1
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Medicinal Chemistry of Multiple Sclerosis: Focus on Cladribine. Mini Rev Med Chem 2020; 20:269-285. [PMID: 31644403 DOI: 10.2174/1389557519666191015201755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the recent years, many novel Disease-Modifying Drugs (DMD) have been introduced to the market in the treatment of multiple sclerosis. OBJECTIVES To provide the reader with an up to date, compact review on the pharmacokinetic properties, mechanism of action, and clinical attributes of one of the most recently approved drugs in the therapy of multiple sclerosis, cladribine. CONCLUSION Cladribine tablets proved to be a highly efficient treatment choice for Relapsing- Remitting Multiple Sclerosis (RRMS), especially for patients with high disease activity. It is the first DMD for MS with a complex mechanism of action, by inhibiting the adenosine-deaminase enzyme it increases the intracellular levels of deoxyadenosine triphosphate, which with relative selectivity depletes both T- and B-cells lines simultaneously. However long term follow-up safety and effectiveness data are still missing, and clear treatment protocols are lacking beyond the first two treatment years cladribine should prove to be a valuable addition to the therapeutic palette of RRMS, and potentially for Clinically Isolated Syndrome (CIS) as well.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Xu L, Jiao J, Sun X, Sang W, Gao X, Yang P, Yan D, Song X, Sun C, Liu M, Qin Y, Tian Y, Zhu F, Zeng L, Li Z, Xu K. Cladribine Induces ATF4 Mediated Apoptosis and Synergizes with SAHA in Diffuse Large B-Cell Lymphoma Cells. Int J Med Sci 2020; 17:1375-1384. [PMID: 32624694 PMCID: PMC7330656 DOI: 10.7150/ijms.41793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cladribine is a purine nucleoside analog used to treat B-cell chronic lymphocytic leukemia and hairy cell leukemia, also functions as an inhibitor of DNA synthesis to block the repair of the damaged DNA. The therapeutic role of cladribine against diffuse large B-cell lymphoma cells (DLBCL) is still undefined. In the present study, we demonstrated that cladribine inhibited cell proliferation and induced G1 phase arrest in human DLBCL cells. Furthermore, we showed that cladribine induced apoptosis by decreasing the expression of c-FLIPL and increasing the expression of DR4 and the cleaved form of caspase8. Cladribine also upregulated the expression of Bax, and downregulated the expression of Mcl-1 and Bcl-2 in a dose-dependent manner. It also activated endoplasmic reticulum (ER) stress, and ATF4 expression was required for cladribine induced apoptosis. Also, we showed that suberoylanilide hydroxamic acid (SAHA) enhanced the pro-apoptotic role of cladribine. Collectively, cladribine activated extrinsic and intrinsic apoptotic signaling pathways via stimulating ER stress signaling pathway and eliciting synergistic effect with SAHA in DLBCL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiaoshen Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiang Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Pu Yang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yu Tian
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Ceruti S, Abbracchio MP. Adenosine Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:13-33. [PMID: 32034707 DOI: 10.1007/978-3-030-30651-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy.
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Molica M, Breccia M, Capria S, Trisolini S, Foa R, Jabbour E, Kadia TM. The role of cladribine in acute myeloid leukemia: an old drug up to new tricks. Leuk Lymphoma 2019; 61:536-545. [PMID: 31752577 DOI: 10.1080/10428194.2019.1672060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Despite advances in understanding the pathogenesis of acute myeloid leukemia (AML), the standard therapy remained nearly unchanged for several decades. There have been many efforts to improve the response and survival by either increasing the cytarabine (ARA-C) dose or adding a third agent to the standard chemotherapy regimen. Several studies have evaluated the addition of cladribine (CdA) to standard induction, exploiting its property to potentiate ARA-C uptake. Response rates for combination regimens including CdA in relapsed/refractory (R/R) adults are approximately 50% and approximately 70% in de novo AML. Recently, a low intensity combination of CdA and ARA-C alternating with decitabine has shown promising results in older patients with AML. In this review, we will discuss the role of CdA in the treatment of AML, summarizing the recent clinical data regarding its incorporation into the induction therapy for adult AML.
Collapse
Affiliation(s)
- Matteo Molica
- Hematology, Department of Translational and Precision Medicine, University Sapienza Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, University Sapienza Rome, Italy
| | - Saveria Capria
- Hematology, Department of Translational and Precision Medicine, University Sapienza Rome, Italy
| | - Silvia Trisolini
- Hematology, Department of Translational and Precision Medicine, University Sapienza Rome, Italy
| | - Roberto Foa
- Hematology, Department of Translational and Precision Medicine, University Sapienza Rome, Italy
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Mahendra Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Yasui H, Iizuka D, Hiraoka W, Kuwabara M, Matsuda A, Inanami O. Nucleoside analogs as a radiosensitizer modulating DNA repair, cell cycle checkpoints, and apoptosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:439-452. [PMID: 31560250 DOI: 10.1080/15257770.2019.1670839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The combination of low dose of radiation and an anticancer drug is a potent strategy for cancer therapy. Nucleoside analogs are known to have a radiosensitizing effects via the inhibition of DNA damage repair after irradiation. Certain types of nucleoside analogs have the inhibitory effects on RNA synthesis, but not DNA synthesis, with multiple functions in cell cycle modulation and apoptosis. In this review, the most up-to-date findings regarding radiosensitizing nucleoside analogs will be discussed, focusing especially on the mechanisms of action.
Collapse
Affiliation(s)
- Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakako Hiraoka
- Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Mikinori Kuwabara
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Freyer CW, Gupta N, Wetzler M, Wang ES. Revisiting the role of cladribine in acute myeloid leukemia: an improvement on past accomplishments or more old news? Am J Hematol 2015; 90:62-72. [PMID: 25284482 DOI: 10.1002/ajh.23862] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 01/19/2023]
Abstract
Originally studied in lymphoid diseases, cladribine (CdA) is an adenosine deaminase resistant analog of adenosine that was later discovered to induce myeloid cell apoptosis. The activity of CdA in myeloid malignancies was first reported in relapsed/refractory (RR) pediatric acute myeloid leukemia (AML) with complete response (CR) rates of up to 47%. Consequently, several studies have confirmed the efficacy of single agent CdA or CdA combination regimens in AML. Established CR rates for combination regimens in RR adults are approximately 50%, while CR rates for newly diagnosed (ND) adults are approximately 70% and show similar toxicity profiles to previously used regimens. Despite these promising data, many centers have yet to adopt CdA combination regimens for these difficult to treat populations. We review the pharmacology, pharmacokinetics, clinical data, and safety of CdA monotherapy and combination regimens for the management of pediatric and adult ND and RR-AML.
Collapse
Affiliation(s)
- Craig W. Freyer
- Department of Pharmacy; Roswell Park Cancer Institute; Buffalo New York
| | - Neha Gupta
- Department of Medicine; SUNY-UB School of Medicine; Buffalo New York
| | - Meir Wetzler
- Department of Medicine, Leukemia Service; Roswell Park Cancer Institute; Buffalo New York
| | - Eunice S. Wang
- Department of Medicine, Leukemia Service; Roswell Park Cancer Institute; Buffalo New York
| |
Collapse
|
7
|
Intrinsic apoptosis pathway in fallopian tube epithelial cells induced by cladribine. ScientificWorldJournal 2014; 2014:928036. [PMID: 25431797 PMCID: PMC4238275 DOI: 10.1155/2014/928036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022] Open
Abstract
Cladribine is a purine nucleoside analog which initiates the apoptotic mechanism within cells. Moreover, the available data confirms that cladribine, with the participation of the p53 protein, as well as the proapoptotic proteins from the Bcl-2 family, also induces the activation of the intrinsic apoptosis pathway. However, while there has been a lot of research devoted to the effect of cladribine on lymphatic system cells, little is known about the impact of cladribine on the reproductive system. The aim of our study was to evaluate apoptosis in oviduct epithelial cells sourced from 15 different female rats. In so doing, the sections were stained with caspases 3, 9, and 8. Results suggest that cladribine also induces apoptosis in the oviduct epithelial cells by way of the intrinsic pathway. Indeed, the discontinuing of the administration of cladribine leads to a reduction in the amount of apoptotic cells in the oviduct epithelium.
Collapse
|
8
|
Jędrych M, Wawryk-Gawda E, Jodłowska-Jędrych B, Chylińska-Wrzos P, Jasiński L. Immunohistochemical evaluation of cell proliferation and apoptosis markers in ovarian surface epithelial cells of cladribine-treated rats. PROTOPLASMA 2013; 250:1025-34. [PMID: 23344798 PMCID: PMC3788177 DOI: 10.1007/s00709-012-0461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/02/2012] [Indexed: 05/21/2023]
Abstract
Cladribine has been used in the treatment of hairy cell leukemia for about 30 years. In addition, the number of indications for the application of 2-CdA is constantly increasing. The treatment with cladribine, of younger persons and even children, appears to be a major factor stimulating the more exact recognition of its activities. However, till now, little has been known about the impact of cladribine on the reproductive system. The aim of the study was to evaluate the immunohistochemical expression of cell proliferation and apoptosis markers in ovarian surface epithelial (OSE) cells. In our study, ten rats were placed into two equal groups. The study group received daily subcutaneous injections of cladribine in a dose of 0.10 mg/kg of weight/day for one cycle lasting 7 days. The control group received only saline injections. The rats were sacrificed 24 h after the last injection, and their ovaries were extracted. The sections were immunohistochemically stained with cell proliferation marker Ki-67 and the apoptosis marker caspase 3. The expressions of the markers were evaluated using a light microscope. An analysis was made using an image analysis system and the CellAD software. The results were then statistically explored by way of the Mann-Whitney U test. The proliferative index (Ki-67) of ovarian surface epithelial cells was significantly lower in the study group than in the control group (p < 0.05). These results suggest that cladribine treatment has a potential to inhibit the OSE cell proliferation in rats. The apoptosis marker demonstrated a significant increase after the cladribine treatment. These suggest that cladribine induces apoptosis in OSE cells.
Collapse
Affiliation(s)
- Marian Jędrych
- Department of Mathematics and Biostatistics, Medical University of Lublin, 20-090 Lublin ul. K. Jaczewskiego 4, Poland
| | - Ewelina Wawryk-Gawda
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Patrycja Chylińska-Wrzos
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Ludwik Jasiński
- Internal Diseases Department, County Hospital in Sędziszów, 39-120 Sędziszów, ul. Wyspiańskiego 14, Poland
| |
Collapse
|
9
|
Adenosine Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:13-30. [DOI: 10.1007/978-94-007-4719-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Franiak-Pietryga I, Sałagacka A, Maciejewski H, Błoński JZ, Borowiec M, Mirowski M, Robak T, Korycka-Wołowiec A. Apoptotic gene expression under influence of fludarabine and cladribine in chronic lymphocytic leukemia-microarray study. Pharmacol Rep 2012; 64:412-20. [PMID: 22661193 DOI: 10.1016/s1734-1140(12)70782-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/24/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND A deep insight into gene expression profiling (GEP) is a key to understanding the background of disease. It can lead to identification of diagnostic and prognostic factors and then to a selection of the most appropriate therapy. The aim of this study was to evaluate differences in apoptotic gene expression in chronic lymphocytic leukemia (CLL) cells influenced by fludarabine (FA) or cladribine (2-CdA). METHODS GEP was performed in cells obtained from 10 untreated CLL patients and cultured in vitro with FA or 2-CdA. Ninety-three selected apoptotic genes were analyzed using 384 TaqMan® Low Density Arrays in pooled RNA. RESULTS Relevant results were found in a set of 27 genes, however, the most striking differences between FA and 2-CdA were observed in the following 5 genes: BAD, TNFRSF21, DAPK1, CARD 6 and CARD 9. CONCLUSION We have found some differences in apoptotic gene expression between FAand 2-CdA. These findings give prominence to genes qualifying for further studies currently conducted in our Department.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cladribine/pharmacology
- DNA, Complementary/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/pathology
- Oligonucleotide Array Sequence Analysis
- Real-Time Polymerase Chain Reaction
- Transcriptome
- Tumor Cells, Cultured
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- Ida Franiak-Pietryga
- Department of Hematology, Medical University of Lodz, Ciołkowskiego 2, PL 93-510 Łódź, Poland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu J, Uematsu H, Tsuchida N, Ikeda MA. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells. Mol Cancer 2011; 10:95. [PMID: 21801448 PMCID: PMC3160414 DOI: 10.1186/1476-4598-10-95] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 07/31/2011] [Indexed: 11/25/2022] Open
Abstract
Background Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. Results We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. Conclusions we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells.
Collapse
Affiliation(s)
- Juan Liu
- Section of Molecular Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
In vitro and in vivo growth-inhibitory effects of cladribine on neoplastic mast cells exhibiting the imatinib-resistant KIT mutation D816V. Exp Hematol 2010; 38:744-55. [PMID: 20553795 DOI: 10.1016/j.exphem.2010.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/13/2010] [Accepted: 05/18/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In most patients with systemic mastocytosis (SM), including aggressive SM (ASM) and mast cell (MC) leukemia (MCL), neoplastic cells express the oncogenic KIT mutation D816V, which confers resistance to imatinib. Cladribine (2CdA) is a nucleoside analog that has been introduced as a promising agent for treatment of advanced SM. MATERIALS AND METHODS We examined the in vitro effects of 2CdA on growth of neoplastic MC, and the in vivo effects of 2CdA (0.13 mg/kg/day intravenously, days 1-5; three to eight cycles) in seven patients with advanced SM. RESULTS Cladribine was found to inhibit growth of primary MC and the MC line HMC-1 in a dose-dependent manner, with lower IC(50) values recorded in HMC-1.2 cells harboring KIT D816V (IC(50): 10 ng/mL) compared to HMC-1.1 cells lacking KIT D816V (IC(50): 300 ng/mL). In two patients with progressive smoldering SM, 2CdA produced a long-lasting response with a sustained decrease in serum tryptase levels, whereas in patients with progressive ASM or MCL, 2CdA showed little if any effects. The drug was well-tolerated in most cases. However, one patient developed a massive generalized purulent long-lasting skin rash. The antiproliferative effects of 2CdA on MC were found to be associated with morphologic signs of apoptosis and caspase cleavage. Cladribine did not counteract the kinase activity of KIT D816V or KIT-downstream signaling molecules. CONCLUSIONS Cladribine may be a promising agent for treatment of progressive smoldering KIT D816V(+) SM. In rapidly progressing ASM or MCL, additional or alternative drugs are required to induce long-lasting antineoplastic effects.
Collapse
|
13
|
Cladribine and Fludarabine Nucleoside Change the Levels of CD Antigens on B-Lymphoproliferative Disorders. INTERNATIONAL JOURNAL OF PROTEOMICS 2010; 2010:964251. [PMID: 22084681 PMCID: PMC3200083 DOI: 10.1155/2010/964251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
The purine analogs, fludarabine nucleoside (FdA), and cladribine (CdA) (1 μM, 24 hours), significantly changed the levels of some surface antigens on the human B-cell lines MEC2 and Raji. Changes in the surface proteins were identified using a Cluster of Differentiation (CD) antibody microarray that captures live cells and confirmed by flow cytometry. For Raji cells, CdA up-regulated CD10, CD54, CD80, and CD86, with repression of CD22, while FdA up-regulated CD20, CD54, CD80, CD86 and CD95. For MEC2 cells, CdA up-regulated CD11a, CD20, CD43, CD45, CD52, CD54, CD62L, CD80, CD86, and CD95, but FdA had no effect. Up-regulation of particular CD antigens induced on a B-cell lymphoproliferative disorder by a purine analog could provide targets for therapeutic antibodies with synergistic cell killing.
Collapse
|
14
|
Hentosh P, Peffley DM. The cladribine conundrum: deciphering the drug's mechanism of action. Expert Opin Drug Metab Toxicol 2009; 6:75-81. [DOI: 10.1517/17425250903393745] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Robak T, Korycka A, Lech-Maranda E, Robak P. Current status of older and new purine nucleoside analogues in the treatment of lymphoproliferative diseases. Molecules 2009; 14:1183-226. [PMID: 19325518 PMCID: PMC6253893 DOI: 10.3390/molecules14031183] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Accepted: 03/10/2009] [Indexed: 01/29/2023] Open
Abstract
For the past few years more and more new cytotoxic agents active in the treatment of hematological malignancies have been synthesized and become available for either in vitro studies or clinical trials. Among them the class of antineoplastic drugs belonging to the purine nucleoside analogues group (PNAs) plays an important role. Three of them: pentostatin (DCF), cladribine (2-CdA) and fludarabine (FA) were approved by Food and Drug Administration (FDA) for the treatment of hematological malignancies. Recently three novel PNAs: clofarabine (CAFdA), nelarabine (ara-G) and forodesine (immucillin H, BCX-1777) have been synthesized and introduced into preclinical studies and clinical trials. These agents seem to be useful mainly for the treatment of human T-cell proliferative disorders and they are currently undergoing clinical trials in lymphoid malignancies. However, there are also several studies suggesting the role of these drugs in B-cell malignancies. This review will summarize current knowledge concerning the mechanism of action, pharmacologic properties, clinical activity and toxicity of PNAs accepted for use in clinical practice, as well as new agents available for clinical trials.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, 93-510 Lodz, Ciolkowskiego 2 Str., Poland.
| | | | | | | |
Collapse
|
16
|
Takahashi M, Inanami O, Kubota N, Tsujitani M, Yasui H, Ogura A, Kuwabara M. Enhancement of cell death by TNF alpha-related apoptosis-inducing ligand (TRAIL) in human lung carcinoma A549 cells exposed to x rays under hypoxia. JOURNAL OF RADIATION RESEARCH 2007; 48:461-8. [PMID: 17895594 DOI: 10.1269/jrr.07028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our previous study showed that ionizing radiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines and that the death receptor of the TNF alpha-related apoptosis-inducing ligand TRAIL enhanced the apoptotic pathway (Hamasu et al., (2005) Journal of Radiation Research, 46:103-110). The present experiments were performed to examine whether treatment with TRAIL enhanced the cell killing in tumor cells exposed to ionizing radiation under hypoxia, since the presence of radioresistant cells in hypoxic regions of solid tumors is a serious problem in radiation therapy for tumors. When human lung carcinoma A549 cells were irradiated under normoxia and hypoxia, respectively, radiation-induced enhancement of expression of DR5 was observed under both conditions. Incubation in the presence of TRAIL enhanced the caspase-dependent and chymotrypsin-like-protease-dependent apoptotic cell death in A549 cells exposed to X rays. Furthermore, it was shown that treatment with TRAIL enhanced apoptotic cell death and loss of clonogenic ability in A549 cells exposed to X rays not only under normoxia but also under hypoxia, suggesting that combination treatment with TRAIL and X irradiation is effective for hypoxic tumor cells.
Collapse
Affiliation(s)
- Momoko Takahashi
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Takahashi E, Inanami O, Ohta T, Matsuda A, Kuwabara M. Lipid raft disruption prevents apoptosis induced by 2-chloro-2′-deoxyadenosine (Cladribine) in leukemia cell lines. Leuk Res 2006; 30:1555-61. [PMID: 16730061 DOI: 10.1016/j.leukres.2006.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/10/2006] [Accepted: 04/15/2006] [Indexed: 10/24/2022]
Abstract
To clarify the role of lipid rafts in 2-chloro-2'-deoxyadenosine (2CdA; Cladribine)-induced apoptosis, the effects of disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) and filipin on 2CdA-induced apoptosis were investigated in four human acute lymphoblastic leukemia (ALL) cell lines comprised of T cells (MOLT-4, Jurkat) and B cells (NALM, BALL-1). The disruption of lipid rafts significantly inhibited 2CdA-induced apoptosis, indicating the crucial role of lipid rafts in the induction of apoptosis in leukemia cells. These reagents significantly inhibited 2CdA-induced elevation of the intracellular calcium concentration ([Ca(2+)](i)) in MOLT-4 cells, and 2CdA-induced apoptosis was partly inhibited by the Ca(2+) chelators BAPTA-AM and EGTA, and the L-type Ca(2+) channel blocker nifedipine. On the other hand, they had no effects on the cellular uptake of 2CdA. These results indicated that lipid rafts partly contributed to 2CdA-induced apoptosis by regulating Ca(2+) influx via the plasma membrane.
Collapse
Affiliation(s)
- Eriko Takahashi
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 jo Nishi 9 chome, Sapporo, Japan
| | | | | | | | | |
Collapse
|
18
|
Hosseinimehr SJ, Inanami O, Hamasu T, Takahashi M, Kashiwakura I, Asanuma T, Kuwabara M. Activation of c-kit by stem cell factor induces radioresistance to apoptosis through ERK-dependent expression of survivin in HL60 cells. JOURNAL OF RADIATION RESEARCH 2004; 45:557-61. [PMID: 15635266 DOI: 10.1269/jrr.45.557] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the effect of SCF, a c-kit ligand, on the radiosensitivity of HL60 cells. X-ray-induced apoptosis in HL60 cells was significantly lower in the presence of SCF than in the absence of SCF. This attenuation of X-ray-induced apoptosis by SCF was abolished by PD98059 (an ERK inhibitor), but not by wortmannin (a PI3-K inhibitor) or GF109203X (a PKC inhibitor). The expression of phospho-ERK1/2 (active form) and the ERK1/2-regulated expression of survivin were found to increase in cells treated with X irradiation and SCF. However, X irradiation alone induced down-regulation of the expression of phospho-ERK1/2. Our findings suggest that activation of c-kit by SCF confers radioresistance through up-regulation of ERK-dependent survivin expression in HL60 cells.
Collapse
Affiliation(s)
- Seyed Jalal Hosseinimehr
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Klöpfer A, Hasenjäger A, Belka C, Schulze-Osthoff K, Dörken B, Daniel PT. Adenine deoxynucleotides fludarabine and cladribine induce apoptosis in a CD95/Fas receptor, FADD and caspase-8-independent manner by activation of the mitochondrial cell death pathway. Oncogene 2004; 23:9408-18. [PMID: 15516989 DOI: 10.1038/sj.onc.1207975] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenine deoxynucleosides cladribine (2CdA) and fludarabine (FAraA) are DNA-damaging agents that interfere with DNA repair and induce apoptosis in nonproliferating lymphoid cells. Although both drugs are clinically used for the treatment of indolent lymphoproliferative diseases, the pathways of apoptosis induction remain largely unknown. In the present work, we demonstrate that both drugs induce apoptosis independently of death receptor signaling but activate the mitochondrial cell death pathway. To dissect the signaling pathways, we employed Jurkat cells either deficient for FADD or caspase-8 or overexpressing Bcl-2. In Bcl-2 overexpressing cells, apoptosis and cytochrome c release were blocked whereas processing of caspase-9, -3 and -8 was partially inhibited. In contrast, neither the deficiency of FADD or caspase-8 nor the interference with death receptor signaling by neutralizing anti-CD95/Fas antibodies affected cell death. Inhibitor experiments revealed that caspase-8 is processed by caspase-3-like caspases. Moreover, cytochrome c release and processing of caspase-9 and -3 occurred to an equal extent in wild-type FADD -/- and caspase-8 -/- Jurkat cells. Likewise, apoptosis induction by cladribine or fludarabine was not hampered upon inhibition of caspase-8 in MOLT-3 and MOLT-4 cells or overexpression of a dominant-negative FADD mutant in BJAB cells. Thus, we conclude that apoptosis induced by nucleoside analogues is independent from death receptor signaling as well as from a proposed direct effect on APAF-1, but rather follows the mitochondrial signaling pathway of cytochrome c release and subsequent processing of caspase-9 and -3.
Collapse
Affiliation(s)
- Antje Klöpfer
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Marczak A, Łubgan D, Robak T, Jóźwiak Z. Influence of 2-chlorodeoxyadenosine (cladribine) on human erythrocytes. Int J Biochem Cell Biol 2004; 36:1645-54. [PMID: 15147742 DOI: 10.1016/j.biocel.2004.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/15/2004] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
2-Chlorodeoxyadenosine (2-CdA, cladribine) is one of the newest chemotherapy drugs which has been around and in use for a few years. Drug in tumour cells causes the inhibition of DNA synthesis and repair processes in replication cells, and the accumulation of DNA strand breaks in nonproliferating cells. The present study was undertaken to characterize the influence of cladribine on the fluidity of the lipid bilayer and protein conformation in human erythrocytes. The effect of cladribine on the erythrocyte membrane structure was examined by electron spin resonance (ESR) spectroscopy and fluorescence measurements. It was observed that under the studied conditions (c: 0.1-5 microg/ml, t = 1 h, 37 degrees C), cladribine localised mainly in the erythrocyte membrane and affected its organization. The alterations in the fluidity were observed mainly in the deeper regions of the cell membrane. The incorporation of drug into human erythrocytes also caused negligible conformational alterations of membrane cytoskeletal proteins and did not change the internal viscosity of the cells. We can conclude from these data that 2-CdA in vitro is significantly much less toxic to erythrocytes than anthracycline drugs, which are used in treatment of leukemias. However, the higher concentrations of 2-CdA (about 5 microg/ml) can be also toxic to erythrocytes.
Collapse
Affiliation(s)
- A Marczak
- Department of Thermobiology, University of Łødź, Poland.
| | | | | | | |
Collapse
|
21
|
Lindemalm S, Liliemark J, Juliusson G, Larsson R, Albertioni F. Cytotoxicity and pharmacokinetics of cladribine metabolite, 2-chloroadenine in patients with leukemia. Cancer Lett 2004; 210:171-7. [PMID: 15183532 DOI: 10.1016/j.canlet.2004.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/05/2004] [Accepted: 03/08/2004] [Indexed: 11/30/2022]
Abstract
The nucleoside analog 2-chlorodeoxyadenosine (Cladribine, CdA) is used in the treatment of patients with several hematological malignancies. After administration of CdA, the major catabolite measured in plasma and urine is 2-chloroadenine (CAde). This study was performed to determine the pharmacokinetics after oral and intravenous (iv) infusion of CdA in patients treated for chronic lymphocytic leukemia and to evaluate the toxicity of CAde to leukemia cells in vitro. CdA and CAde were also determined in plasma from 31 patients and in urine from 16 patients with reversed-phase high-performance liquid chromatographic. The toxicity of CdA and CAde was also determined in leukemic cells from 7 patients by fluorometric microculture cyotoxicity assay. Five times more CAde was quantified after oral treatment compared with an iv infusion of CdA. After iv infusion, the half-life was the same for CdA and CAde, but after oral administration the half-life was doubled for CAde. Excreted amount of CAde in urine constituted about 1.1% after iv infusion and 4.7% after oral CdA treatment. In vitro exposure of leukemia cells to CAde showed that it was eight times less toxic as compared to CdA. We conclude that CAde has a lower cytotoxic effect than CdA but may contribute significantly to the cytotoxicity after oral administration.
Collapse
Affiliation(s)
- Synnöve Lindemalm
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska University Hospital, Stockholm S-171 76, Sweden
| | | | | | | | | |
Collapse
|
22
|
Giannecchini M, D'Innocenzo B, Pesi R, Sgarrella F, Iorio M, Collecchi P, Tozzi MG, Camici M. 2?-Deoxyadenosine causes apoptotic cell death in a human colon carcinoma cell line. J Biochem Mol Toxicol 2003; 17:329-37. [PMID: 14708088 DOI: 10.1002/jbt.10095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The combination of 2'-deoxyadenosine and 2'-deoxycoformycin is toxic for the human colon carcinoma cell line LoVo. In this study we investigated the mode of action of the two compounds and have found that they promote apoptosis. The examination by fluorescence microscopy of the cells treated with the combination revealed the characteristic morphology associated with apoptosis, such as chromatin condensation and nuclear fragmentation. The occurrence of apoptosis was also confirmed by the release of cytochrome c and the proteolytic processing of procaspase-3 in cells subjected to the treatment. To exert its triggering action on the apoptotic process, 2'-deoxyadenosine enters the cells through an equilibrative nitrobenzyl-thioinosine-insensitive carrier, and must be phosphorylated by intracellular kinases. Indeed, in the present work we demonstrate by analysis of the intracellular metabolic derivatives of 2'-deoxyadenosine that, as suggested by our previous findings, in the incubation performed with 2'-deoxyadenosine and 2'-deoxycoformycin, an appreciable amount of dATP was formed. Conversely, when also an inhibitor of adenosine kinase was added to the incubation mixture, dATP was not formed, and the toxic and apoptotic effect of the combination was completely reverted.
Collapse
Affiliation(s)
- Michela Giannecchini
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Via S. Maria 55, 56100 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kuwabara M, Takahashi K, Inanami O. Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. JOURNAL OF RADIATION RESEARCH 2003; 44:203-209. [PMID: 14646222 DOI: 10.1269/jrr.44.203] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A post-irradiation treatment of the human leukemia cell line MOLT-4 with the antioxidant Trolox attenuated caspase-3 dependent apoptosis. The increase in the p53 expression and SAPK/JNK activation after X irradiation was also inhibited by a Trolox treatment, but the expression of BCL-2 and BAX, which would occur downstream from p53, was not changed. Studies on the effects of the intracellular calcium chelator BAPTA-AM on the induction of apoptosis and the activation of SAPK/JNK and caspase-3 proved that the chelation of calcium merely delayed the onset of radiation-induced apoptosis and the activation of SAPK/JNK and caspase-3. When the effects of the protein synthesis inhibitor cycloheximde on the apoptotic signaling pathways, including the activation of caspase family proteins and SAPK/JNK, were investigated, the expression of death receptor Fas through SAPK/JNK activation was found to be required for radiation-induced apoptosis. Finally, the relationship between the amounts of DNA dsb and induction of apoptosis was examined by irradiating BrdU-incorporated cells. An increase in DNA dsb caused by BrdU was found, but the induction of apoptosis was not enhanced. From these data, we could get no positive evidence for DNA as a target of X-rays and p53 as an indispensable factor to induced apoptosis in X-irradiated MOLT-4 cells.
Collapse
Affiliation(s)
- Mikinori Kuwabara
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
24
|
Kashiwakura I, Inanami O, Takahashi K, Takahashi TA, Kuwabara M, Takagi Y. Protective effects of thrombopoietin and stem cell factor on X-irradiated CD34+ megakaryocytic progenitor cells from human placental and umbilical cord blood. Radiat Res 2003; 160:210-6. [PMID: 12859232 DOI: 10.1667/3032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In previous studies we characterized the radiosensitivity of CFU-megakaryocytes from human placental and umbilical cord blood and the effects of various early-acting cytokines. We found that the maximal clonal growth of CFU-megakaryocytes in vitro and maximal protection against X-ray damage were supported by a combination of thrombopoietin and stem cell factor. However, the mechanism by which the two cytokines exert a synergistic effect remained unclear, so we extended these studies to investigate the radioprotective action of synergistic thrombopoietin and stem cell factor on the survival of X-irradiated CD34(+) CFU-megakaryocytes. A combination of thrombopoietin and stem cell factor led to activation of mitogen-activated protein kinase and extracellular signal-regulated protein kinase and to suppression of caspase 3 in X-irradiated CD34(+) cells. When PD98059 and various synthetic substrates-specific inhibitors of these proteins-were used, the combination had less effect on the clonal growth of X-irradiated CD34(+) CFU-megakaryocytes. However, the addition of wortmannin, a specific inhibitor of the phosphatidylinositol-3 kinase pathway, did not alter the synergistic action of thrombopoietin plus stem cell factor. We suggest that part of this synergistic effect can be explained by activation of mitogen-activated protein kinase and extracellular signal-regulated protein kinase and by suppression of the caspase cascade.
Collapse
Affiliation(s)
- Ikuo Kashiwakura
- Department of Radiological Technology, Hirosaki University School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Ceruti S, Beltrami E, Matarrese P, Mazzola A, Cattabeni F, Malorni W, Abbracchio MP. A key role for caspase-2 and caspase-3 in the apoptosis induced by 2-chloro-2'-deoxy-adenosine (cladribine) and 2-chloro-adenosine in human astrocytoma cells. Mol Pharmacol 2003; 63:1437-47. [PMID: 12761355 DOI: 10.1124/mol.63.6.1437] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Both the anticancer agent 2-chloro-2'-deoxy-adenosine (Cladribine) and its derivative 2-chloro-adenosine induce apoptosis of human astrocytoma cells (J Neurosci Res 60:388-400, 2000). In this study, we have analyzed the involvement of caspases in these effects. Both compounds produced a gradual and time-dependent activation of "effector" caspase-3, which preceded the appearance of the nuclear signs of apoptosis, suggesting a temporal correlation between these two events. Moreover, the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone (fmk) suppressed both caspase-3 activation and apoptosis induction. "Initiator" caspase-9 and caspase-8 were only marginally activated at later times in the apoptotic process. Accordingly, at concentrations that selectively inhibit these caspases, neither N-benzyloxycarbonyl-Leu-Glu-His-Asp-fmk nor N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fmk could prevent adenosine analog-induced cell death. To definitively rule out a role for the caspase-9/cytochrome c-dependent mitochondrial pathway of cell death, neither adenosine analog had any effect on mitochondrial membrane potential, which was instead markedly reduced by other apoptotic stimuli (e.g., deoxyribose, NaCN, and betulinic acid). Consistently, although the latter triggered translocation of mitochondrial cytochrome c to the cytoplasm, no cytosolic accumulation of cytochrome c was detected with adenosine analogs. Conversely, 1 to 7 h after addition of either adenosine analog (i.e., before the appearance of caspase-3 activation), caspase-2 activity was surprisingly and markedly increased. The selective caspase-2 inhibitor N-benzyloxy carbonyl-Val-Asp-Val-Ala-Asp-fmk significantly reduced both adenosine analogs-induced caspase-2 activation and the associated cell death. We conclude that adenosine analogs induce the apoptosis of human astrocytoma cells by activating an atypical apoptotic cascade involving caspase-2 as an initiator caspase, and effector caspase-3. Therefore, these compounds could be effectively used in the pharmacological manipulation of tumors characterized by resistance to cell death via either the mitochondrial or caspase-8/death receptor pathways.
Collapse
Affiliation(s)
- Stefania Ceruti
- University of Milan and Center of Excellence for Neurodegenerative Diseases (CEND)-Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Ceruti S, Mazzola A, Beltrami E, Passera D, Piantoni E, Cattabeni F, Abbracchio MP. Intracellular phosphorylation of chloro-adenosine analogs is a prerequisite for activation of caspase-3 and induction of apoptosis in human astrocytoma cells. Drug Dev Res 2003. [DOI: 10.1002/ddr.10184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Jendrossek V, Müller I, Eibl H, Belka C. Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene 2003; 22:2621-31. [PMID: 12730676 DOI: 10.1038/sj.onc.1206355] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of apoptosis contributes to the cytotoxic action of the intravenously applicable alkylphosphocholine erucylphosphocholine (ErPC). To define molecular requirements for ErPC-induced apoptosis, activation of caspases-8, -9 and -3 and cleavage of the caspase-3 substrates PARP and ICAD were tested in normal Jurkat T cells, Jurkat cells resistant to death receptor (CD95 or TNFalpha-related apoptosis inducing ligand (TRAIL)-induced apoptosis, Jurkat cells lacking caspase-8 or Fas-associated death domain (FADD) Jurkat cells expressing a dominant-negative caspase-9 or overexpressing Bcl-2 as well as BJAB B-lymphoma cells expressing a dominant-negative FADD (FADD-DN). ErPC induced a time- and dose-dependent apoptotic cell death in Jurkat and BJAB cells, which was characterized by breakdown of the phosphatidylserine asymmetry, depolarization of the mitochondrial membrane potential, release of cytochrome c, activation of caspases-9, -8 and -3, cleavage of PARP and ICAD, as well as chromatin condensation. ErPC-induced apoptosis was independent from CD95-receptor signaling and FADD since CD95- and TRAIL-resistant, caspase-8- and FADD-negative Jurkat cells, as well as BJAB cells expressing FADD-DN were sensitive to ErPC-induced apoptosis. In contrast, inhibition of caspase-9 and overexpression of Bcl-2 significantly reduced ErPC-induced caspase activation and apoptosis. Thus, ErPC triggers apoptosis via a Bcl-2-dependent mitochondrial but death receptor-independent pathway.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Radiation Oncology, University of Tübingen, Hoppe Seyler Str. 3, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
28
|
von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT. Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 2003; 22:2236-47. [PMID: 12700660 DOI: 10.1038/sj.onc.1206280] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome c, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome c release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome c, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing in vivo.
Collapse
Affiliation(s)
- Clarissa von Haefen
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, University of Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Sallah S, Wan JY. Efficacy of 2-chlorodeoxyadenosine in refractory factor VIII inhibitors in persons without hemophilia. Blood 2003; 101:943-5. [PMID: 12393474 DOI: 10.1182/blood-2002-07-2139] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The authors examined the efficacy of 2-chlorodeoxyadenosine (2-CDA) in the treatment of refractory inhibitors to factor VIII in persons without hemophilia. The drug was administered to 6 patients at a dose of 0.1 mg/kg as a 24-hour continuous infusion for a total of 7 days each cycle. An average of 3 immunosuppressive regimens per patient had been administered prior to enrollment in this study. The median inhibitor titer against human and porcine factor VIII before treatment with 2-CDA was 31 Bethesda units (BUs) and 9 BU, respectively. The median inhibitor titer against human and porcine factor VIII after treatment was 3.5 BU and 1.5 BU, respectively. The median time to reach nadir inhibitor titer in this study was 137 days, whereas the median time to reach a 50% increase in factor VIII was 117 days. No major toxicity was observed in any patient in this study. Patients with acquired inhibitors to factor VIII refractory to conventional immunosuppressive therapy may respond favorably to 2-CDA.
Collapse
Affiliation(s)
- Sabah Sallah
- Thrombosis and Hemostasis Program and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport 71130, USA.
| | | |
Collapse
|
30
|
Månsson E, Stridh H, Albertioni F. Resistance to mitochondrial- and Fas-mediated apoptosis in human leukemic cells with acquired resistance to 9-beta-D-arabinofuranosylguanosine. Biochem Biophys Res Commun 2002; 298:338-44. [PMID: 12413945 DOI: 10.1016/s0006-291x(02)02471-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously reported that in a MOLT-4 leukemia cell line the acquired resistance to 9-beta-D-arabinofuranosylguanine (Ara-G) is due to deficiency of the activating enzymes deoxyguanosine kinase and deoxycytidine kinase [Biochem. Biophys. Res. Commun. 293 (5) (2002) 1489]. In this study we investigated whether apoptotic pathways are affected in two human T-cell lymphoblastic MOLT-4 cell lines with acquired resistance to Ara-G. In contrast to the MOLT-4 wild type cells, Ara-G resistant cells displayed no increase in caspase-3 or caspase-9 activity, DNA fragmentation, cytochrome c release or a drop in the mitochondrial membrane potential (DeltaPsi(mito)) upon Ara-G treatment. A drop in the DeltaPsi(mito) was induced in wild type cells after treatment with tributyltin, an inducer of mitochondrial permeability transition, and with carbonyl cyanide m-chlorophenylhydrazone, an uncoupling agent that reduces the DeltaPsi(mito), although not in Ara-G resistant cells. Ara-G resistant cells displayed higher levels of the anti-apoptotic protein Bcl-xL in immunoblots. A recent study indicates that Ara-G-induced apoptosis is mediated in part via the Fas pathway [Cancer Res. 43 (2047) (2002) 411]. When cells were treated with anti-Fas antibody, the wild type cell line exhibited increased caspase-3-like activity but the Ara-G resistant cells did not. Using FACS analysis and semi-quantitative PCR, 3-6-fold decreased protein levels and almost no detectable mRNA levels of Fas in the resistant cells were recorded. These data indicate that the inability to induce apoptosis via both the apoptosome pathway and the Fas pathway, due to increased levels of Bcl-xL and a lack of Fas, contributes to Ara-G resistance. This resistance to apoptosis in Ara-G resistant cells may serve to explain the overall resistance to a variety of anti-neoplastic drugs.
Collapse
Affiliation(s)
- Emma Månsson
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Lau C, Narotsky MG, Lui D, Best D, Setzer RW, Mann PC, Wubah JA, Knudsen TB. Exposure-disease continuum for 2-chloro-2'-deoxyadenosine (2-CdA), a prototype teratogen: induction of lumbar hernia in the rat and species comparison for the teratogenic responses. TERATOLOGY 2002; 66:6-18. [PMID: 12115775 DOI: 10.1002/tera.10039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The purine analog 2-chloro-2'-deoxyadenosine (2-CdA) caused ocular and limb defects in the mouse and rabbit. The current study examined the teratogenic potential of this drug in the rat and compared the adverse developmental outcomes with the other species. METHODS Timed-pregnant Sprague-Dawley rats were given a single intraperitoneal injection of various doses of 2-CdA ranging from 5-60 mg/kg, at gestational day (GD) 9.5 and GD 14. 2-CdA concentrations in maternal serum and embryos were measured by HPLC and termed fetuses were prepared for teratological examination. RESULTS Full-litter resorption was seen in dams receiving 50 mg/kg of 2-CdA at GD 9.5, whereas post-implantation loss was significantly increased and fetal weights significantly reduced at 40 mg/kg. Gross examination of the surviving fetuses revealed microphthalmia, a shortened body trunk and lumbar hernia, manifested by a soft mass protrusion at the lumbar region on one or both sides of the spine. Incidence of these defects increased in a dose-dependent fashion. Histological examination indicated that the hernia was associated with hypoplasia of the body wall, poorly developed skeletal muscle bundles surrounding the vertebral column in the lumbar region, and an absence of the lateral muscle groups that allowed protrusion of the abdominal viscera. The lumbar hernia was generally accompanied by spina bifida, deformed ribs and a wide spectrum of soft tissue-abnormalities that included kidney, genitourinary and heart defects. At GD 14, exposure to 2-CdA at 60 mg/kg produced oligodactyly in one of six litters. CONCLUSIONS 2-CdA produced similar ocular defects in the rat and mouse, although the incidence was much lower in the former species. In contrast, the drug-induced lumbar hernia was only seen in the rat. These apparent disparities were not readily explained by species differences in pharmacokinetic parameters. the similarities between the teratological features of 2-CdA-induced lumbar hernia in the rat and the clinical description of lumbocostovertebral syndrome, however, may provide a key to unlock the etiology of this rare birth defect in humans.
Collapse
Affiliation(s)
- Christopher Lau
- Reproductive Toxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gora-Tybor J, Lech-Miranda E, Blonski JZ, Robak T. 2-chlorodeoxyadenosine (2-CdA) does not change the expression of Fas antigen on chronic lymphocytic leukaemia cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:307-10. [PMID: 11783506 DOI: 10.1007/0-306-46843-3_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
MESH Headings
- 2-Chloroadenosine/analogs & derivatives
- 2-Chloroadenosine/pharmacology
- 2-Chloroadenosine/therapeutic use
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Deoxyadenosines/pharmacology
- Deoxyadenosines/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Tumor Cells, Cultured
- fas Receptor/biosynthesis
Collapse
Affiliation(s)
- J Gora-Tybor
- Department of Hematology, University of Lodz, Poland
| | | | | | | |
Collapse
|
33
|
Chandra J, Mansson E, Gogvadze V, Kaufmann SH, Albertioni F, Orrenius S. Resistance of leukemic cells to 2-chlorodeoxyadenosine is due to a lack of calcium-dependent cytochrome c release. Blood 2002; 99:655-63. [PMID: 11781251 DOI: 10.1182/blood.v99.2.655] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purine nucleoside 2-chlorodeoxyadenosine (CdA) is often used in leukemia therapy. Its efficacy, however, is compromised by the emergence of resistant cells. In the present study, 3 CdA-resistant cell lines were generated and characterized. Their ability to accumulate 2-chloroadenosine triphosphate (CdATP) varied, reflecting differences in activities of deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Nonetheless, the selected lines were uniformly resistant to CdA-induced apoptosis, as assessed by caspase activation and DNA fragmentation. In contrast, cytosols from resistant cells were capable of robust caspase activation when incubated in the presence of cytochrome c and dATP. Moreover, replacement of dATP with CdATP also resulted in caspase activation in the parental and some of the resistant cell lines. Strikingly, CdA-induced decreases in mitochondrial transmembrane potential and release of cytochrome c from mitochondria were observed in the parental cells but not in any resistant lines. The lack of cytochrome c release correlated with an increased ability of mitochondria from resistant cells to sequester free Ca2+. Consistent with this enhanced Ca2+ buffering capacity, an early increase in cytosolic Ca2+ after CdA treatment of parental cells but not resistant cells was detected. Furthermore, CdA-resistant cells were selectively cross-resistant to thapsigargin but not to staurosporine- or Fas-induced apoptosis. In addition, CdA-induced caspase-3 activation and DNA fragmentation were inhibited by the Ca2+ chelator BAPTA-AM in sensitive cells. Taken together, the data indicate that the mechanism of resistance to CdA may be dictated by changes in Ca2+-sensitive mitochondrial events.
Collapse
Affiliation(s)
- Joya Chandra
- Institute for Environmental Medicine, Division of Toxicology, and Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Van Den Neste E, Cardoen S, Husson B, Rosier JF, Delacauw A, Ferrant A, Van den Berghe G, Bontemps F. 2-Chloro-2'-deoxyadenosine inhibits DNA repair synthesis and potentiates UVC cytotoxicity in chronic lymphocytic leukemia B lymphocytes. Leukemia 2002; 16:36-43. [PMID: 11840261 DOI: 10.1038/sj.leu.2402331] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2001] [Accepted: 09/06/2001] [Indexed: 11/08/2022]
Abstract
2-Chloro-2'-deoxyadenosine (CdA) is a deoxyadenosine analogue which targets enzymes involved in DNA synthesis, and hence might interfere with the resynthesis step of DNA repair. We tested this hypothesis in resting B cell chronic lymphocytic leukemia (B-CLL) lymphocytes, after firstly characterizing unscheduled DNA synthesis occurring in these cells. We observed that the spontaneous incorporation of [methyl-3H]thymidine (dThd) into DNA of B-CLL cells was not completely inhibitable by hydroxyurea (HU) which blocks DNA replication. In addition, in the presence of HU, dThd incorporation could be upregulated by UVC radiation or DNA alkylation, without re-entry of the cells into S phase. CdA was found to inhibit both spontaneous and upregulated DNA synthesis in B-CLL cells. Phosphorylation of CdA was essential to exert this effect. We finally observed a strong synergistic cytotoxicity between UV light and CdA, which was correlated with activation of caspase-3 and high molecular weight DNA fragmentation, two markers of apoptosis. Taken together, these observations indicate that in B-CLL cells CdA inhibits unscheduled DNA synthesis which represents the polymerizing step of a repair process responsive to DNA aggression. Inhibition of this process by CdA, together with a combined activation of the apoptotic proteolytic cascade by CdA and UV, may explain their synergistic cytotoxicity.
Collapse
MESH Headings
- Alkylating Agents/pharmacology
- Alkylation
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/radiation effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/radiation effects
- Caspase 3
- Caspases/analysis
- Cladribine/metabolism
- Cladribine/pharmacology
- DNA Damage
- DNA Repair/drug effects
- DNA Replication/drug effects
- DNA, Neoplasm/biosynthesis
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/radiation effects
- Depression, Chemical
- Humans
- Hydroxyurea/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Neoplasm Proteins/analysis
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/radiation effects
- Phosphorylation
- Prodrugs/metabolism
- Prodrugs/pharmacology
- Radiation Tolerance
- Radiation-Sensitizing Agents/pharmacology
- Thymidine/metabolism
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- E Van Den Neste
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology (ICP), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee TB, Min YD, Lim SC, Kim KJ, Jeon HJ, Choi SM, Choi CH. Fas (Apo-1/CD95) and Fas ligand interaction between gastric cancer cells and immune cells. J Gastroenterol Hepatol 2002; 17:32-38. [PMID: 11895550 DOI: 10.1046/j.1440-1746.2002.02657.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS It has been proposed that the expression of Fas ligand (Fas L) in tumors may play an important role in immune escape. This study was undertaken to test a 'counterattack' theory as a mechanism of immune escape in gastric carcinoma. METHODS Expression of Fas and Fas L was examined in the human gastric cancer cell lines using reverse transcription-polymerase chain reaction. Cytotoxicity was determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Apoptosis of target Jurkat cells was examined after coculture with the effector gastric cancer cells in vitro. Immunohistochemical staining was performed for the detection of Fas and FasL in tumor-infiltrating lymphocytes (TIL) and gastric cancer cells in vivo. Apoptosis was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method in vitro and in vivo. RESULTS Fas and FasL mRNA were found to be differentially expressed in gastric cancer cell lines. The coculture experiment showed that apoptosis of Jurkat was induced by a FasL-overexpressing effector gastric cell SNU-484. In a Fas-expressing gastric cell SNU-638, Fas expression was upregulated by the treatment of gamma-interferon in a time- and concentration-dependent manner. SNU-638 treated with gamma-interferon was more sensitive to anti-Fas antibody-mediated cytotoxicity than was the control cell line, suggesting an increase of functional Fas in gastric cancer cells. The expression of FasL in gastric cancer cells and of Fas in apoptotic TIL was also detected in vivo. CONCLUSION The data indicate that the FasL expression of gastric cancer cells supports a 'counterattack theory' in gastric cancer cells and that the upregulation of Fas by IFN-gamma in SNU-638 may accelerate the apoptosis pathway through the Fas and FasL interaction between gastric cancer cells and immune cells. This result is supported by the expression of FasL in gastric cancer cells and apoptotic TIL in vivo. It is implicated that the different biological behaviors of gastric cancer cells could be at least in part explained by Fas and FasL interaction with immune cells.
Collapse
Affiliation(s)
- Tae-Bum Lee
- Department of Pharmacology, Chosun University Medical School, Gwangju, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Marzo I, Pérez-Galán P, Giraldo P, Rubio-Félix D, Anel A, Naval J. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria. Biochem J 2001; 359:537-46. [PMID: 11672427 PMCID: PMC1222174 DOI: 10.1042/0264-6021:3590537] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the role of caspases and mitochondria in apoptosis induced by 2-chloro-2'-deoxyadenosine (cladribine) in several human leukaemic cell lines. Cladribine treatment induced mitochondrial transmembrane potential (DeltaPsi(m)) loss, phosphatidylserine exposure, caspase activation and development of typical apoptotic morphology in JM1 (pre-B), Jurkat (T) and U937 (promonocytic) cells. Western-blot analysis of cell extracts revealed the activation of at least caspases 3, 6, 8 and 9. Co-treatment with Z-VAD-fmk (benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone), a general caspase inhibitor, significantly prevented cladribine-induced death in JM1 and Jurkat cells for the first approximately 40 h, but not for longer times. Z-VAD-fmk also partly prevented some morphological and biochemical features of apoptosis in U937 cells, but not cell death. Co-incubation with selective caspase inhibitors Ac-DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-aldehyde), Ac-LEHD-CHO (N-acetyl-Leu-Glu-His-Asp-aldehyde) or Z-IETD-fmk (benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone), inhibition of protein synthesis with cycloheximide or cell-cycle arrest with aphidicolin did not prevent cell death. Overexpression of Bcl-2, but not CrmA, efficiently prevented death in Jurkat cells. In all cell lines, death was always preceded by Delta Psi(m) loss and accompanied by the translocation of the protein apoptosis-inducing factor (AIF) from mitochondria to the nucleus. These results suggest that caspases are differentially involved in induction and execution of apoptosis depending on the leukaemic cell lineage. In any case, Delta Psi(m) loss marked the point of no return in apoptosis and may be caused by two different pathways, one caspase-dependent and the other caspase-independent. Execution of apoptosis was always performed after Delta Psi(m) loss by a caspase-9-triggered caspase cascade and the action of AIF.
Collapse
Affiliation(s)
- I Marzo
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 2001; 15:1022-32. [PMID: 11455969 DOI: 10.1038/sj.leu.2402169] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Death receptors and their ligands exert important regulatory functions in the maintenance of tissue homeostasis and the physiological regulation of programmed cell death. Currently, six different death receptors are known including tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF receptor-related apoptosis-mediating protein (TRAMP), TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2, and death receptor-6 (DR6). The signaling pathways by which these receptors induce apoptosis are similar and rely on oligomerization of the receptor by death ligand binding, recruitment of an adapter protein through homophilic interaction of cytoplasmic domains, and subsequent activation of an inducer caspase which initiates execution of the cell death programme. The ability of these receptors and their ligands to kill malignant cells was discovered early and helped to coin the term 'tumor necrosis factor' for the first identified death ligand. This review summarizes the current and rapidly expanding knowledge about the signaling pathways triggered by death receptor/ligand systems, their potency in experimental cancer therapy, and their therapeutic limitations, especially regarding their toxicity for non-malignant cells.
Collapse
Affiliation(s)
- P T Daniel
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Lotfi K, Månsson E, Chandra J, Wang Y, Xu D, Knaust E, Spasokoukotskaja T, Liliemark E, Eriksson S, Albertioni F. Pharmacological basis for cladribine resistance in a human acute T lymphoblastic leukaemia cell line selected for resistance to etoposide. Br J Haematol 2001; 113:339-46. [PMID: 11380397 DOI: 10.1046/j.1365-2141.2001.02751.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cross-resistance between different classes of anti-neoplastic agents can jeopardize successful combination cancer chemotherapy. In this study, we observed an unexpected cross-resistance between the podophyllotoxine derivative etoposide (VP) and the nucleoside analogue cladribine (CdA) in CCRF-CEM cells developed for resistance to VP. The resistant cells also displayed 14- and twofold resistance to cytarabine (ara-C) and gemcitabine respectively. Closer analysis of these cells showed that they contained lower amounts of topoisomerase (topo) IIalpha (P < 0.001) and beta protein (P < 0.026), formed substantially lower amounts of the topo II-DNA complex, and had a markedly decreased level of Fas (CD95/APO-1)-ligand mRNA expression. Interestingly, Fas expression in the resistant cells did not differ from that in the parental cell line. No differences were observed in the accumulation/efflux of daunorubicin or in the gene expressions of P-glycoprotein, multidrug resistance-associated protein and the lung resistance-related protein. The activity of deoxycytidine kinase (dCK), responsible for activation of CdA and ara-C, was the same for resistant and wild-type cells. However, there was an increase in the activity of the cytosolic 5'-nucleotidases (5'-NT), responsible for deactivation of nucleotides, amounting to 206% (P < 0.001) for the high Km and 134% (P < 0.331) for the low Km 5'-NT in resistant cells. The high Km 5'-NT is probably responsible for the decreased amount of the active metabolite CdA 5'-triphosphate [40% decreased (P < 0.045)], as well as for other purine ribonucleosides and deoxyribonucleosides triphosphates in the resistant cells. In contrast, a significantly higher deoxycytidine triphosphate (dCTP) level (167%, P < 0.001) was observed in the resistant cells. Thus, this study suggests that the major cause of resistance to the nucleoside analogues CdA and ara-C in cells selected for resistance to VP is a result of metabolic alterations producing increased activity of 5'-NT and higher dCTP levels. Furthermore, these results indicate that there is a common factor in the regulation of nucleotide-degrading enzymes and DNA topoisomerases, which may be altered in cross-resistant cells.
Collapse
Affiliation(s)
- K Lotfi
- Department of Medicine and Care, Clinical Pharmacology, Faculty of Health Sciences, Linköping, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fadeel B, Orrenius S, Zhivotovsky B. The most unkindest cut of all: on the multiple roles of mammalian caspases. Leukemia 2000; 14:1514-25. [PMID: 10942252 DOI: 10.1038/sj.leu.2401871] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The caspases, first discovered almost a decade ago, are intracellular cysteine proteases which have been shown to play an essential role in the initiation and execution phases of apoptotic cell death. Numerous strategies for the activation and inhibition of these 'killer' proteases have evolved, including the regulation of caspase expression and function at the transcriptional and post-translational level, as well as the expression of viral and cellular inhibitors of caspases. Emerging evidence in recent years has also implicated the caspases in various, nonapoptotic aspects of cellular physiology, such as cytokine processing during inflammation, differentiation of progenitor cells during erythropoiesis and lens fiber development, and proliferation of T lymphocytes, thus attesting to the pleiotropic functions of these proteases. The present review aims to discuss the multiple roles of the mammalian caspases with particular emphasis on their activation and regulation in cells of leukemic origin and the attendant possibilities of therapeutic intervention.
Collapse
Affiliation(s)
- B Fadeel
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|