1
|
Balan AI, Halațiu VB, Scridon A. Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants (Basel) 2024; 13:117. [PMID: 38247541 PMCID: PMC10812976 DOI: 10.3390/antiox13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The adipose tissue has long been thought to represent a passive source of triglycerides and fatty acids. However, extensive data have demonstrated that the adipose tissue is also a major endocrine organ that directly or indirectly affects the physiological functions of almost all cell types. Obesity is recognized as a risk factor for multiple systemic conditions, including metabolic syndrome, type 2 diabetes mellitus, sleep apnea, cardiovascular disorders, and many others. Obesity-related changes in the adipose tissue induce functional and structural changes in cardiac myocytes, promoting a wide range of cardiovascular disorders, including atrial fibrillation (AF). Due to the wealth of epidemiologic data linking AF to obesity, the mechanisms underlying AF occurrence in obese patients are an area of rich ongoing investigation. However, progress has been somewhat slowed by the complex phenotypes of both obesity and AF. The triad inflammation, oxidative stress, and mitochondrial dysfunction are critical for AF pathogenesis in the setting of obesity via multiple structural and functional proarrhythmic changes at the level of the atria. The aim of this paper is to provide a comprehensive view of the close relationship between obesity-induced oxidative stress, inflammation, and mitochondrial dysfunction and the pathogenesis of AF. The clinical implications of these mechanistic insights are also discussed.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Vasile Bogdan Halațiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Alina Scridon
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria. EBioMedicine 2023; 90:104506. [PMID: 36889064 PMCID: PMC10043778 DOI: 10.1016/j.ebiom.2023.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor ɣ (PPARɣ) agonists can ameliorate proteinuria. Since a recent study showed that PPARɣ regulates HPSE expression in liver cancer cells, we hypothesized that PPARɣ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. METHODS Regulation of HPSE by PPARɣ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARɣ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARɣ agonist pioglitazone. FINDINGS Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARɣ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARɣ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. INTERPRETATION PPARɣ-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. FUNDING This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships).
Collapse
|
3
|
Ma X, Cui Z, Du Z, Lin H. Transforming growth factor-β signaling, a potential mechanism associated with diabetes mellitus and pancreatic cancer? J Cell Physiol 2020; 235:5882-5892. [PMID: 32017070 DOI: 10.1002/jcp.29605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a common malignant digestive disease. Epidemiological and clinical studies have demonstrated that pancreatic cancer is closely related to diabetes mellitus. Diabetic patients are more likely to develop pancreatic cancer, which is linked with poor outcomes. Pancreatic cancer is complicated with abnormal blood sugar and insulin resistance and promotes the development of diabetes mellitus. Understanding the molecular mechanisms linking diabetes mellitus and pancreatic cancer is essential for the treatment of diabetes cancer patients. The transforming growth factor-β (TGF-β) signaling pathway is deregulated in cancer and has a dual role in different stages of cancer as a suppressor or a promoter. More important, The TGF-β signaling pathway is also another important reason for diabetic complications. This review summarizes the relationship between diabetes and pancreatic cancer, in particular, focusing on the role of the TGF-β signaling pathway. It is possible to find drugs like metformin that can prevent and treat pancreatic cancer by targeting the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xingyuan Ma
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangxi, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Zhiwei Cui
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangxi, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Zhide Du
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangxi, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
5
|
Glycogen synthase kinase 3β hyperactivity in urinary exfoliated cells predicts progression of diabetic kidney disease. Kidney Int 2019; 97:175-192. [PMID: 31791666 DOI: 10.1016/j.kint.2019.08.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022]
Abstract
Burgeoning evidence points to glycogen synthase kinase (GSK)3β as a key player in diverse kidney diseases. However, as a pivotal transducer of the insulin signaling pathway, the role of GSK3β in diabetic kidney disease remains uncertain. In db/db mice, renal expression of total and activated GSK3β was increasingly elevated. This preceded the development of diabetic kidney disease, and correlated with the progression of signs of diabetic kidney injury, including albuminuria and extracellular matrix accumulation in glomeruli and tubulointerstitia. In vitro, exposure of glomerular podocytes, mesangial cells, and renal tubular cells to a diabetic milieu induced GSK3β overexpression and hyperactivity, which seem essential and sufficient for eliciting diabetic cellular damages in kidney cells, because the cytopathic effect of the diabetic milieu was mitigated by GSK3β knockdown, but was mimicked by ectopic expression of constitutively active GSK3β even in the normal milieu. In consistency, kidney biopsy specimens procured from patients with varying stages of diabetic nephropathy revealed an amplified expression of total and activated GSK3β in glomeruli and renal tubules, associated with the severity of diabetic nephropathy. Moreover, in retrospective cohorts of type 2 diabetic patients that were followed for over five years, the relative activity of GSK3β in banked urinary exfoliated cells represented an independent risk factor for development or progression of renal impairment. Furthermore, receiver operating characteristic curve analysis demonstrated that GSK3β activity in urinary exfoliated cells provided much better power than albuminuria in discriminating diabetic patients with progressive renal impairment from those with stable kidney function. Thus, renal expression and activity of GSK3β are amplified in experimental and clinical diabetic nephropathy. Hence, GSK3β in urinary exfoliated cells may serve as a novel biomarker for predicting diabetic kidney disease progression.
Collapse
|
6
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
7
|
Lay AC, Coward RJM. The Evolving Importance of Insulin Signaling in Podocyte Health and Disease. Front Endocrinol (Lausanne) 2018; 9:693. [PMID: 30524379 PMCID: PMC6258712 DOI: 10.3389/fendo.2018.00693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide, occuring in approximately one-third of diabetic patients. One of the earliest hallmarks of DKD is albuminuria, often occurring following disruptions to the glomerular filtration barrier. Podocytes are highly specialized cells with a central role in filtration barrier maintenance; hence, podocyte dysfunction is a major cause of albuminuria in many settings, including DKD. Numerous studies over the last decade have highlighted the importance of intact podocyte insulin responses in the maintenance of podocyte function. This review summarizes our current perspectives on podocyte insulin signaling, highlighting evidence to support the notion that dysregulated podocyte insulin responses contribute toward podocyte damage, particularly during the pathogenesis of DKD.
Collapse
|
8
|
Bae KH, Seo JB, Jung YA, Seo HY, Kang SH, Jeon HJ, Lee JM, Lee S, Kim JG, Lee IK, Jung GS, Park KG. Lobeglitazone, a Novel Peroxisome Proliferator-Activated Receptor γ Agonist, Attenuates Renal Fibrosis Caused by Unilateral Ureteral Obstruction in Mice. Endocrinol Metab (Seoul) 2017; 32:115-123. [PMID: 28256116 PMCID: PMC5368110 DOI: 10.3803/enm.2017.32.1.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial fibrosis is a common feature of the final stage of nearly all cause types of chronic kidney disease. Although classic peroxisome proliferator-activated receptor γ (PPARγ) agonists have a protective effect on diabetic nephropathy, much less is known about their direct effects in renal fibrosis. This study aimed to investigate possible beneficial effects of lobeglitazone, a novel PPARγ agonist, on renal fibrosis in mice. METHODS We examined the effects of lobeglitazone on renal tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO) induced renal fibrosis mice. We further defined the role of lobeglitazone on transforming growth factor (TGF)-signaling pathways in renal tubulointerstitial fibrosis through in vivo and in vitro study. RESULTS Through hematoxylin/eosin and sirius red staining, we observed that lobeglitazone effectively attenuates UUO-induced renal atrophy and fibrosis. Immunohistochemical analysis in conjunction with quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that lobeglitazone treatment inhibited UUO-induced upregulation of renal Smad-3 phosphorylation, α-smooth muscle actin, plasminogen activator inhibitor 1, and type 1 collagen. In vitro experiments with rat mesangial cells and NRK-49F renal fibroblast cells suggested that the effects of lobeglitazone on UUO-induced renal fibrosis are mediated by inhibition of the TGF-β/Smad signaling pathway. CONCLUSION The present study demonstrates that lobeglitazone has a protective effect on UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of non-diabetic origin renal disease.
Collapse
Affiliation(s)
- Kwi Hyun Bae
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Beom Seo
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yun A Jung
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hye Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Sun Hee Kang
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Hui Jeon Jeon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Jung Guk Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - In Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Gwon Soo Jung
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea.
| | - Keun Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea.
| |
Collapse
|
9
|
Ochodnicky P, Mesarosova L, Cernecka H, Klimas J, Krenek P, Goris M, van Dokkum RPE, Henning RH, Kyselovic J. Pioglitazone, a PPARγ agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat. Eur J Pharmacol 2014; 730:51-60. [PMID: 24582928 DOI: 10.1016/j.ejphar.2014.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less are known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of the renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.
Collapse
Affiliation(s)
- Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Hana Cernecka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Maaike Goris
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Richard P E van Dokkum
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| |
Collapse
|
10
|
Guzman J, Jauregui AN, Merscher-Gomez S, Maiguel D, Muresan C, Mitrofanova A, Diez-Sampedro A, Szust J, Yoo TH, Villarreal R, Pedigo C, Molano RD, Johnson K, Kahn B, Hartleben B, Huber TB, Saha J, Burke GW, Abel ED, Brosius FC, Fornoni A. Podocyte-specific GLUT4-deficient mice have fewer and larger podocytes and are protected from diabetic nephropathy. Diabetes 2014; 63:701-14. [PMID: 24101677 PMCID: PMC3900538 DOI: 10.2337/db13-0752] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria.
Collapse
Affiliation(s)
- Johanna Guzman
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Alexandra N. Jauregui
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Sandra Merscher-Gomez
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Dony Maiguel
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Cristina Muresan
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Alla Mitrofanova
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Ana Diez-Sampedro
- Department of Physiology, Miller School of Medicine, University of Miami, Miami, FL
| | - Joel Szust
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Tae-Hyun Yoo
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Rodrigo Villarreal
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Christopher Pedigo
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - R. Damaris Molano
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Kevin Johnson
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Barbara Kahn
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Tobias B. Huber
- Division of Nephrology, Freiburg University, Freiburg, Germany
| | - Jharna Saha
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - George W. Burke
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | | | - Alessia Fornoni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
- Corresponding author: Alessia Fornoni,
| |
Collapse
|
11
|
Abstract
Several studies have demonstrated that chronic and low-grade inflammation is closely linked to type 2 diabetes mellitus. The associated mechanisms are related to synthesis and release of proinflammatory and anti-inflammatory cytokines, mainly by the adipose tissue. Moreover, there are evidences that cytokines and adhesion molecules are important for development of diabetic nephropathy. Among the cytokines associated with inflammatory responses in type 2 diabetes mellitus, the transforming growth factor-β (TGF-β) has been recognized as a central player in the diabetic nephropathy being involved in the development of glomerulosclerosis and interstitial fibrosis, as observed in the course of end-stage renal disease. Although TGF-β1 is classically an anti-inflammatory immune mediator it has been shown that in the presence of IL-6, which increases before the onset of T2D, TGF-β1 favors the differentiation of T helper 17 (Th17) cells that are activated in many pro-inflammatory conditions. Since TGF-β1 mRNA and consequently serum TGF-β1 levels are under genetic control, this review aims to discuss the relationship of TGF-β1 levels and polymorphisms in the development of nephropathy in type 2 diabetes mellitus.
Collapse
|
12
|
Katakura M, Hashimoto M, Tanabe Y, Shido O. Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney. Med Gas Res 2012; 2:18. [PMID: 22776773 PMCID: PMC3444324 DOI: 10.1186/2045-9912-2-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022] Open
Abstract
Background Reactive oxygen species (ROS) production induced by α,β-dicarbonyl compounds and advanced glycation end products causes renal dysfunction in patients with type 2 diabetes and metabolic syndrome. Hydrogen-rich water (HRW) increases the H2 level in blood and tissues, thus reducing oxidative stress in animals as well as humans. In this study, we investigated the effects of HRW on glucose- and α,β-dicarbonyl compound-induced ROS generation in vitro and in vivo. Methods Kidney homogenates from Wistar rats were incubated in vitro with glucose and α,β-dicarbonyl compounds containing HRW, following which ROS levels were measured. In vivo animal models of metabolic syndrome, SHR.Cg-Leprcp/NDmcr rats, were treated with HRW for 16 weeks, following which renal ROS production and plasma and renal α,β-dicarbonyl compound levels were measured by liquid chromatograph mass spectrometer. Results HRW inhibited glucose- and α,β-dicarbonyl compound-induced ROS production in kidney homogenates from Wistar rats in vitro. Furthermore, SHR.Cg-Leprcp/NDmcr rats treated with HRW showed a 34% decrease in ROS production. Moreover, their renal glyoxal, methylglyoxal, and 3-deoxyglucosone levels decreased by 81%, 77%, and 60%, respectively. Positive correlations were found between renal ROS levels and renal glyoxal (r = 0.659, p = 0.008) and methylglyoxal (r = 0.782, p = 0.001) levels. Conclusion These results indicate that HRW inhibits the production of α,β-dicarbonyl compounds and ROS in the kidneys of SHR.Cg-Leprcp/NDmcr rats. Therefore, it has therapeutic potential for renal dysfunction in patient with type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Yoko Tanabe
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
13
|
Sakamoto A, Hongo M, Saito K, Nagai R, Ishizaka N. Reduction of renal lipid content and proteinuria by a PPAR-γ agonist in a rat model of angiotensin II-induced hypertension. Eur J Pharmacol 2012; 682:131-6. [DOI: 10.1016/j.ejphar.2012.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
14
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
15
|
The renoprotective actions of peroxisome proliferator-activated receptors agonists in diabetes. PPAR Res 2012; 2012:456529. [PMID: 22448165 PMCID: PMC3289856 DOI: 10.1155/2012/456529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022] Open
Abstract
Pharmaceutical agonists of peroxisome proliferator-activated receptors (PPARs) are widely used in the management of type 2 diabetes, chiefly as lipid-lowering agents and oral hypoglycaemic agents. Although most of the focus has been placed on their cardiovascular effects, both positive and negative, these agents also have significant renoprotective actions in the diabetic kidney. Over and above action on metabolic control and effects on blood pressure, PPAR agonists also appear to have independent effects on a number of critical pathways that are implicated in the development and progression of diabetic kidney disease, including oxidative stress, inflammation, hypertrophy, and podocyte function. This review will examine these direct and indirect actions of PPAR agonists in the diabetic kidney and explore recent findings of clinical trials of PPAR agonists in patients with diabetes.
Collapse
|
16
|
Hashimoto M, Katakura M, Nabika T, Tanabe Y, Hossain S, Tsuchikura S, Shido O. Effects of hydrogen-rich water on abnormalities in a SHR.Cg-Leprcp/NDmcr rat - a metabolic syndrome rat model. Med Gas Res 2011; 1:26. [PMID: 22146083 PMCID: PMC3231949 DOI: 10.1186/2045-9912-1-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hydrogen (H2), a potent free radical scavenger, selectively reduces the hydroxyl radical, which is the most cytotoxic of the reactive oxygen species (ROS). An increase in oxygen free radicals induces oxidative stress, which is known to be involved in the development of metabolic syndrome. Therefore, we investigated whether hydrogen-rich water (HRW) affects metabolic abnormalities in the metabolic syndrome rat model, SHR.Cg-Leprcp/NDmcr (SHR-cp). METHODS Male SHR-cp rats (5 weeks old) were divided into 2 groups: an HRW group was given oral HRW for 16 weeks, and a control group was given distilled water. At the end of the experiment, each rat was placed in a metabolic cage for 24 h, fasted for 12 h, and anesthetized; the blood and kidneys were then collected. RESULTS Sixteen weeks after HRW administration, the water intake and urine flow measured in the metabolic cages were significantly higher in the HRW group than in the control group. The urinary ratio of albumin to creatinine was significantly lower and creatinine clearance was higher in the HRW group than in the control group. After the 12-h fast, plasma urea nitrogen and creatinine in the HRW group were significantly lower than in the control group. The plasma total antioxidant capacity was significantly higher in the HRW group than in the control group. The glomerulosclerosis score for the HRW group was significantly lower than in the control group, and a significantly positive correlation was observed between this score and plasma urea nitrogen levels. CONCLUSION The present findings suggest that HRW conferred significant benefits against abnormalities in the metabolic syndrome model rats, at least by preventing and ameliorating glomerulosclerosis and creatinine clearance.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ledeganck KJ, Boulet GA, Horvath CA, Vinckx M, Bogers JJ, Van Den Bossche R, Verpooten GA, De Winter BY. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment. Am J Physiol Renal Physiol 2011; 301:F486-F493. [PMID: 21653632 DOI: 10.1152/ajprenal.00116.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.
Collapse
Affiliation(s)
- Kristien J Ledeganck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gordon J, Kopp JB. Off the beaten renin-angiotensin-aldosterone system pathway: new perspectives on antiproteinuric therapy. Adv Chronic Kidney Dis 2011; 18:300-11. [PMID: 21782136 DOI: 10.1053/j.ackd.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/23/2023]
Abstract
CKD is a major public health problem in the developed and the developing world. The degree of proteinuria associated with renal failure is a generally well accepted marker of disease severity. Agents with direct antiproteinuric effects are highly desirable therapeutic strategies for slowing, or even halting, progressive loss of kidney function. We review progress on therapies acting further downstream of the renin-angiotensin-aldosterone system pathway (e.g., transforming growth factor-beta antagonism, endothelin antagonism) and on those acting independent of the renin-angiotensin-aldosterone system pathway. In all, we discuss 26 therapeutic targets or compounds and 2 lifestyle changes (dietary modification and weight loss) that have been used clinically for diabetic or nondiabetic kidney disease. These therapies include endogenous molecules (estrogens, isotretinoin), biologic antagonists (monoclonal antibodies, soluble receptors), and small molecules. Where mechanistic data are available, these therapies have been shown to exert favorable effects on glomerular cell phenotype. In some cases, recent work has indicated surprising new molecular pathways for some therapies, such as direct effects on the podocyte by glucocorticoids, rituximab, and erythropoietin. It is hoped that recent advances in the basic science of kidney injury will prompt development of more effective pharmaceutical and biologic therapies for proteinuria.
Collapse
|
19
|
Diez-Sampedro A, Lenz O, Fornoni A. Podocytopathy in diabetes: a metabolic and endocrine disorder. Am J Kidney Dis 2011; 58:637-46. [PMID: 21719174 DOI: 10.1053/j.ajkd.2011.03.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/04/2011] [Indexed: 12/17/2022]
Abstract
Diabetic nephropathy (DN) represents a major public health cost. Tight glycemic and blood pressure control can dramatically slow, but not stop, the progression of the disease, and a large number of patients progress toward end-stage renal disease despite currently available interventions. An early and key event in the development of DN is loss of podocyte function (or glomerular visceral epithelial cells) from the kidney glomerulus, where they contribute to the integrity of the glomerular filtration barrier. Recent evidence suggests that podocytes can be the direct target of circulating hormones, lipids, and adipokines that are affected in diabetes. We review the clinical and experimental evidence implicating novel endocrine and metabolic pathways in the pathogenesis of podocyte dysfunction and the development of DN.
Collapse
Affiliation(s)
- Ana Diez-Sampedro
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
20
|
Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, Makino Y, Haneda M. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism. Diabetes 2011; 60:981-92. [PMID: 21282369 PMCID: PMC3046859 DOI: 10.2337/db10-0655] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Chronic hypoxia has been recognized as a key regulator in renal tubulointerstitial fibrosis, as seen in diabetic nephropathy, which is associated with the activation of hypoxia-inducible factor (HIF)-1α. We assess here the effects of the biguanide, metformin, on the expression of HIF-1α in diabetic nephropathy using renal proximal tubular cells and type 2 diabetic rats. RESEARCH DESIGN AND METHODS We explored the effects of metformin on the expression of HIF-1α using human renal proximal tubular epithelial cells (HRPTECs). Male Zucker diabetic fatty (ZDF; Gmi-fa/fa) rats were treated from 9 to 39 weeks with metformin (250 mg ⋅ kg(-1) ⋅ day(-1)) or insulin. RESULTS Metformin inhibited hypoxia-induced HIF-1α accumulation and the expression of HIF-1-targeted genes in HRPTECs. Although metformin activated the downstream pathways of AMP-activated protein kinase (AMPK), neither the AMPK activator, AICAR, nor the mTOR inhibitor, rapamycin, suppressed hypoxia-induced HIF-1α expression. In addition, knockdown of AMPK-α did not abolish the inhibitory effects of metformin on HIF-1α expression. The proteasome inhibitor, MG-132, completely eradicated the suppression of hypoxia-induced HIF-1α accumulation by metformin. The inhibitors of mitochondrial respiration similarly suppressed hypoxia-induced HIF-1α expression. Metformin significantly decreased ATP production and oxygen consumption rates, which subsequently led to increased cellular oxygen tension. Finally, metformin, but not insulin, attenuated tubular HIF-1α expression and pimonidazole staining and ameliorated tubular injury in ZDF rats. CONCLUSIONS Our data suggest that hypoxia-induced HIF-1α accumulation in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxygen consumption.
Collapse
Affiliation(s)
- Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Louro TM, Matafome PN, Nunes EC, da Cunha FX, Seiça RM. Insulin and metformin may prevent renal injury in young type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol 2010; 653:89-94. [PMID: 21167150 DOI: 10.1016/j.ejphar.2010.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/26/2010] [Accepted: 11/26/2010] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is increasing at epidemic proportions throughout the world, and diabetic nephropathy is the principal cause of end stage renal failure. Approximately 40% of patients with type 2 diabetes may progress to nephropathy and a good metabolic control can prevent the development of diabetic renal injury. The aim of our study was to evaluate, in young type 2 diabetic Goto-Kakizaki (GK) rats fed with atherogenic diet, the effects of the anti-diabetic compounds insulin, metformin and gliclazide on renal damage. GK rats fed with atherogenic diet showed increased body weight and fasting blood glucose, total cholesterol, triglycerides, C-reactive protein and protein carbonyl levels and lower HDL-cholesterol concentration; renal markers of inflammation and fibrosis were also elevated. All the anti-diabetic agents ameliorated fasting glycaemia and insulin resistance but only insulin and metformin were able to improve glycoxidation, fibrosis and inflammation kidney parameters. Our data suggest that insulin and metformin treatments, improving glicoxidative, inflammatory and fibrotic renal damage markers, play a key role in the prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Teresa M Louro
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
22
|
Pioglitazone Attenuates Cystic Burden in the PCK Rodent Model of Polycystic Kidney Disease. PPAR Res 2010; 2010:274376. [PMID: 21052534 PMCID: PMC2968120 DOI: 10.1155/2010/274376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023] Open
Abstract
Polycystic kidney disease (PKD) is a genetic disorder characterized by growth of fluid-filled cysts predominately in kidney tubules and liver bile ducts. Currently, the clinical management of PKD is limited to cyst aspiration, surgical resection or organ transplantation. Based on an observation that PPARγ agonists such as pioglitazone and rosiglitazone decrease mRNA levels of a Cl− transport protein, CFTR (cystic fibrosis transmembrane conductance regulator), and the Cl− secretory response to vasopressin in cultured renal cells, it is hypothesized that PPARγ agonists will inhibit cyst growth. The current studies show that a 7- or 14-week pioglitazone feeding regimen inhibits renal and hepatic bile duct cyst growth in the PCK rat, a rodent model orthologous to human PKD. These studies provide proof of concept for the mechanism of action of the PPARγ agonists and suggest that this class of drugs may be effective in controlling both renal and hepatic cyst growth and fibrosis in PKD.
Collapse
|
23
|
|
24
|
Säemann MD, Krebs M. Thiazolidinediones in the treatment of patients with Post-Transplant-Hyperglycemia or new-onset diabetes mellitus after renal transplantation (NODAT) – A new therapeutic option? Wien Klin Wochenschr 2010; 122:198-202. [DOI: 10.1007/s00508-010-1369-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Rosiglitazone prevents the progression of renal injury in DOCA-salt hypertensive rats. Hypertens Res 2010; 33:255-62. [PMID: 20057489 DOI: 10.1038/hr.2009.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was designed to evaluate the possible renoprotective effects of rosiglitazone (RGT), a peroxisome proliferator-activated subtype gamma receptor agonist, in deoxycorticosterone acetate (DOCA)-salt hypertension and its role in endogenous endothelin-1 (ET-1) production and renal fibrosis associated with inflammation. Rats were implanted with DOCA strips (200 mg kg(-1)) at 1 week after unilateral nephrectomy. DOCA-salt rats received control diet with or without RGT (10 mg kg(-1) per day). Systolic blood pressure was measured by the tail-cuff method. Glomerulosclerosis and tubulointerstitial fibrosis were evaluated on kidney sections. The expression of ED-1, cyclooxygenase-2 (COX-2), heat shock protein-25 (HSP25) and transforming growth factor-beta1 (TGF-beta1) was determined in the kidney by semiquantitative immunoblotting. In DOCA-salt rats, systolic blood pressure was increased, whereas creatinine clearance decreased compared with controls, which were counteracted by RGT treatment. Tubular injury and glomerulosclerois in the histological study were prominent in DOCA-salt rats, which were counteracted by RGT treatment. ET-1 expression was increased in DOCA-salts rats, which was attenuated by RGT treatment. The expression of TGF-beta1, ED-1 and COX-2 was increased in DOCA-salt, which was attenuated by RGT treatment. In conclusion, RGT treatment decreases blood pressure and is effective in preventing the progression of renal injury in DOCA-salt hypertension, the mechanisms of which are associated with anti-inflammatory and anti-fibrotic effects through reducing the overexpression of ET-1, ED-1, COX-2 and TGF-beta1 in the kidney.
Collapse
|
26
|
Ohtomo S, Izuhara Y, Nangaku M, Dan T, Ito S, van Ypersele de Strihou C, Miyata T. Body weight control by a high-carbohydrate/low-fat diet slows the progression of diabetic kidney damage in an obese, hypertensive, type 2 diabetic rat model. J Obes 2010; 2010:136502. [PMID: 20700413 PMCID: PMC2911582 DOI: 10.1155/2010/136502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/07/2009] [Accepted: 11/16/2009] [Indexed: 01/09/2023] Open
Abstract
Obesity is one of several factors implicated in the genesis of diabetic nephropathy (DN). Obese, hypertensive, type 2 diabetic rats SHR/NDmcr-cp were given, for 12 weeks, either a normal, middle-carbohydrate/middle-fat diet (MC/MF group) or a high-carbohydrate/low-fat diet (HC/LF group). Daily caloric intake was the same in both groups. Nevertheless, the HC/LF group gained less weight. Despite equivalent degrees of hypertension, hyperglycemia, hyperlipidemia, hyperinsulinemia, and even a poorer glycemic control, the HC/LF group had less severe renal histological abnormalities and a reduced intrarenal advanced glycation and oxidative stress. Mediators of the renoprotection, specifically linked to obesity and body weight control, include a reduced renal inflammation and TGF-beta expression, together with an enhanced level of adiponectin. Altogether, these data identify a specific role of body weight control by a high-carbohydrate/low-fat diet in the progression of DN. Body weight control thus impacts on local intrarenal advanced glycation and oxidative stress through inflammation and adiponectin levels.
Collapse
Affiliation(s)
- Shuichi Ohtomo
- Research Division, Chugai Pharmaceutical Co., LTD., Shizuoka 412-8513, Japan
- Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan
- *Shuichi Ohtomo:
| | - Yuko Izuhara
- Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | - Takashi Dan
- Center for Translational and Advanced Research, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sadayoshi Ito
- Department of Nephrology, Hypertension and Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Toshio Miyata
- Center for Translational and Advanced Research, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
27
|
Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria. Curr Opin Nephrol Hypertens 2009; 18:539-45. [PMID: 19724224 DOI: 10.1097/mnh.0b013e32832f7002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW In diabetic nephropathy, insulin resistance and hyperinsulinemia correlate with the development of albuminuria. The possibility that altered insulin signaling in glomerular cells and particularly podocytes contributes to the development of diabetic nephropathy will be discussed. RECENT FINDINGS Whereas normal podocytes take up glucose in response to insulin, diabetic podocytes become insulin resistant in experimental diabetic nephropathy prior to the development of significant albuminuria. Both clinical and experimental data suggest that insulin sensitizers may be renoprotective independent of their systemic effects on the metabolic control of diabetes. SUMMARY We will review the clinical and experimental evidence that altered insulin signaling correlates with the development of diabetic nephropathy in both type 1 and type 2 diabetes, and that insulin sensitizers may be superior to other hypoglycemic agents in the prevention of diabetic nephropathy. We will then review potential mechanisms by which altered podocyte insulin signaling may contribute to the development of diabetic nephropathy. Understanding the role of podocytes in glucose metabolism is important because it may lead to the discovery of novel pathogenetic mechanisms of diabetic nephropathy, it may affect current strategies for prevention and treatment of diabetic nephropathy, and it may allow the identification of novel therapeutic targets.
Collapse
|
28
|
Abstract
Chronic hypoxia induces sequential abnormalities in oxygen metabolism (for example, oxidative stress, nitrosative stress, advanced glycation, carbonyl stress, endoplasmic reticulum stress) in the kidneys of individuals with diabetes. Identification of these abnormalities improves our understanding of therapeutic benefits that can be achieved with antihypertensive agents, the control of hyperglycemia and/or hyperinsulinemia and the dietary correction of obesity. Key to the body's defense against hypoxia is hypoxia-inducible factor, the activity of which is modulated by prolyl hydroxylases (PHDs)-oxygen sensors whose inhibition may prove therapeutic. Renal benefits of small-molecule PHD inhibitors have been documented in several animal models, including those of diabetic nephropathy. Three different PHD isoforms have been identified (PHD1, PHD2 and PHD3) and their respective roles have been delineated in knockout mouse studies. Unfortunately, none of the current inhibitors is specific for a distinct PHD isoform. Nonspecific inhibition of PHDs might induce adverse effects, such as those associated with PHD2 inhibition. Specific disruption of PHD1 induces hypoxic tolerance, without angiogenesis and erythrocytosis, through the reprogramming of basal oxygen metabolism and decreased generation of oxidative stress in hypoxic mitochondria. A specific PHD1 inhibitor might, therefore, offer a novel therapy for abnormal oxygen metabolism not only in the diabetic kidney, but also in other diseases for which hypoxia is a final, common pathway.
Collapse
|
29
|
Raphael KL, Strait KA, Stricklett PK, Baird BC, Piontek K, Germino GG, Kohan DE. Effect of pioglitazone on survival and renal function in a mouse model of polycystic kidney disease. Am J Nephrol 2009; 30:468-73. [PMID: 19776560 DOI: 10.1159/000242432] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 08/27/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Cystic epithelia in polycystic kidney disease display features similar to malignant cells. Thiazolidinediones have been shown to have anti-neoplastic properties, therefore we tested the hypothesis that pioglitazone reduces cyst formation, improves renal function, and prolongs survival in a mouse model of polycystic kidney disease. METHODS PC-Pkd1-KO mice, which have homozygous mutations of the Pkd1 gene in principal cells, were used. On the day after giving birth, mothers were fed standard mouse chow with or without pioglitazone (30 mg/kg chow). After weaning, the assigned diet was continued. At 1 month of age, blood pressure was measured and animals were sacrificed to determine kidney weight, body weight, and serum urea. Kidneys were evaluated for proliferation using Ki-67, apoptosis using TUNEL analysis, and cyst number using MRI. Survival was observed. RESULTS Pioglitazone did not alter renal function, cell proliferation, apoptosis, or cyst formation in animals with polycystic kidney disease, however it did increase survival. Pioglitazone reduced blood pressure in PC-Pkd1-KO, but not in controls. CONCLUSION These findings suggest that pioglitazone may have a unique antihypertensive effect in polycystic kidney disease, and that such an effect may promote improved survival.
Collapse
Affiliation(s)
- K L Raphael
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
TOMINAGA NAOTO, ROBERT ANNIE, IZUHARA YUKO, OHTOMO SHUICHI, DAN TAKASHI, CHIHARA KAZUO, KUROKAWA KIYOSHI, VAN YPERSELE DE STRIHOU CHARLES, MIYATA TOSHIO. Very high doses of valsartan provide renoprotection independently of blood pressure in a type 2 diabetic nephropathy rat model. Nephrology (Carlton) 2009; 14:581-7. [DOI: 10.1111/j.1440-1797.2009.01143.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Watanabe D, Tanabe A, Naruse M, Morikawa S, Ezaki T, Takano K. Renoprotective effects of an angiotensin II receptor blocker in experimental model rats with hypertension and metabolic disorders. Hypertens Res 2009; 32:807-15. [DOI: 10.1038/hr.2009.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Role of PPARgamma in renoprotection in Type 2 diabetes: molecular mechanisms and therapeutic potential. Clin Sci (Lond) 2009; 116:17-26. [PMID: 19037881 DOI: 10.1042/cs20070462] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DN (diabetic nephropathy) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of ESRD (end-stage renal disease), accounting for millions of deaths worldwide. TZDs (thiazolidinediones) are synthetic ligands of PPARgamma (peroxisome-proliferator-activated receptor gamma), which is involved in many important physiological processes, including adipose differentiation, lipid and glucose metabolism, energy homoeostasis, cell proliferation, inflammation, reproduction and renoprotection. A large body of research over the past decade has revealed that, in addition to their insulin-sensitizing effects, TZDs play an important role in delaying and preventing the progression of chronic kidney disease in Type 2 diabetes. Although PPARgamma activation by TZDs is in general considered beneficial for the amelioration of diabetic renal complications in Type 2 diabetes, the underlying mechanism(s) remains only partially characterized. In this review, we summarize and discuss recent findings regarding the renoprotective effects of PPARgamma in Type 2 diabetes and the potential underlying mechanisms.
Collapse
|
33
|
Miyata T, van Ypersele de Strihou C. Translation of basic science into clinical medicine: novel targets for diabetic nephropathy. Nephrol Dial Transplant 2009; 24:1373-7. [PMID: 19211649 DOI: 10.1093/ndt/gfp028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Miyata T, Dan T. Inhibition of advanced glycation end products (AGEs): an implicit goal in clinical medicine for the treatment of diabetic nephropathy? Diabetes Res Clin Pract 2008; 82 Suppl 1:S25-9. [PMID: 18954918 DOI: 10.1016/j.diabres.2008.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several factors are incriminated in the genesis of diabetic nephropathy (DN). To elucidate their interplays, we utilized a diabetic rat model with nephropathy (SHR/NDmcr-cp). This model is characterized by hypertension, obesity with the metabolic syndrome, diabetes with insulin resistance, and intrarenal AGE accumulation. Various therapeutic approaches were used to achieve renoprotection. Caloric restriction corrects metabolic abnormalities and protects the kidney without correcting hypertension. Anti-hypertensive agents, angiotensin II receptor blocker (ARB) and calcium channel blocker, lower blood pressure to the same extent, but only ARBs protect the kidney without changes in metabolic abnormalities. Glycemic control is better with insulin than with pioglitazone. The plasma insulin level is increased by insulin but decreased by pioglitazone which worsens the obesity. Nevertheless, pioglitazone provides renoprotection unlike insulin, perhaps as a result of the up-regulation of TGF-beta by hyperinsulinemia. Cobalt up-regulates the expression of a hypoxia-inducible factor (HIF) and its downstream genes (erythropoietin, VEGF, HO-1). It protects the kidney without correcting hypertension and metabolic abnormalities. Altogether, renoprotection is not necessarily associated with blood pressure or glycemic control. By contrast, it is almost always associated with a decreased AGE formation. AGE reduction may reflect a decreased oxidative stress as it is concomitant with a marked reduction of oxidative stress markers.
Collapse
Affiliation(s)
- Toshio Miyata
- Center for Translational and Advanced Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | | |
Collapse
|
35
|
Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int 2008; 75:381-8. [PMID: 18971923 DOI: 10.1038/ki.2008.559] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy.
Collapse
|
36
|
Miyata T, Ohtomo S, van Ypersele de Strihou C. Response to ‘Does pioglitazone provide a better renoprotective effect than insulin in diabetic patients?’. Kidney Int 2008. [DOI: 10.1038/ki.2008.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Does pioglitazone provide a better renoprotective effect than insulin in diabetic patients? Kidney Int 2008; 74:970-1; author reply 971. [DOI: 10.1038/ki.2008.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Zhang H, Saha J, Byun J, Schin M, Lorenz M, Kennedy RT, Kretzler M, Feldman EL, Pennathur S, Brosius FC. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295:F1071-81. [PMID: 18667486 DOI: 10.1152/ajprenal.90208.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent studies suggest that thiazolidinediones ameliorate diabetic nephropathy (DN) independently of their effect on hyperglycemia. In the current study, we confirm and extend these findings by showing that rosiglitazone treatment prevented the development of DN and reversed multiple markers of oxidative injury in DBA/2J mice made diabetic by low-dose streptozotocin. These diabetic mice developed a 14.2-fold increase in albuminuria and a 53% expansion of renal glomerular extracellular matrix after 12 wk of diabetes. These changes were largely abrogated by administration of rosiglitazone beginning 2 wk after the completion of streptozotocin injections. Rosiglitazone had no effect on glycemic control. Rosiglitazone had similar effects on insulin-treated diabetic mice after 24 wk of diabetes. Podocyte loss and glomerular fibronectin accumulation, other markers of early DN, were prevented by rosiglitazone in both 12- and 24-wk diabetic models. Surprisingly, glomerular GLUT1 levels did not increase and nephrin levels did not decrease in the diabetic animals; neither changed with rosiglitazone. Plasma and kidney markers of protein oxidation and lipid peroxidation were significantly elevated in the 24-wk diabetic animals despite insulin treatment and were reduced to near-normal levels by rosiglitazone. Finally, urinary metabolites were markedly altered by diabetes. Of 1,988 metabolite features identified by electrospray ionization time of flight mass spectrometry, levels of 56 were altered more than twofold in the urine of diabetic mice. Of these, 21 were returned to normal by rosiglitazone. Thus rosiglitazone has direct effects on the renal glomerulus to reduce reactive oxygen species accumulation to prevent type 1 diabetic mice from development of DN.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Internal Medicine, University of Michigan, 5520 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5680, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Agrawal V, Kizilbash SH, McCullough PA. New therapeutic agents for diabetic kidney disease. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/14750708.5.4.553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Potential for peroxisome proliferator-activated receptor-?? agonists in progression: beyond metabolism. Curr Opin Nephrol Hypertens 2008; 17:282-5. [DOI: 10.1097/mnh.0b013e3282f9b1c0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
|
42
|
Ruan X, Zheng F, Guan Y. PPARs and the kidney in metabolic syndrome. Am J Physiol Renal Physiol 2008; 294:F1032-47. [PMID: 18234957 DOI: 10.1152/ajprenal.00152.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The metabolic syndrome (MetS) is defined by a set of metabolic risk factors, including insulin resistance, central obesity, dyslipidemia, hyperglycemia, and hypertension for type 2 diabetes and cardiovascular disease. Although both retrospective and prospective clinical studies have revealed that MetS is associated with chronic renal disease, even with a nondiabetic cause, the cellular and molecular mechanisms in this association remain largely uncharacterized. Recently, increasing evidence suggests that peroxisome proliferator-activated receptors (PPARs), a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors, may play an important role in the pathogenesis of MetS. All three members of the PPAR nuclear receptor subfamily, PPARalpha, -beta/delta, and -gamma, are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, inflammation, and blood pressure. PPARs have also been implicated in many renal pathophysiological conditions, including diabetic nephropathy and glomerulosclerosis. Ligands for PPARs such as hypolipidemic PPARalpha activators, and antidiabetic thiazolidinedione PPARgamma agonists affect not only diverse aspects of MetS but also renal disease progression. Emerging data suggest that PPARs may be potential therapeutic targets for MetS and its related renal complications. This review focuses on current knowledge of the role of PPARs in MetS and discusses the potential therapeutic utility of PPAR modulators in the treatment of kidney diseases associated with MetS.
Collapse
Affiliation(s)
- Xiongzhong Ruan
- Center for Nephrology, University College of London, London, United Kingdom
| | | | | |
Collapse
|
43
|
Inhibition of TGF-β expression: A novel role for thiazolidinediones to implement renoprotection in diabetes. Kidney Int 2007; 72:1419-21. [DOI: 10.1038/sj.ki.5002654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|