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan Luo
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hui Peng
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy. Pharmacogenet Genomics 2020; 29:18-22. [PMID: 30489456 DOI: 10.1097/fpc.0000000000000361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy.
Collapse
|
9
|
Eadon MT, Kanuri SH, Chapman AB. Pharmacogenomic studies of hypertension: paving the way for personalized antihypertensive treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:33-47. [PMID: 29888336 DOI: 10.1080/23808993.2018.1420419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction Increasing clinical evidence supports the implementation of genotyping for anti-hypertensive drug dosing and selection. Despite robust evidence gleaned from clinical trials, the translation of genotype guided therapy into clinical practice faces significant challenges. Challenges to implementation include the small effect size of individual variants and the polygenetic nature of antihypertensive drug response, a lack of expert consensus on dosing guidelines even without genetic information, and proper definition of major antihypertensive drug toxicities. Balancing clinical benefit with cost, while overcoming these challenges, remains crucial. Areas covered This review presents the most impactful clinical trials and cohorts which continue to inform and guide future investigation. Variants were selected from among those identified in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR), the Genetic Epidemiology of Responses to Antihypertensives study (GERA), the Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study, the SOPHIA study, the Milan Hypertension Pharmacogenomics of hydro-chlorothiazide (MIHYPHCTZ), the Campania Salute Network, the International Verapamil SR Trandolapril Study (INVEST), the Nordic Diltiazem (NORDIL) Study, GenHAT, and others. Expert Commentary The polygenic nature of antihypertensive drug response is a major barrier to clinical implementation. Further studies examining clinical effectiveness are required to support broad-based implementation of genotype-based prescribing in medical practice.
Collapse
Affiliation(s)
- Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sri H Kanuri
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
10
|
Minegishi S, Ishigami T, Kawamura H, Kino T, Chen L, Nakashima-Sasaki R, Doi H, Azushima K, Wakui H, Chiba Y, Tamura K. An Isoform of Nedd4-2 Plays a Pivotal Role in Electrophysiological Cardiac Abnormalities. Int J Mol Sci 2017; 18:ijms18061268. [PMID: 28613240 PMCID: PMC5486090 DOI: 10.3390/ijms18061268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 (SCN5A) gene encodes the α subunit of the human cardiac voltage-gated sodium channel (I Na), and the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes rapidly activating delayed rectifier K channels (I Kr). Both ion channels have also been shown to bind to Nedd4-2 via a conserved Proline-Tyrosine (PY) motif in C-terminal with subsequent ubiquitination and degradation by proteasome. Therefore, loss of Nedd4-2 C2 isoform might be involved in electrophysiological impairment under various conditions. We demonstrate here that Nedd4-2 C2 isoform causes cardiac conduction change in resting condition as well as proarrhythmic change after acute myocardial infarction (MI). The Nedd4-2 C2 knockout (KO) mice showed bradycardia, prolonged QRS, QT intervals, and suppressed PR interval in resting condition. In addition, enhancement of T peak/T end interval was found in mice with surgical ligation of the distal left coronary artery. Morphological analyses based on both ultrasonography of the living heart, as well as histopathological findings revealed that Nedd4-2 C2 KO mice show no significant structural changes from wild-type littermates under resting conditions. These results suggested that Nedd4-2 with C2 domain might play an important role in cardio-renal syndrome through post-transcriptional modification of both ENaC and cardiac ion channels, which are critical for kidney and heart functions.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hisho Kawamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Tabito Kino
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Lin Chen
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Rie Nakashima-Sasaki
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Yumi Chiba
- Department of Nursing, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
11
|
Zaiou M, El Amri H. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine. Clin Genet 2017; 91:355-370. [PMID: 27714756 DOI: 10.1111/cge.12881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The basic causes of CVD are not fully understood yet. Substantial evidence suggests that genetic predisposition plays a vital role in the physiopathology of this complex disease. Hence, identification of genetic contributors to CVD will likely add diagnostic accuracy and better prediction of an individual's risk. With high-throughput genetics and genomics technology and newer genome-wide study approaches, a number of genetic variations across the human genome were uncovered. Evidence suggests that genetic defects could influence CVD development and inter-individual responses to widely used cardiovascular drugs like clopidogrel, aspirin, warfarin, and statins, and therefore, they may be integrated into clinical practice. If clinically validated, better understanding of these genetic variations may provide new opportunities for personalized diagnostic, pharmacogenetic-based drug selection and best treatment in personalized medicine. However, numerous gaps remain unsolved due to the lack of underlying pathological mechanisms for how genetic predisposition could contribute to CVD. This review provides an overview of the extraordinary scientific progress in our understanding of genetic and genomic basis of CVD as well as the development of relevant genetic biomarkers for this disease. Some of the actual limitations to the promise of these markers and their translation for the benefit of patients will be discussed.
Collapse
Affiliation(s)
- M Zaiou
- Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Rabat, Maroc
| |
Collapse
|
12
|
Minegishi S, Ishigami T, Kino T, Chen L, Nakashima-Sasaki R, Araki N, Yatsu K, Fujita M, Umemura S. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice. Sci Rep 2016; 6:27137. [PMID: 27256588 PMCID: PMC4891730 DOI: 10.1038/srep27137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/13/2016] [Indexed: 11/14/2022] Open
Abstract
Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Tomoaki Ishigami
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Tabito Kino
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Lin Chen
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Rie Nakashima-Sasaki
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Naomi Araki
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Keisuke Yatsu
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Megumi Fujita
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Satoshi Umemura
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| |
Collapse
|
13
|
Eadon MT, Chapman AB. A Physiologic Approach to the Pharmacogenomics of Hypertension. Adv Chronic Kidney Dis 2016; 23:91-105. [PMID: 26979148 DOI: 10.1053/j.ackd.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a multifactorial condition with diverse physiological systems contributing to its pathogenesis. Individuals exhibit significant variation in their response to antihypertensive agents. Traditional markers, such as age, gender, diet, plasma renin level, and ethnicity, aid in drug selection. However, this review explores the contribution of genetics to facilitate antihypertensive agent selection and predict treatment efficacy. The findings, reproducibility, and limitations of published studies are examined, with emphasis placed on candidate genetic variants affecting drug metabolism, the renin-angiotensin system, adrenergic signalling, and renal sodium reabsorption. Single-nucleotide polymorphisms identified and replicated in unbiased genome-wide association studies of hypertension treatment are reviewed to illustrate the evolving understanding of the disease's complex and polygenic pathophysiology. Implementation efforts at academic centers seek to overcome barriers to the broad adoption of pharmacogenomics in the treatment of hypertension. The level of evidence required to support the implementation of pharmacogenomics in clinical practice is considered.
Collapse
|
14
|
Recent Advances in the Genetics of Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:561-581. [PMID: 27957710 DOI: 10.1007/5584_2016_75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypertension is a silent killer worldwide, caused by both genetic and environmental factors. Until now, genetic and genomic association studies of hypertension are reporting different degree of association on hypertension. Hence, it is essential to gather all the available information on the reported genetic loci and to determine if any biomarker(s) is/are significantly associated with hypertension. Current review concluded the potential biomarkers for hypertension, with regards to electrolyte and fluid transports, as well as sodium/potassium ions homeostasis, which are supported by the results of case-controls and meta-analyses.
Collapse
|
15
|
Genetic variation in NEDD4L, salt sensitivity, and hypertension: human NEDD4L rs4149601 G allele generates evolutionary new isoform I with C2 domain. J Hypertens 2015; 32:1905-6. [PMID: 25098786 DOI: 10.1097/hjh.0000000000000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene 2014; 557:1-10. [PMID: 25433090 DOI: 10.1016/j.gene.2014.11.051] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Pranay Goel
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
17
|
Genetic variation in NEDD4L, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J Hypertens 2014; 32:294-9. [PMID: 24284497 DOI: 10.1097/hjh.0000000000000044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We have previously shown that genetic variance in NEDD4L, a regulating protein of a sodium channel in the distal nephron, has been associated with marginally higher blood pressure and enhanced salt sensitivity. Here, we tested if the genetic NEDD4L variation previously associated with salt sensitivity is related to population blood pressure, incidence of cardiovascular disease (CVD) and mortality. METHOD We genotyped the rs4149601 A→G and rs2288774 T→C NEDD4L variants in 27,564 participants of the Malmö Diet and Cancer Study. The genotype combination previously shown to be associated with salt sensitivity (rs4149601 GG+rs2288774 CC), which was present in 9.6% of participants, was related to cross sectional blood pressure as well as to CVD incidence and mortality during a median follow-up time of 14 years using Cox regression models. RESULTS Carriers of the NEDD4L salt sensitivity-associated genotype had (mean ± SEM) higher systolic (142 ± 0.4 vs. 141 ± 0.1 mmHg, P = 0.002) and diastolic (86.0 ± 0.5 vs. 85.6 ± 0.2 mmHg, P = 0.025) blood pressure and multivariate adjusted hazards ratio (95% confidence interval) of CVD 1.13 (1.02-1.25, P = 0.018), coronary events 1.20 (1.06-1.37; P = 0.005) and cardiovascular mortality 1.17 (0.99-1.37; P = 0.055) than noncarriers but there was no significant difference in the incidence of stroke and total mortality. CONCLUSION The NEDD4L salt sensitivity-associated genotype was associated with higher blood pressure, which may translate into increased risk for CVD morbidity and mortality. Interestingly, there was no association with stroke suggesting that the association is partially blood pressure independent.
Collapse
|
18
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This article reviews recent literature published over the period March 2012-August 2013 on antidepressant pharmacogenetics, with a focus on clinical translation and methodological challenges. RECENT FINDINGS Recently, various polymorphisms associated with differential antidepressant efficacy, tolerability, and safety have emerged in association studies, but mixed findings, limited effect sizes, and poor control of confounders have prevented findings translating to practice. Although promising steps have been made, empirically robust clinically translatable pharmacogenetic tests are not yet established. The complex neurobiology of major depressive disorder (MDD) together with the evolving understanding of genetic processes present research challenges for clinical translation. SUMMARY Early reports of clinical utility are published. The current evidence base for antidepressant pharmacogenetics is, however, not yet empirically robust enough to inform routine prescribing guidelines. Over the coming years, genetically guided versus unguided trials will help determine if antidepressant pharmacogenetics merits more widespread application.
Collapse
|
20
|
Liang H, Wu X, Chen X, Wang Y, Li Y, Pan B, Li M, Liu H. Gender difference in association of NEDD4L gene variants among southern Han Chinese with essential hypertension – a population-based case–control study. Clin Exp Hypertens 2013; 36:309-14. [DOI: 10.3109/10641963.2013.827693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J Hypertens 2013; 31:698-704. [PMID: 23353631 DOI: 10.1097/hjh.0b013e32835e2a71] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Single-nucleotide polymorphisms (SNPs) in NEDD4L may influence the ability of the NEDD4L protein to reduce epithelial sodium channel expression. A variant in NEDD4L, rs4149601, was associated with antihypertensive response and cardiovascular outcomes during treatment with thiazide diuretics and β-blockers in a Swedish population. We sought to further evaluate associations between NEDD4L polymorphisms, blood pressure response and cardiovascular outcomes with thiazide diuretics and β-blockers. METHODS Four SNPs, rs4149601, rs292449, rs1008899 and rs75982813, were genotyped in 767 patients from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) clinical trial and association was assessed with blood pressure response to hydrochlorothiazide and atenolol. One SNP, rs4149601, was also genotyped in 1345 patients from the International Verapmil SR Trandolapril Study (INVEST), and association was examined with adverse cardiovascular outcomes relative to hydrochlorothiazide treatment. RESULTS Significant associations or trends were found between rs4149601, rs292449, rs75982813 and rs1008899 and decreases in blood pressure in whites on hydrochlorothiazide, and a significant association was observed with increasing copies of the GC rs4149601-rs292449 haplotype and greater blood pressure response to hydrochlorothiazide in whites (P = 0.0006 and 0.006, SBP and DBP, respectively). Significant associations were also seen with rs4149601 and an increased risk for adverse cardiovascular outcomes in whites not treated with hydrochlorothiazide [P = 0.022, odds ratio (95% confidence interval) = 10.65 (1.18-96.25)]. CONCLUSION NEDD4L rs4149601, rs292449 and rs75982813 may be predictors for blood pressure response to hydrochlorothiazide in whites, and NEDD4L rs4149601 may be a predictor for adverse cardiovascular outcomes in whites not treated with hydrochlorothiazide.
Collapse
|
22
|
Gandolgor TA, Ohara H, Cui ZH, Hirashima T, Ogawa T, Saar K, Hübner N, Watanabe T, Isomura M, Nabika T. Two genomic regions of chromosomes 1 and 18 explain most of the stroke susceptibility under salt loading in stroke-prone spontaneously hypertensive rat/Izm. Hypertension 2013; 62:55-61. [PMID: 23690346 DOI: 10.1161/hypertensionaha.111.00488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the genetic mechanisms of stroke susceptibility in the stroke-prone spontaneously hypertensive rat (SHRSP), a quantitative trait locus (QTL) analysis was performed. Using 295 F2 rats of a cross between SHRSP/Izm and SHR/Izm, 2 major QTLs for stroke latency under salt loading were identified on chromosomes (chr) 1 and 18. Evaluation of 6 reciprocal single and double congenic rats for these QTLs showed that substitution of the SHRSP for the SHR fragment at the chr 1 and 18 QTLs increased the relative risk for stroke by 8.4 and 5.0, respectively. The combined effect of the 2 QTLs was 10× greater than that of the background genome (by Cox hazard model). Blood pressure monitoring by radio telemetry indicated that the combination of the 2 QTLs had a clear effect on the salt-dependent blood pressure increase, suggesting an important role for the salt-sensitive blood pressure increase in the susceptibility of SHRSP to stroke. A haplotype analysis of 11 substrains of SHRSP and SHR using 340 simple sequence repeat markers in the chr 1 QTL suggested that the 7-Mbp fragment between D1Rat260 and D1Rat178 was most likely to harbor the responsible gene(s), which was confirmed by a study of additional subcongenic strains. This study indicated a major role for 2 QTLs on chr 1 and 18 in stroke susceptibility in SHRSP under salt loading. The salt-sensitive blood pressure increase was implied to play a key role in the stroke susceptibility.
Collapse
Affiliation(s)
- Tsend-Ayush Gandolgor
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang YL, Liang HY, Gao YH, Wu XJ, Chen X, Pan BY, Yang XX, Liu HZ. A functional variant of NEDD4L is associated with obesity and related phenotypes in a Han population of Southern China. Int J Mol Sci 2013; 14:7433-44. [PMID: 23549273 PMCID: PMC3645694 DOI: 10.3390/ijms14047433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 01/22/2023] Open
Abstract
NEDD4L is a candidate gene for hypertension, both functionally and genetically. Recently, studies showed evidence for the association of NEDD4L with obesity, a key intermediate phenotype in hypertension. To further investigate the relationship between NEDD4L and body mass-related phenotypes, we genotyped three common variants (rs2288774, rs3865418 and rs4149601) in a population-based study of 892 unrelated Han Cantonese using the Sequenom MALDI-TOF-MS platform. Allele frequencies and genotype distribution were calculated in lean controls and overweight/obese cases and analyzed for association by the Chi-squared test and Logistic regression. Linear regression analysis was used to analyze the effect of individual genotypes on quantitative traits. Multivariate analyses demonstrated that the minor allele of rs4149601(A = 20.9%) was associated with a 2.60 kg, 2.78 cm and 0.97 kg/m2 decrease per allele copy in weight, waist and BMI, respectively. Carriers of this allele also had a significant lower risk of overweight/obesity (p < 0.0001, OR = 0.52, 95% CI: 0.37–0.74) as compared to non-carriers. However, no significant association between genotypes at rs2288774 and rs3865418 and covariate-adjusted overweight/obesity or any related phenotypes was observed. These results suggested that the functional variant of NEDD4L, rs4149601, may be associated with obesity and related phenotypes, and further genetic and functional studies are required to understand its role in the manifestation of obesity.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
| | - Hui-Ying Liang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
| | - Yun-He Gao
- Guangzhou Women and Children Medical Center, Guangzhou 510623, China; E-Mail:
| | - Xue-Ji Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
| | - Xi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
| | - Bing-Ying Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
| | - Xue-Xi Yang
- School of Biotechnology, Southern Medical University, Guangzhou 510515, China
- Authors to whom correspondence should be addressed; E-Mails: (H.-Z.L.); (X.-X.Y.); Tel.: +86-20-3605-2382 (H.-Z.L.); Fax: +86-20-3605-5896 (H.-Z.L.); Tel./Fax: +86-20-6164-8550 (X.-X.Y.)
| | - Hua-Zhang Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; E-Mails: (Y.-L.W.); (H.-Y.L.); (X.-J.W.); (X.C.); (B.-Y.P.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-Z.L.); (X.-X.Y.); Tel.: +86-20-3605-2382 (H.-Z.L.); Fax: +86-20-3605-5896 (H.-Z.L.); Tel./Fax: +86-20-6164-8550 (X.-X.Y.)
| |
Collapse
|
24
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
|
26
|
A functional variant of the NEDD4L gene is associated with beneficial treatment response with β-blockers and diuretics in hypertensive patients. J Hypertens 2011; 29:388-95. [PMID: 21052022 DOI: 10.1097/hjh.0b013e3283410390] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The capability of the protein NEDD4L to reduce renal tubular expression of epithelial Na+ channel (ENaC) is influenced by a functional rs4149601 G→A NEDD4L polymorphism. As diuretics and β-blockers inhibit renal sodium reabsorption and renin release, respectively, we hypothesized that the β-blocker or diuretic-induced blood pressure reduction and prevention of cardiovascular disease would be greater in patients with the highest ENaC expression (rs4149601 G-allele), whereas there would be no such genetically mediated differences in treatment efficacy among patients treated with the vasodilator diltiazem. METHODS We related rs4149601 status to 6-month blood pressure reduction and risk of cardiovascular events in 5152 hypertensive patients (DBP ≥ 100 mmHg) from the Nordic Diltiazem Study (NORDIL) randomized to either β-blocker and/or diuretic-based treatment or diltiazem-based treatment. RESULTS In patients on β-blocker or diuretic monotherapy, carriers of the G-allele had greater SBP reduction (19.5 ± 16.8 vs. 15.0 ± 19.3 mmHg, P < 0.001) and DBP reduction (15.4 ± 8.3vs. 14.1 ± 8.4 mmHg, P = 0.02) and during 4.5 years of follow-up among patients randomized to β-blockers and/or diuretics, carriers of the G-allele had greater protection from cardiovascular events [relative risk (RR) = 0.52, 95% confidence interval (CI) = 0.36-0.74, P < 0.001] as compared to AA homozygotes. Within the diltiazem group, there was no difference in blood pressure reduction or risk of cardiovascular events according to genotype. CONCLUSION The functional NEDD4L rs4149601 polymorphism influences the efficacy of β-blocker and/or diuretic-based antihypertensive treatment both in terms of blood pressure reduction and cardiovascular disease protection, whereas diltiazem-based antihypertensive treatment efficacy is not influenced by this NEDD4L polymorphism.
Collapse
|
27
|
Brown MB, Haack KKV, Pollack BP, Millard-Stafford M, McCarty NA. Low abundance of sweat duct Cl- channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise. Am J Physiol Regul Integr Comp Physiol 2011; 300:R605-15. [PMID: 21228336 PMCID: PMC3064278 DOI: 10.1152/ajpregu.00660.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/06/2011] [Indexed: 11/22/2022]
Abstract
To understand potential mechanisms explaining interindividual variability observed in human sweat sodium concentration ([Na(+)]), we investigated the relationship among [Na(+)] of thermoregulatory sweat, plasma membrane expression of Na(+) and Cl(-) transport proteins in biopsied human eccrine sweat ducts, and basal levels of vasopressin (AVP) and aldosterone. Lower ductal luminal membrane expression of the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) was observed in immunofluorescent staining of sweat glands from healthy young adults identified as exceptionally "salty sweaters" (SS) (n = 6, P < 0.05) and from patients with cystic fibrosis (CF) (n = 6, P < 0.005) compared with ducts from healthy young adults with "typical" sweat [Na(+)] (control, n = 6). Genetic testing of healthy subjects did not reveal any heterozygotes ("carriers") for any of the 39 most common disease-causing CFTR mutations in the United States. SS had higher baseline plasma [AVP] compared with control (P = 0.029). Immunostaining to investigate a potential relationship between higher plasma [AVP] (and sweat [Na(+)]) and ductal membrane aquaporin-5 revealed for all groups a relatively sparse and location-dependent ductal expression of the water channel with localization primarily to the secretory coil. Availability of CFTR for NaCl transport across the ductal membrane appears related to the significant physiological variability observed in sweat salt concentration in apparently healthy humans. At present, a heritable link between healthy salty sweaters and the most prevalent disease-causing CFTR mutations cannot be established.
Collapse
Affiliation(s)
- Mary Beth Brown
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, USA.
| | | | | | | | | |
Collapse
|
28
|
Altered regulation of the epithelial sodium channel in hypertension. From genes to therapeutics. J Hypertens 2011; 29:204-6. [DOI: 10.1097/hjh.0b013e328341dcda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ruffieux-Daidié D, Staub O. Intracellular ubiquitylation of the epithelial Na+ channel controls extracellular proteolytic channel activation via conformational change. J Biol Chem 2010; 286:2416-24. [PMID: 21084303 DOI: 10.1074/jbc.m110.176156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na(+) channel ENaC is a key player in the maintenance of whole body Na(+) balance, and consequently of blood pressure. It is tightly regulated by numerous signaling pathways including ubiquitylation via the ubiquitin-protein ligase Nedd4-2. This mechanism is itself under the control of several kinases, which phosphorylate Nedd4-2, thereby interfering with ENaC/Nedd4-2 interaction, or by Usp2-45, which binds to and deubiquitylates ENaC. Another, different regulatory mechanism concerns the proteolytic activation of ENaC, during which the channel is cleaved on its luminal side by intracellular convertases such as furin, and further activated by extracellular proteases such as CAP-1. This process is regulated as well but the underlying mechanisms are not understood. Previously, evidence was provided that the ubiquitylation status of ENaC may affect the cleavage of the channel. When ubiquitylation of ENaC was reduced, either by co-expressing Usp2-45, or mutating either the ENaC PY-motifs (i.e. the binding sites for Nedd4-2) or intracellular lysines (i.e. ubiquitylation sites), the level of channel cleavage was increased. Here we demonstrate that lysine-mutated ENaC channels are not ubiquitylated at the cell surface, are preferentially cleaved, and Usp2-45 does not affect their cleavage efficiency. We further show by limited proteolysis that the intracellular ubiquitylation status of ENaC affects the extracellular conformation of αENaC, by demonstrating that non-ubiquitylated channels are more efficiently cleaved when treated with extracellularly added trypsin or chymotrypsin. These results present a new paradigm in which an intracellular, post-translational modification (e.g. ubiquitylation) of a transmembrane protein can affect its extracellular conformation.
Collapse
|
30
|
Scerri TS, Paracchini S, Morris A, MacPhie IL, Talcott J, Stein J, Smith SD, Pennington BF, Olson RK, DeFries JC, Monaco AP. Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS One 2010; 5:e13712. [PMID: 21060895 PMCID: PMC2965662 DOI: 10.1371/journal.pone.0013712] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. METHODOLOGY/PRINCIPAL FINDINGS Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). CONCLUSIONS Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.
Collapse
Affiliation(s)
- Thomas S. Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Silvia Paracchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - I. Laurence MacPhie
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joel Talcott
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - John Stein
- Department of Physiology, University of Oxford, Oxford, United Kingdom
| | - Shelley D. Smith
- Department of Pediatrics and Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bruce F. Pennington
- Department of Psychology, University of Denver, Denver, Colorado, United States of America
| | - Richard K. Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - John C. DeFries
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Luo F, Hui R. Response to Human Nedd4L rs4149601 G Allele Generates Evolutionary New Isoform I With C2 Domain. Hypertension 2010. [DOI: 10.1161/hypertensionaha.109.146910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fang Luo
- Hypertension Division, Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- Hypertension Division, Department of Cardiology, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education, FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Ishigami T, Araki N, Umemura S. Human Nedd4L rs4149601 G allele generates evolutionary new isoform I with C2 domain. Hypertension 2009; 55:e10; author reply e11. [PMID: 20038744 DOI: 10.1161/hypertensionaha.109.146738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Araki N, Ishigami T, Ushio H, Minegishi S, Umemura M, Miyagi Y, Aoki I, Morinaga H, Tamura K, Toya Y, Uchino K, Umemura S. Identification of NPC2 protein as interaction molecule with C2 domain of human Nedd4L. Biochem Biophys Res Commun 2009; 388:290-6. [DOI: 10.1016/j.bbrc.2009.07.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
34
|
Luo F, Wang Y, Wang X, Sun K, Zhou X, Hui R. A Functional Variant of
NEDD4L
Is Associated With Hypertension, Antihypertensive Response, and Orthostatic Hypotension. Hypertension 2009; 54:796-801. [DOI: 10.1161/hypertensionaha.109.135103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Fang Luo
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojian Wang
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianliang Zhou
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- From the Hypertension Division, Department of Cardiology (F.L., X.Z., R.H.), and Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education (Y.W., X.W., K.S., R.H.), FuWai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Garrone NF, Blazer-Yost BL, Weiss RB, Lalouel JM, Rohrwasser A. A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain. BMC Cell Biol 2009; 10:26. [PMID: 19364400 PMCID: PMC2678989 DOI: 10.1186/1471-2121-10-26] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/13/2009] [Indexed: 11/17/2022] Open
Abstract
Background Ubiquitination serves multiple cellular functions, including proteasomal degradation and the control of stability, function, and intracellular localization of a wide variety of proteins. NEDD4L is a member of the HECT class of E3 ubiquitin ligases. A defining feature of NEDD4L protein isoforms is the presence or absence of an amino-terminal C2 domain, a class of subcellular, calcium-dependent targeting domains. We previously identified a common variant in human NEDD4L that generates isoforms that contain or lack a C2 domain. Results To address the potential functional significance of the NEDD4L common variant on NEDD4L subcellular localization, NEDD4L isoforms that either contained or lacked a C2 domain were tagged with enhanced green fluorescent protein, transfected into Xenopus laevis kidney epithelial cells, and imaged by performing confocal microscopy on live cells. We report that the presence or absence of this C2 domain exerts differential effects on the subcellular distribution of NEDD4L, the ability of C2 containing and lacking NEDD4L isoforms to mobilize in response to a calcium stimulus, and the intracellular transport of subunits of the NEDD4L substrate, ENaC. Furthermore, the ability of the C2-containing isoform to influence β-ENaC mobilization from intracellular pools involves the NEDD4L active site for ubiquitination. We propose a model to account for the potential impact of this common genetic variant on protein function at the cellular level. Conclusion NEDD4L isoforms that contain or lack a C2 domain target different intracellular locations. Additionally, whereas the C2-containing NEDD4L isoform is capable of shuttling between the plasma membrane and intracellular compartments in response to calcium stimulus the C2-lacking isoform can not. The C2-containing isoform differentially affects the mobilization of ENaC subunits from intracellular pools and this trafficking step requires NEDD4L ubiquitin ligase activity. This observation suggests a new mechanism for the requirement for the PY motif in cAMP-mediated exocytosis of ENaC. We have elucidated how a common genetic variant can underlie significant functional diversity in NEDD4L at the cellular level. We propose a model that describes how that functional variation may influence blood pressure. Moreover, our observations regarding differential function of the NEDD4L isoforms may impact other aspects of physiology that involve this ubiquitin ligase.
Collapse
Affiliation(s)
- Nicholas F Garrone
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, USA.
| | | | | | | | | |
Collapse
|
36
|
Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 2009; 458:111-35. [PMID: 19277701 DOI: 10.1007/s00424-009-0656-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/29/2022]
Abstract
The aldosterone-sensitive distal nephron (ASDN) includes the late distal convoluted tubule 2, the connecting tubule (CNT) and the collecting duct. The appropriate regulation of sodium (Na(+)) absorption in the ASDN is essential to precisely match urinary Na(+) excretion to dietary Na(+) intake whilst taking extra-renal Na(+) losses into account. There is increasing evidence that Na(+) transport in the CNT is of particular importance for the maintenance of body Na(+) balance and for the long-term control of extra-cellular fluid volume and arterial blood pressure. Na(+) transport in the CNT critically depends on the activity and abundance of the amiloride-sensitive epithelial sodium channel (ENaC) in the luminal membrane of the CNT cells. As a rate-limiting step for transepithelial Na(+) transport, ENaC is the main target of hormones (e.g. aldosterone, angiotensin II, vasopressin and insulin/insulin-like growth factor 1) to adjust transepithelial Na(+) transport in this tubular segment. In this review, we highlight the structural and functional properties of the CNT that contribute to the high Na(+) transport capacity of this segment. Moreover, we discuss some aspects of the complex pathways and molecular mechanisms involved in ENaC regulation by hormones, kinases, proteases and associated proteins that control its function. Whilst cultured cells and heterologous expression systems have greatly advanced our knowledge about some of these regulatory mechanisms, future studies will have to determine the relative importance of the various pathways in the native tubule and in particular in the CNT.
Collapse
|
37
|
Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 2009; 17:533-40. [PMID: 18695396 DOI: 10.1097/mnh.0b013e328308fff3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Epithelial sodium channel (ENaC) activity is limiting for sodium reabsorption in the distal nephron. Humans regulate blood pressure by fine-tuning sodium balance through control of ENaC. ENaC dysfunction causes some hypertensive and renal salt wasting diseases. Thus, it is critical to understand the cellular mechanisms controlling ENaC activity. RECENT FINDINGS ENaC is sensitive to phosphatidylinositol 4,5-bisphosphate (PIP2), the target of phospholipase C-mediated metabolism, and phosphatidylinositiol 3,4,5-trisphosphate (PIP3), the product of phosphatidylinositide 3-OH kinase (PI3-K). PIP2 is permissive for ENaC gating possibly interacting directly with the channel. Activation of distal nephron P2Y receptors tempers ENaC activity by promoting PIP2 metabolism. This is important because gene deletion of P2Y2 receptors causes hypertension associated with hyperactive ENaC. Aldosterone, the final hormone in a negative-feedback cascade activated by decreases in blood pressure, increases ENaC activity. PIP3 sits at a critical bifurcation in the aldosterone-signaling cascade, increasing ENaC open probability and number. PIP3-effectors mediate increases in ENaC number by suppressing channel retrieval. PIP3 binds ENaC, at a site distinct from that important to PIP2 regulation, to modulate directly open probability. SUMMARY Phosphoinositides play key roles in physiologic control of ENaC and perhaps dysregulation plays a role in disease associated with abnormal renal sodium handling.
Collapse
|
38
|
Affiliation(s)
- Bernard C. Rossier
- From the Department of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | - Laurent Schild
- From the Department of Pharmacology and Toxicology, University of Lausanne, Switzerland
| |
Collapse
|
39
|
Apport des modèles d’hypertension artérielle monogénique à la compréhension des autres hypertensions artérielles. Nephrol Ther 2008; 4:312-9. [DOI: 10.1016/j.nephro.2008.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/21/2022]
|
40
|
Zhu H, Guo D, Li K, Yan W, Tan Y, Wang X, Treiber FA, Chao J, Snieder H, Dong Y. Prostasin: a possible candidate gene for human hypertension. Am J Hypertens 2008; 21:1028-33. [PMID: 18583984 DOI: 10.1038/ajh.2008.224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prostasin, a serine protease, is suggested to be a novel mechanism regulating the epithelial sodium channel (ENaC) expressed in the distal nephron. This study aimed to evaluate whether the human prostasin gene is a novel candidate gene underlying blood pressure (BP) elevation. METHODS In a sample of healthy African-American (AA) and European-American (EA) twin subjects aged 17.6 +/- 3.3 years (n = 920, 45% AAs), race-specific tagging single-nucleotide polymorphisms (tSNPs) were identified to tag all the available SNPs +/- 2 kb up- and downstream of the prostasin gene from HapMap at r2 of 0.8-1.0. Selection yielded four tSNPs in AAs and one in EAs, with one tSNP (rs12597511: C to T) present in both AAs and EAs. RESULTS For rs12597511, CT and TT genotypes exhibited higher systolic BP (SBP) than CC genotype (115.9 +/- 1.1 mm Hg vs. 113.7 +/- 0.6 mm Hg, P = 0.025 (AAs); and 110.7 +/- 0.5 mm Hg vs. 109.6 +/- 0.6 mm Hg, P = 0.115 (EAs)). CT and TT genotypes compared with CC genotype showed a significant increase in diastolic BP (DBP) in both racial groups (62.5 +/- 0.7 mm Hg vs. 60.4 +/- 0.4 mm Hg, P = 0.003 (AAs); and 58.2 +/- 0.3 mm Hg vs. 56.7 +/- 0.4 mm Hg, P = 0.007 (EAs)). Furthermore, there was an increase in radial pulse wave velocity (PWV) in subjects with CT and TT genotype as compared with those with CC genotype (6.5 +/- 0.1 vs. 6.1 +/- 0.1 m/s, P < 0.0001) (EAs); and 6.7 +/- 0.1 vs. 6.6 +/- 0.1 m/s, P = 0.354 (AAs)). Analyses combining AAs and EAs consistently demonstrated a statistical significance of rs12597511 on all the phenotypes including SBP/DBP and PWV. CONCLUSION Genetic variation of the prostasin gene may be implicated in the development of hypertension in youths..
Collapse
|
41
|
Manunta P, Lavery G, Lanzani C, Braund PS, Simonini M, Bodycote C, Zagato L, Delli Carpini S, Tantardini C, Brioni E, Bianchi G, Samani NJ. Physiological Interaction Between α-Adducin and
WNK1-NEDD4L
Pathways on Sodium-Related Blood Pressure Regulation. Hypertension 2008; 52:366-72. [DOI: 10.1161/hypertensionaha.108.113977] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kidney plays an important role in salt and blood pressure (BP) homeostasis. In previous studies, variants in the genes for α-adducin (ADD1), WNK1, and NEDD4L, which all regulate renal sodium absorption, have been associated with increased BP. However, findings have been inconsistent. We tested whether this is because of physiological interactions between the effects of variants in these genes. We assessed the single and combined effects of the ADD1 (Gly460Trp), WNK1 (rs880054 A/G), and NEDD4L (rs4149601 G/A) polymorphisms on renal and BP response to an acute Na load (n=344 subjects), BP decrease after 1 month of treatment with 12.5 mg of hydrochlorothiazide (n=193), and ambulatory 24-hour BP (n=690). Individually, the variants showed modest effects on some of the studied phenotypes. We found the ADD1 Trp allele to be permissive for the effects of variants of the other genes. In combination, the same variants (ADD1 Trp/WNK1 GG/Nedd4L GA+AA) showed a consistent effect on renal Na handling (
P
=0.009) and acute BP response to a saline infusion (
P
=0.021), BP lowering after thiazide treatment (
P
=0.008), and nocturnal systolic BP (
P
=0.044). Physiological interaction between the ADD1 and WNK1-NEDD4L pathways influences the effects of variants in these genes on sodium-related BP regulation. Relatively common alleles in the ADD1, WNK1, and NEDD4L genes when present in combination may have significant effects on renal sodium handling, BP, and antihypertensive response to thiazides.
Collapse
Affiliation(s)
- Paolo Manunta
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Gail Lavery
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Chiara Lanzani
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Peter S. Braund
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Marco Simonini
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Claire Bodycote
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Laura Zagato
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Simona Delli Carpini
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Cristina Tantardini
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Elena Brioni
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Giuseppe Bianchi
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| | - Nilesh J. Samani
- From the San Raffaele Scientific Institute (P.M., C.L., M.S., L.Z., S.D.C., C.T., E.B., G.B.), Division of Nephrology, Dialysis, and Hypertension, Università “Vita-Salute” San Raffaele, Chair of Nephrology, Milan, Italy; and the Department of Cardiovascular Sciences (G.L., P.S.B., C.B., N.J.S.), University of Leicester, Leicester, United Kingdom
| |
Collapse
|
42
|
Medina MW, Gao F, Ruan W, Rotter JI, Krauss RM. Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008; 118:355-62. [PMID: 18559695 DOI: 10.1161/circulationaha.108.773267] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND HMGCR(3-Hydroxy-3-methylglutaryl coenzyme A reductase), the direct target of statin inhibition, undergoes alternative splicing of exon 13, which encodes part of the statin-binding domain of the enzyme. We hypothesized that HMGCR alternative splicing might be related to the interindividual variation in plasma low-density lipoprotein cholesterol response to statin treatment. METHODS AND RESULTS We measured mRNA expression of both the full-length and the alternatively spliced HMGCR transcript lacking exon 13 (HMGCRv_1) in 170 simvastatin-incubated immortalized lymphocyte cell lines derived from participants in the Cholesterol and Pharmacogenetics (CAP) study who were treated with simvastatin 40 mg/d for 6 weeks. Greater upregulation of HMGCRv_1 in vitro was significantly correlated (P<or=0.0001) with smaller in vivo reductions of plasma total cholesterol, low-density lipoprotein cholesterol, apoprotein B, and triglycerides and explained 6% to 15% of the variation in their response to treatment. In contrast, no significant relationship was found between expression of the full-length HMGCR transcript and in vivo response. By siRNA knockdown of the full-length transcript, we found that HMGCR enzyme activity measured in cells enriched in HMGCRv_1 was relatively resistant to statin inhibition, consistent with the association of increased alternative splicing with reduced statin response in the CAP study. In addition, we found that a common HMGCR single-nucleotide polymorphism (rs3846662) located within intron 13 was associated with variation in the proportion of HMGCR mRNA that is alternatively spliced. CONCLUSIONS Variation in the production of an HMGCR isoform with reduced statin sensitivity is a determinant of interindividual differences in low-density lipoprotein cholesterol, apolipoprotein B, and triglyceride response to statin treatment.
Collapse
|
43
|
Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD, Snyder PM, Staub O, Stokes JB, Yang B. Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Renal Physiol 2008; 295:F462-70. [PMID: 18524855 DOI: 10.1152/ajprenal.90300.2008] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Collapse
Affiliation(s)
- Peijun P Shi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wen H, Lin R, Jiao Y, Wang F, Wang S, Lu D, Qian J, Jin L, Wang X. Two polymorphisms in NEDD4L gene and essential hypertension in Chinese Hans - a population-based case-control study. Clin Exp Hypertens 2008; 30:87-94. [PMID: 18293164 DOI: 10.1080/10641960801949909] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) gene may play an important role in the development of hypertension by regulating the amiloride-sensitive epithelial sodium channel for sodium reabsorption. Recently, a functional polymorphism located at the last nucleotide of exon 1 (rs4149601) of the NEDD4L gene were found to be associated with hypertension both in African Americans and whites, and a "flip-flop" association with hypertension was found in two white samples for a polymorphism located at intron 13 (rs3865418). In this study, we aimed at examining the role of these two variants on essential hypertension in Chinese Hans. In a population-based association study, we observed significantly higher prevalence of T allelic frequencies (p = 0.023) in hypertensives than normotensives. In logistic regression analysis, the stronger association was found under the additive model with an odds ratio of 1.31 (1.04-1.67) for T allele (p = 0.025). The association remained significant (p = 0.039) with an odds ratio of 1.29 (1.01-3.66) when adjusting for age and sex. We also constructed an ANCOVA factorial model by using clinical parameters as the dependent variable for rs3865418 polymorphisms. A significantly higher diastolic blood pressure was observed at rs3865418 in the dominant model for the T allele (p = 0.009). The positive association still exist after controlling age and sex (p = 0.013). For rs4149601 polymorphism, however, we did not observe a positive association with hypertension by implicating either logistic regression models or ANCOVA models. Thus, our results support rs3865418 but not rs4149601 polymorphism of NEDD4L gene implicated in the prevalence of hypertension in Chinese Hans.
Collapse
Affiliation(s)
- Hao Wen
- First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Araki N, Umemura M, Miyagi Y, Yabana M, Miki Y, Tamura K, Uchino K, Aoki R, Goshima Y, Umemura S, Ishigami T. Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: implications for essential hypertension. Hypertension 2008; 51:773-7. [PMID: 18268134 DOI: 10.1161/hypertensionaha.107.102061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Net sodium balances in humans are maintained through various ion transporters expressed along the entire nephron. Among these ion transporters, epithelial sodium channels (ENaC) located along the aldosterone-sensitive distal nephron (ASDN) play a pivotal role in the homeostasis of sodium balance. This is supported by analyses of inherited hypertensive disorders, showing that genes encoding ENaC and other modulatory proteins cause hereditary hypertension, such as Liddle syndrome. Among various modulating proteins, E3 ubiquitin ligase, Nedd4L, binds the PY motif of ENaC COOH terminals and catalyzes ubiquitination of the NH(2) terminus of the protein for subsequent degradation. Both evolutionarily conserved and evolutionarily new C2 domains of human Nedd4L, a cryptic splice variant resulting in a disrupted isoform product formed by a frame-shift mutation, were reported previously. We focused on one of the isoforms, isoform I, generated by SNP (rs4149601), and studied its expression and interactions with other isoforms by molecular biological, immunohistochemical, and electrophysiological methods. We found that isoform I may interact with other human isoforms in a dominant-negative fashion. Such interactions might abnormally increase sodium reabsorption. Taken together, our analyses suggest that the human Nedd4L gene, especially the evolutionarily new isoform I, is a candidate gene for hypertension.
Collapse
Affiliation(s)
- Naomi Araki
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa-ken, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The current review focuses on new trends in genome-wide assessment of the inherited component of blood pressure variation. RECENT FINDINGS Systematic linkage and association analyses of a region on chromosome 1q, complemented by gene prioritization with comparative genomic evidence, revealed variants in three genes contributing to tangible increases in blood pressure. The results of one of the first two-dimensional scans were published, confirming the oligogenic epistatic nature of the genetic component of blood pressure determination. Several loci with distinct effects on blood pressure in men and women were reported, enhancing the sexually dimorphic map of complex traits. Novel approaches were applied to extract genetically and clinically distinct subsets of garden-variety hypertension, which appears to be a promising direction to take in deciphering the hypertension genetic puzzle. SUMMARY The current landscape of genome-wide linkage studies of hypertension is acquiring novel facets in an attempt to more appropriately grasp the genomic architecture of hypertension. The advent of genome-wide association investigations, enhanced possibilities of comparative genomics and integration with information on copy number variations and transcriptomics will most likely reshape our view of nature and the evolutionary connotations of genetic variation affecting blood pressure in the near future.
Collapse
Affiliation(s)
- Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal, Canada.
| | | |
Collapse
|
47
|
Abstract
Aldosterone increases sodium reabsorption across kidney target tubules already before it increases the number of transport proteins, indicating that the early functional response to aldosterone depends on the activation of preexisting channels and pumps. A central mediator of this action is the early aldosterone-induced kinase Sgk1 that de-represses the surface expression and activity of the epithelial sodium channel (ENaC). A main mechanism by which Sgk1 exerts this de-repression is the phosphorylation of the ubiquitin ligase Nedd4-2 that is thereby prevented from ubiquitylating ENaC. Among a series of new early aldosterone-induced gene products recently identified in kidney target tubules, an additional regulator of ENaC ubiquitylation, the deubiquitylating enzyme Usp2-45, was identified. Coexpression of Usp2-45 was shown to increase ENaC surface expression and activity, and to decrease its ubiquitylation in expression systems, whereas other Usps such as the splice variant Usp2-69 had no effect. Since both Sgk1 and Usp2-45 are similarly induced in distal colon as well, in contrast to other gene products strongly induced in kidney that are not regulated in colon, we suggest that (de)ubiquitylation is the major ENaC regulatory mechanism targeted by aldosterone in the short-term via transcriptional regulation.
Collapse
|
48
|
Zintzaras E, Kitsios G, Kent D, Camp NJ, Atwood L, Hopkins PN, Hunt SC. Genome-wide scans meta-analysis for pulse pressure. Hypertension 2007; 50:557-64. [PMID: 17635856 DOI: 10.1161/hypertensionaha.107.090316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genome scans for identifying susceptibility loci for pulse pressure have produced inconclusive results. A heterogeneity-based genome search meta-analysis was applied to available genome-scan data on pulse pressure. A genome search meta-analysis divides the whole genome into 120 bins and identifies bins that rank high on average in terms of linkage statistics across genome scans unweighted or weighted by study size. The significance of each bin's average rank (right-sided test) and heterogeneity among studies (left-sided test) was calculated using a Monte Carlo test. The meta-analysis involved 7 genome scans, 3 consisting of subjects of European descent. Of the 120 bins, 5 bins had significant average rank (P(rank)<or=0.05) by either unweighted or weighted analyses, 4 of which (bins 21.2: 21q22.11 to 21q22.3, 18.3: 18q12.2 to 18q21.33, 18.4: 18q21.33 to 18q23, and 6.2: 6p22.3 to 6p21.1) were significant by both. In subjects of European descent, 3 bins (22.1: 22q11.1 to 22q12.3, 22.2: 22q12.3 to 22q13.3, 10.4: 10q22.1 to 10q23.32) had P(rank)<or=0.05 with both unweighted and weighted analyses. Bin 10.4 showed low heterogeneity (P(Q)=0.04). None of the bins showed low heterogeneity (P(Q)>0.05), indicating variation in the strength of association. Further investigation of these regions may help to direct the identification of candidate genes for pulse pressure variation.
Collapse
Affiliation(s)
- Elias Zintzaras
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ishigami T, Umemura M, Araki N, Hirawa N, Tamura K, Uchino K, Umemura S, Rohrwasser A, Lalouel JM. NEDD4L protein truncating variant (v13[G/A]: rs4149601) is associated with essential hypertension in a sample of the Japanese population. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00382.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Dahlberg J, Nilsson LO, von Wowern F, Melander O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS One 2007; 2:e432. [PMID: 17487281 PMCID: PMC1855992 DOI: 10.1371/journal.pone.0000432] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/15/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Neuronal precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is a regulator of the amiloride-sensitive epithelial sodium channel (ENaC), thus a candidate gene for salt sensitivity. Carriers of an intact NEDD4L C2-domain, encoded by the NEDD4L rs4149601 (G/A) GG genotype, together with the C-allele of the NEDD4L rs2288774 (C/T) polymorphism have previously been shown to have increased blood pressure. Our aim was to test if genetic variation in NEDD4L is associated with increased salt sensitivity. METHODS 39 normotensive subjects were studied. The difference in 24-hour systolic blood pressure after four weeks on 150 mmol/day NaCl intake and four weeks on 50 mmol/day NaCl was defined as salt sensitivity. The rs4149601 and rs2288774 polymorphisms were genotyped using PCR-based techniques. RESULTS Carriers of the rs4149601 GG-genotype together with the rs2288774 CC-genotype had significantly higher salt sensitivity (median, IQR) (18.0, 7.5-20.0 mmHg vs 6.0, 0.0-10.0 mmHg, P = 0.007) and lower plasma renin concentration (P-renin) (6.0, 2.0-9.5 mU/L vs 15.0, 9.0-24.0 mU/L, P = 0.005) as compared to non-carriers of these genotypes. In carriers of the rs4149601 GG-genotype together with the rs2288774 CC- or CT-genotype, as compared to non-carriers, salt sensitivity was (8.0, 6.0-18.0 mmHg vs 5.0, 0.0-10.0 mmHg, P = 0.07) and P-renin (9.0, 6.0-16.0 mU/L vs 15.0, 9.0-28.0 mU/L, P = 0.03). CONCLUSION Genetic NEDD4L variation seems to affect salt sensitivity and P-renin in normotensive subjects, suggesting that genotyping of NEDD4L may be clinically useful in order to identify subjects who benefit from dietary salt restriction in the prevention of hypertension.
Collapse
Affiliation(s)
- Jonas Dahlberg
- Department of Clinical Sciences, Malmö University Hospital and Lund University, Malmö, Sweden.
| | | | | | | |
Collapse
|