1
|
Teraiya M, Perreault H, Chen VC. An overview of glioblastoma multiforme and temozolomide resistance: can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front Oncol 2023; 13:1166207. [PMID: 37182181 PMCID: PMC10169742 DOI: 10.3389/fonc.2023.1166207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent C. Chen
- Chemistry Department, Brandon University, Brandon, MB, Canada
| |
Collapse
|
2
|
Kishton RJ, Miller SE, Perry H, Lynch T, Patel M, Gore VK, Akkaraju GR, Varadarajan S. DNA site-specific N3-adenine methylation targeted to estrogen receptor-positive cells. Bioorg Med Chem 2011; 19:5093-102. [PMID: 21839641 DOI: 10.1016/j.bmc.2011.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022]
Abstract
A compound that can target cells expressing the estrogen receptor (ER), and produce predominantly 3-MeA adducts in those cells has been designed and synthesized. This compound produces mainly the 3-MeA adduct upon reaction with calf thymus DNA, and binds to the ER with a relative binding affinity of 51% (estradiol = 100%). The compound is toxic to ER-expressing MCF-7 breast cancer cells, and pre-treatment with the ER antagonist fulvestrant abrogates the toxicity. Pre-treatment of MCF-7 cells with netropsin, which inhibits N3-adenine methylation by the compound, resulted in a threefold decrease in the toxicity. These results demonstrate the feasibility of this strategy for producing 3-MeA adducts in targeted cells.
Collapse
Affiliation(s)
- Rigel J Kishton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403-5932, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Russo D, Fronza G, Ottaggio L, Monti P, Perfumo C, Inga A, Iyer P, Gold B, Menichini P. XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine. DNA Repair (Amst) 2010; 9:728-36. [PMID: 20471330 PMCID: PMC2893271 DOI: 10.1016/j.dnarep.2010.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 12/15/2022]
Abstract
Me-lex is a sequence-specific alkylating agent synthesized to preferentially (>90%) generate N3-methyladenine (3-mA) in the minor groove of double-strand DNA, in A-T rich regions. In this paper we investigated the effect of XRCC1 deficiency in the processing of 3-mA adducts generated by Me-lex, through the molecular analysis of the Hprt mutations and the evaluation of cytogenetic end points such as sister chromatid exchanges (SCEs), micronuclei (MN) and nucleus fragmentation. EM-C11 cells, deficient in XRCC1 activity, showed a 2.5-fold higher sensitivity to the toxicity of Me-lex compared to the DNA repair proficient parental CHO-9 cells, but were not hyper mutable. The spontaneous mutation spectrum at the Hprt locus generated in EM-C11 cells revealed a high percentage of genomic deletions. After Me-lex treatment, the percentage of genomic deletions did not increase, but a class of mutations which appeared to target regulatory regions of the gene significantly increased (p=0.0277), suggesting that non-coding Hprt genomic sequences represent a strong target for the rare mutations induced by Me-lex. The number of SCEs per chromosome increased 3-fold above background in 50mucapital EM, Cyrillic Me-lex treated CHO-9 cells, while at higher Me-lex concentrations a sharp increase in the percentage of MN and fragmented nuclei was observed. In EM-C11 cells the background level of SCEs (0.939+/-0.182) was approximately 10-fold higher than in CHO-9 (0.129+/-0.027) and higher levels of multinucleated cells and MN were also found. In EM-C11, even low doses of Me-lex (25microM) led to a significant increase in genomic damage. These results indicate that XRCC1 deficiency can lead to genomic instability even in the absence of an exogenous genotoxic insult and low levels of Me-lex-induced lesions, i.e., 3-mA and/or a BER intermediate, can exacerbate this instability.
Collapse
Affiliation(s)
- Debora Russo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Gilberto Fronza
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Laura Ottaggio
- Cytogenetics Unit, Department of Advanced Diagnostic Techniques, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova, Italy
| | - Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Chiara Perfumo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Alberto Inga
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, 512 Salk Hall, Pittsburgh, PA 15261 U.S.A
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, 512 Salk Hall, Pittsburgh, PA 15261 U.S.A
| | - Paola Menichini
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| |
Collapse
|
4
|
Russo D, Fronza G, Ottaggio L, Monti P, Inga A, Iyer P, Gold B, Menichini P. High frequency of genomic deletions induced by Me-lex, a sequence selective N3-adenine methylating agent, at the Hprt locus in Chinese hamster ovary cells. Mutat Res 2009; 671:58-66. [PMID: 19729030 DOI: 10.1016/j.mrfmmm.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/17/2009] [Accepted: 08/26/2009] [Indexed: 01/21/2023]
Abstract
We have investigated the mutagenicity induced at the Hprt locus in Chinese hamster ovary (CHO) cells treated with increasing concentrations of Me-lex, a minor groove selective methylating agent that efficiently generates more than 90-95% of 3-MeA DNA adducts. Me-lex treatment was cytotoxic but weakly mutagenic, resulting in up to 7-fold induction above background in the Hprt mutation frequency. The molecular nature of 43 Hprt mutations induced by Me-lex was determined by sequence analysis of the Hprt cDNA and genomic analysis of the gene locus. Base pair substitutions represented about 25% of Me-lex induced mutations. The mutation spectrum revealed a high percentage of genomic deletions (51%) comprising single/multiple exon(s) and even the loss of the complete locus. When the distribution of mutations among different classes was considered, the difference between the spontaneous and Me-lex induced CHO spectra was statistically significant (p<0.012), indicating that the sites where mutations occurred were Me-lex specific. Based upon these results we hypothesize that a large proportion of mutations may result from the processing of 3-MeA, the main adduct induced by Me-lex, within A/T rich sequences in non-coding regions of the Hprt gene. The processing of these lesions by DNA polymerases could result in recombination and genomic deletions, thus representing a severe threat for genome integrity.
Collapse
Affiliation(s)
- Debora Russo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kelly CB, Hill H, Bartolotti L, Varadarajan S. Molecular dynamics of d(CGCGAATTCGCG)2 complexed with netropsin and its minor groove methylating analog, Me-lex, using explicit and implicit water models. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Tentori L, Graziani G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 2005; 52:25-33. [PMID: 15911331 DOI: 10.1016/j.phrs.2005.02.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 02/01/2005] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose) polymerases (PARP) constitute a family of enzymes involved in the regulation of many cellular processes such as DNA repair, gene transcription, cell cycle progression, cell death, chromatin functions and genomic stability. Among the 18 members identified so far, PARP-1 and PARP-2 are the only proteins stimulated by DNA strand breaks and implicated in the repair of DNA injury. Therefore, these molecules have been exploited as potential targets for the development of pharmacological strategies to increase the antitumor efficacy of chemotherapeutic agents, which induce DNA damage. PARP inhibitors have been shown to restore sensitivity of resistant tumors to methylating agents or topoisomerase I inhibitors, drugs presently used for the treatment of primary and secondary brain tumors or malignancies refractory to standard chemotherapy. Interestingly, PARP inhibitors may also provide protection from the untoward effects exerted by certain anticancer drugs, which cause oxidative stress and consequent PARP overactivation. The aim of this article is to provide a brief overview of the recent literature on preclinical studies with the specific and potent inhibitors newly synthesized.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of Neuroscience, University of Rome, Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | |
Collapse
|
7
|
Tentori L, Forini O, Fossile E, Muzi A, Vergati M, Portarena I, Amici C, Gold B, Graziani G. N3-methyladenine induces early poly(ADP-ribosylation), reduction of nuclear factor-kappa B DNA binding ability, and nuclear up-regulation of telomerase activity. Mol Pharmacol 2005; 67:572-81. [PMID: 15548765 DOI: 10.1124/mol.104.004937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methylation of N3-adenine represents a novel pharmacological strategy for the treatment of resistant tumors. However, little is known about the biochemical pathways involved in cell death induced by N3-methyladenine. In the present study, we show that MeOSO(2) (CH(2))(2)-lexitropsin (Me-Lex), a compound generating almost exclusively N3-methyladenine (>99%), provoked a burst of poly(ADP-ribosylation) and loss of mitochondrial membrane potential in leukemia cells. These events were followed by a marked decrease in nuclear poly(ADP-ribose) polymerase-1 (PARP-1) expression and nuclear factor-kappaB (NF-kappaB) activity. Moreover, DNA damage generated by N3-methyladenine induced a marked decrease in telomerase in the cytosol that was accompanied by a transient up-regulation of activity in the nucleus, as a consequence of nuclear translocation of telomerase in response to genotoxic damage. PARP-1 inhibition blocked ADP-ribose polymer formation, preserved mitochondrial membrane integrity, and counteracted the reduction of NF-kappaB activity, thus preventing the appearance of necrosis. On the other hand, because PARP-1 is a component of the base excision repair (BER), the combination of Me-Lex + PARP-1 inhibitor triggered apoptosis as a result of disruption of BER process. In conclusion, the present study provides new insight into the cellular response to N3-adenine-selective methylating agents that can be exploited for the treatment of tumors unresponsive to classical wide-spectrum methylating agents. Moreover, the results underline the central and paradoxical role of PARP-1 in cell death induced by N3-methyladenine: effector of necrosis and coordinator of methylpurine repair.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The targeting of damage to DNA remains an attractive strategy to kill tumor cells. One of the serious side effects of alkylating agents is that they create both toxic (desired) and mutagenic (undesired) lesions. The result is that patients successfully treated for a primary cancer are at significant risk to develop cancer related to their therapy. To address this issue we have prepared agents that selectively methylate DNA at the N3-position of adenine. The presence of this lesion in DNA is thought to halt DNA polymerase, and this then initiates a cascade of events including cell death. The toxicity and mutagenicity of the compound, Me-lex, used to generate N3-methyladenine is discussed in bacterial, yeast, and mammalian systems. Mechanisms are proposed to explain the biological activities of N3-methyladenine.
Collapse
Affiliation(s)
- Gilberto Fronza
- Mutagenesis Laboratory, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova, Italy
| | | |
Collapse
|
9
|
Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S, Webber SE, Durkacz BW, Calvert HA, Hostomsky Z, Newell DR. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 2004; 10:881-9. [PMID: 14871963 DOI: 10.1158/1078-0432.ccr-1144-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mismatch repair (MMR) deficiency confers resistance to temozolomide, a clinically active DNA-methylating agent. The purpose of the current study was to investigate the reversal mechanism of temozolomide resistance by the potent novel poly(ADP-ribose) polymerase (PARP)-1 inhibitor, AG14361, in MMR-proficient and -deficient cells. EXPERIMENTAL DESIGN The effects of AG14361, in comparison with the methylguanine DNA methyltransferase inhibitor, benzylguanine, on temozolomide-induced growth inhibition were investigated in matched pairs of MMR-proficient (HCT-Ch3, A2780, and CP70-ch3) and -deficient (HCT116, CP70, and CP70-ch2) cells. RESULTS AG14361 enhanced temozolomide activity in all MMR-proficient cells (1.5-3.3-fold) but was more effective in MMR-deficient cells (3.7-5.2-fold potentiation), overcoming temozolomide resistance. In contrast, benzylguanine only increased the efficacy of temozolomide in MMR-proficient cells but was ineffective in MMR-deficient cells. The differential effect of AG14361 in MMR-deficient cells was not attributable to differences in PARP-1 activity or differences in its inhibition by AG14361, nor was it attributable to differences in DNA strand breaks induced by temozolomide plus AG14361. MMR-deficient cells are resistant to cisplatin, but AG14361 did not sensitize any cells to cisplatin. PARP-1 inhibitors potentiate topotecan-induced growth inhibition, but AG14361 did not potentiate topotecan in MMR-deficient cells more than in MMR-proficient cells. CONCLUSIONS MMR defects are relatively common in sporadic tumors and cancer syndromes. PARP-1 inhibition represents a novel way of selectively targeting such tumors. The underlying mechanism is probably a shift of the cytotoxic locus of temozolomide to N(7)-methylguanine and N(3)-methyladenine, which are repaired by the base excision repair pathway in which PARP-1 actively participates.
Collapse
Affiliation(s)
- Nicola J Curtin
- Northern Institute for Cancer Research, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tentori L, Portarena I, Barbarino M, Balduzzi A, Levati L, Vergati M, Biroccio A, Gold B, Lombardi ML, Graziani G. Inhibition of telomerase increases resistance of melanoma cells to temozolomide, but not to temozolomide combined with poly (adp-ribose) polymerase inhibitor. Mol Pharmacol 2003; 63:192-202. [PMID: 12488552 DOI: 10.1124/mol.63.1.192] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we have investigated the influence of telomerase inhibition in chemosensitivity of melanoma cells to temozolomide (TMZ), a methylating agent with promising antitumor activity against metastatic melanoma. In fact, telomerase, a ribonucleoprotein enzyme expressed in the majority of tumors, is presently considered an attractive target for anticancer therapy, with the double aim of reducing tumor growth and increasing chemosensitivity of cancer cells. Susceptibility to TMZ and to other antitumor agents used for treatment of metastatic melanoma was initially assessed in melanoma lines with different basal levels of telomerase activity. Thereafter, chemosensitivity was investigated after inhibition of telomerase by means of stable transfection of a catalytically inactive, dominant-negative mutant of hTERT (DN-hTERT). This study shows for the first time that: a) susceptibility to TMZ of melanoma lines derived from the same patient did not depend on basal telomerase activity; b) inhibition of telomerase by DN-hTERT resulted in reduced growth rate and increased resistance to TMZ and to the chloroethylating agent carmustine, increased sensitivity to cisplatin, and no change in response to tamoxifen or to a selective N3-adenine methylating agent; c) inhibition of poly(ADP-ribose) polymerase (PARP), an enzyme involved in the repair of N-methylpurines, restored sensitivity of DN-hTERT clones to TMZ. These results indicate that a careful selection of the antitumor agent has to be made when antitelomerase therapy is combined with chemotherapy. Moreover, the data presented here suggest that TMZ + PARP inhibitor combination is active against telomerase-suppressed and slowly growing tumors.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of Neuroscience, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 2002; 45:73-85. [PMID: 11846617 DOI: 10.1006/phrs.2001.0935] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+)to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, that presently includes six members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress (oxygen radicals, ionizing radiations and monofunctional alkylating agents). Due to its involvement either in DNA repair or in cell death, PARP-1 is regarded as a double-edged regulator of cellular functions. In fact, when the DNA damage is moderate, PARP-1 participates in the DNA repair process. Conversely, in the case of massive DNA injury, elevated PARP-1 activation leads to rapid NAD(+)/ATP consumption and cell death by necrosis. Excessive PARP-1 activity has been implicated in the pathogenesis of numerous clinical conditions such as stroke, myocardial infarction, shock, diabetes and neurodegenerative disorders. PARP-1 could therefore be considered as a potential target for the development of pharmacological strategies to enhance the antitumor efficacy of radio- and chemotherapy or to treat a number of clinical conditions characterized by oxidative or NO-induced stress and consequent PARP-1 activation. Moreover, the discovery of novel functions for the multiple members of the PARP family might lead in the future to additional clinical indications for PARP inhibitors.
Collapse
Affiliation(s)
- Lucio Tentori
- Pharmacology Section, Department of Neuroscience, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | | | | |
Collapse
|
12
|
Tentori L, Balduzzi A, Portarena I, Levati L, Vernole P, Gold B, Bonmassar E, Graziani G. Poly (ADP-ribose) polymerase inhibitor increases apoptosis and reduces necrosis induced by a DNA minor groove binding methyl sulfonate ester. Cell Death Differ 2001; 8:817-28. [PMID: 11526435 DOI: 10.1038/sj.cdd.4400863] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 02/02/2001] [Accepted: 02/12/2001] [Indexed: 11/09/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) is involved in cell recovery from DNA damage, such as methylation of N3-adenine, that activates the base excision repair process. In the present study we demonstrated that MeOSO(2)(CH(2))(2)-lexitropsin (Me-Lex), a methylating agent that almost exclusively produces N3-methyladenine, induced different modalities of cell death in human leukemic cell lines, depending on the presence of PARP inhibitor. Growth inhibition, provoked by the combination of Me-Lex and PARP inhibitor, was associated with a marked down-regulation of c-myc, increased generation of single strand breaks and apoptosis. When used as single agent, at concentrations that saturated cell repair ability, Me-Lex induced mainly cell death by necrosis. Surprisingly, addition of a PARP inhibitor enhanced apoptosis and reduced the early appearance of necrosis. Telomerase activity was completely suppressed in cells exposed to Me-Lex alone, by 24 h after treatment, whereas it did not change when Me-Lex was combined with PARP inhibitor. Thereafter, inhibition of telomerase was observed with both treatments. The results suggest new insights on different modalities of cell death induced by high levels of N3-methyladenine per se, or by the methylated base in the presence of PARP inhibitor.
Collapse
Affiliation(s)
- L Tentori
- Pharmacology and Medical Oncology Section, Department of Neuroscience, University of Rome Tor Vergata, Via di Tor Vergata 135, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Irving JA, Hall AG. Mismatch repair defects as a cause of resistance to cytotoxic drugs. Expert Rev Anticancer Ther 2001; 1:149-58. [PMID: 12113123 DOI: 10.1586/14737140.1.1.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this short review, we aim to bring together the most recent evidence implicating mismatch repair pathway defects as a cause of drug resistance to a spectrum of chemotherapeutic agents in a variety of cancers. Experimental and clinical studies are discussed and possible strategies that may be employed to overcome the multidrug resistant phenotype afforded by such defects.
Collapse
Affiliation(s)
- J A Irving
- Paediatric Oncology Research Unit, Cancer Research Unit, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|