1
|
Hashemi Z, Ebrahimzadeh MA. Hemoglobin F (HbF) inducers; History, Structure and Efficacies. Mini Rev Med Chem 2021; 22:52-68. [PMID: 34036918 DOI: 10.2174/1389557521666210521221615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Phelan SA, Szabo E. Undergraduate lab series using the K562 human leukemia cell line: Model for cell growth, death, and differentiation in an advanced cell biology course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:263-271. [PMID: 30725506 DOI: 10.1002/bmb.21222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
This sequence of labs was developed for an upper level undergraduate cell biology course at Fairfield University. The labs are based on the use of the K562 human erythroleukemia cell line, a model system that is exceptionally amenable to an undergraduate cell biology lab course due to its ease of maintenance and propagation and usefulness for studies of growth, death, and differentiation. The sequence of labs is conducted over a 6-week period, following a series of weekly cell biology labs covering basic cell and molecular biology techniques. Together, the lab series has four primary objectives 1) to teach students how to culture and maintain mammalian cells; 2) to build student competency in standard cell biology techniques; 3) to demonstrate the role of growth factors on cell proliferation and viability; and 4) to provide students with an opportunity to use these cells in an independent investigation on cell differentiation. We provide examples of student data and offer a range of experimental measurements depending on institutional capacity and facilities. Our assessment data suggest that students find great value in this lab series, enhancing their comprehension of key concepts, acquisition of important lab skills, and depth of understanding of the research process. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):263-271, 2019.
Collapse
Affiliation(s)
- Shelley A Phelan
- Department of Biology, Fairfield University, Fairfield, Connecticut, 06824
| | - Elizabeth Szabo
- Department of Biology, Fairfield University, Fairfield, Connecticut, 06824
| |
Collapse
|
3
|
Chen YJ, Fang LW, Su WC, Hsu WY, Yang KC, Huang HL. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia. Onco Targets Ther 2016; 9:4453-64. [PMID: 27499639 PMCID: PMC4959590 DOI: 10.2147/ott.s105664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Medical Research; Department of Radiation Oncology, Mackay Memorial Hospital; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University; Institute of Pharmacology, Taipei Medical University, Taipei
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung
| | - Wen-Chi Su
- Research Center for Emerging Viruses, China Medical University Hospital; Graduate Institute of Clinical Medical Science, China Medical University, Taichung
| | | | | | - Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China
| |
Collapse
|
4
|
Huang HL, Lin TW, Huang YL, Huang RL. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorg Med Chem Lett 2016; 26:1905-9. [DOI: 10.1016/j.bmcl.2016.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
|
5
|
Morceau F, Chateauvieux S, Orsini M, Trécul A, Dicato M, Diederich M. Natural compounds and pharmaceuticals reprogram leukemia cell differentiation pathways. Biotechnol Adv 2015; 33:785-97. [PMID: 25886879 DOI: 10.1016/j.biotechadv.2015.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
In addition to apoptosis resistance and cell proliferation capacities, the undifferentiated state also characterizes most cancer cells, especially leukemia cells. Cell differentiation is a multifaceted process that depends on complex regulatory networks that involve transcriptional, post-transcriptional and epigenetic regulation of gene expression. The time- and spatially-dependent expression of lineage-specific genes and genes that control cell growth and cell death is implicated in the process of maturation. The induction of cancer cell differentiation is considered an alternative approach to elicit cell death and proliferation arrest. Differentiation therapy has mainly been developed to treat acute myeloid leukemia, notably with all-trans retinoic acid (ATRA). Numerous molecules from diverse natural or synthetic origins are effective alone or in association with ATRA in both in vitro and in vivo experiments. During the last two decades, pharmaceuticals and natural compounds with various chemical structures, including alkaloids, flavonoids and polyphenols, were identified as potential differentiating agents of hematopoietic pathways and osteogenesis.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Sébastien Chateauvieux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Anne Trécul
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
6
|
Natural Remedies for the Treatment of Beta-Thalassemia and Sickle Cell Anemia-Current Status and Perspectives in Fetal Hemoglobin Reactivation. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:123257. [PMID: 27350962 PMCID: PMC4897541 DOI: 10.1155/2014/123257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
For the treatment of β-thalassemia and sickle cell disease (SCD), pharmacological induction of fetal hemoglobin (HbF) production may be a promising approach. To date, numerous studies have been done on identifying the novel HbF-inducing agents and understanding the underlying mechanism for stimulating the HbF production. In this review, we have summarized the identified HbF-inducing agents by far. By examining the action mechanisms of the HbF-inducing agents, various studies have suggested that despite the ability of stimulating HbF production, the chemotherapeutic agents could not be practically applied for treating β-hemoglobinopathies, especially β-thalassemia, due to the their cytotoxicity and growth-inhibitory effect. Owing to this therapeutic obstacle, much effort has been put on identifying new HbF-inducing agents from the natural world with the combination of efficacy, safety, and ease of use. Therefore, this review aims to (i) reveal the novel screening platforms for identifying potential inducers with high efficiency and accuracy and to (ii) summarize the new identified natural remedies for stimulating HbF production. Hopefully, this review can provide a new insight into the current status and future perspectives in fetal hemoglobin reactivation for treating β-thalassaemia and SCD.
Collapse
|
7
|
Guanosine supplementation reduces the antiproliferative and apoptotic effects of the IMPDH inhibitor gnidilatimonoein in K562 cells. Cell Biol Int 2012; 35:1001-8. [PMID: 21476989 DOI: 10.1042/cbi20100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IMPDH (inosine 5'-monophosphate dehydrogenase) is the rate-limiting enzyme in the de novo biosynthetic pathway of guanine nucleotides, which is usually up-regulated in human leukaemia cell lines. Our previous studies have classified gnidilatimonoein, isolated from Daphne mucronata, as an IMPDH inhibitor and a strong antiproliferative agent among several types of leukaemia cells. In the present study, we investigated the effects of gnidilatimonoein on intracellular GTP pool size and its link to differentiation and apoptosis of K562 cells. It was found that gnidilatimonoein inhibited cell proliferation and induced G0/G1 cell cycle arrest in K562 cells after 24 h exposure to a single dose of gnidilatimonoein (1.5 μM), while no significant effects were observed on unstimulated and phytohaemagglutinin-stimulated peripheral blood lymphocyte cells at the gnidilatimonoein dose (1.5 μM) used. Based on the morphological changes, Wright-Giemsa staining, benzidine assay and the expression of cell surface markers [GPIIb (glycoprotein IIb) and glycophorin A], as analysed by flow cytometry, we found that K562 cells had differentiated towards megakaryocytic lineage. In addition, gnidilatimonoein induced apoptosis among K562 cells based on Acridine Orange/ethidium bromide and annexin V/propidium iodide double-staining observations. These changes, which were abrogated by the addition of guanosine, became evident when the intracellular GTP level decreased to approx. 20-35% of the untreated control level. Based on these findings, it can be concluded that gnidilatimonoein induces differentiation and apoptosis in K562 cells through perturbation of GTP metabolism, as one of its routes of action.
Collapse
|
8
|
Huang HL, Chen YC, Huang YC, Yang KC, Pan HY, Shih SP, Chen YJ. Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One 2011; 6:e29014. [PMID: 22216158 PMCID: PMC3245247 DOI: 10.1371/journal.pone.0029014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 11/17/2011] [Indexed: 01/29/2023] Open
Abstract
Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted.
Collapse
Affiliation(s)
- Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chieh Chen
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kai-Chien Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsin yi Pan
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Shou-Ping Shih
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Pharmacology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Garozzo R, Sortino MA, Vancheri C, Condorelli DF. Antiproliferative effects induced by guanine-based purines require hypoxanthine-guanine phosphoribosyltransferase activity. Biol Chem 2011; 391:1079-89. [PMID: 20536392 DOI: 10.1515/bc.2010.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Guanine (GUA), guanosine and GMP exert a marked growth inhibition on the U87 glioma cell line that is not seen with other tested nucleotides, nucleosides and nucleobases. This effect could be replicated in several different human tumoral cell lines. Guanine shows a higher potency than guanosine or GMP, and co-treatments with adenosine or adenine are able to antagonize or revert the antiproliferative effect of guanine. The loss of the guanine effect in a cell line bearing a mutated inactive hypoxanthine-guanine phosphoribosyltransferase (HGPRT), and the decreased potency of GUA in U87 cells silenced for HGPRT transcripts, demonstrates the central role of the intracellular metabolism of GUA for growth-inhibitory effects. Considering the potential application of growth-inhibitory substances in anticancer therapy, knowledge of the molecular mechanism underlying GUA-induced effects encourages studies aimed at defining possible tumoral targets for experimental therapies.
Collapse
Affiliation(s)
- Roberta Garozzo
- Department of Chemical Sciences, Section of Biochemistry, University of Catania, I-95125 Catania, Italy
| | | | | | | |
Collapse
|
10
|
Tsolmon S, Nakazaki E, Han J, Isoda H. Apigetrin induces erythroid differentiation of human leukemia cells K562: Proteomics approach. Mol Nutr Food Res 2011; 55 Suppl 1:S93-S102. [DOI: 10.1002/mnfr.201000650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/18/2011] [Accepted: 02/21/2011] [Indexed: 01/11/2023]
|
11
|
Chateauvieux S, Eifes S, Morceau F, Grigorakaki C, Schnekenburger M, Henry E, Dicato M, Diederich M. Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochem Pharmacol 2011; 81:498-509. [DOI: 10.1016/j.bcp.2010.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 01/26/2023]
|
12
|
Liu K, Xing H, Zhang S, Liu SM, Fung MC. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the γ-globin mRNA. Blood Cells Mol Dis 2010; 45:269-75. [PMID: 20926322 DOI: 10.1016/j.bcmd.2010.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 02/08/2023]
Abstract
The search for novel therapeutic candidates targeting fetal hemoglobin (HbF) activation to reduce the imbalance of globin genes is regarded as a promising approach for the clinical management of sickle cell disease and β-thalassemia. For the first time, we identified cucurbitacin D (CuD), an oxygenated tetracyclic triterpenoid, as a molecular entity inducing γ-globin gene expression and HbF synthesis in K562 cells and human hematopoietic progenitors from a β-thalassemia patient. CuD demonstrated a higher potency in HbF induction when compared with hydroxyurea, which was revealed by the evidence that CuD results in a higher fetal cell percentage and greater HbF content in K562 cells, in addition, to being less cytotoxic. Moreover, CuD also promotes higher HbF expression in primary erythroid cells. In the study to elucidate the molecular mechanisms of CuD's action, our data indicated that CuD-stimulated HbF synthesis was mediated by p38 pathway activation. At the post-transcriptional level, CuD treatment led to a significant elongation of the γ-globin mRNA half-life in K562 cells. Taken together, the results suggest that CuD may be a potential therapeutic agent for β-hemoglobinopathies, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biology, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
13
|
Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis 2009; 31:59-70. [PMID: 19875697 DOI: 10.1093/carcin/bgp262] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents.
Collapse
Affiliation(s)
- Nidhi Shrivastav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
14
|
Ma Y, Zhao S, Zhu J, Bettano KA, Qu X, Marshall CG, Young JR, Kohl NE, Scott ML, Zhang W, Wang Y. Real-time bioluminescence imaging of polycythemia vera development in mice. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1073-9. [PMID: 19715759 DOI: 10.1016/j.bbadis.2009.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/13/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative disorder involving hematopoietic stem cells. A recurrent somatic missense mutation in JAK2 (JAK2V617F) is thought to play a causal role in PV. Therefore, targeting Jak2 will likely provide a molecular mechanism-based therapy for PV. To facilitate the development of such new and specific therapeutics, a suitable and well-characterized preclinical animal model is essential. Although several mouse models of PV have been reported, the spatiotemporal kinetics of PV formation and progression has not been studied. To address this, we created a bone marrow transplant mouse model that co-expresses mutant Jak2 and luciferase 2 (Luc2) genes. Bioluminescent imaging (BLI) was used to visualize disease cells and analyze the kinetics of PV development in vivo. To better understand the molecular mechanism of PV, we generated mice carrying a kinase inactive mutant Jak2 (Jak2K882E), demonstrating that the PV disease was dependent on constitutive activation of the Jak2 kinase activity. We further showed that the Jak2V617F mutation caused increased stem cell renewal activity and impaired cell differentiation, which was at least in part due to deregulated transcriptional programming. The Jak2V617F-Luc2 PV mice will be a useful preclinical model to characterize novel JAK2 inhibitors for the treatment of PV.
Collapse
Affiliation(s)
- Yanhong Ma
- Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jakubowska J, Wasowska-Lukawska M, Czyz M. STI571 and morpholine derivative of doxorubicin collaborate in inhibition of K562 cell proliferation by inducing differentiation and mitochondrial pathway of apoptosis. Eur J Pharmacol 2008; 596:41-9. [DOI: 10.1016/j.ejphar.2008.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/11/2008] [Accepted: 08/21/2008] [Indexed: 11/29/2022]
|
16
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
17
|
Meshkini A, Yazdanparast R. Induction of Megakaryocytic Differentiation in Chronic Myelogenous Leukemia Cell K562 by 3-Hydrogenkwadaphnin. BMB Rep 2007; 40:944-51. [DOI: 10.5483/bmbrep.2007.40.6.944] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine's ability to induce human fetal hemoglobin. Blood 2007; 111:411-20. [PMID: 17916742 DOI: 10.1182/blood-2007-06-093948] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5-azacytidine (5-Aza) is a potent inducer of fetal hemoglobin (HbF) in people with beta-thalassemia and sickle cell disease. Two models have been proposed to explain this activity. The first is based on the drug's ability to inhibit global DNA methylation, including the fetal globin genes, resulting in their activation. The second is based on 5-Aza's cytotoxicity and observations that HbF production is enhanced during marrow recovery. We tested these models using human primary cells in an in vitro erythroid differentiation system. We found that doses of 5-Aza that produce near maximal induction of gamma-globin mRNA and HbF do not alter cell growth, differentiation kinetics, or cell cycle, but do cause a localized demethylation of the gamma promoter. However, when we reduced gamma promoter methylation to levels equivalent to those seen with 5-Aza or to the lower levels seen in primary fetal erythroid cells using DNMT1 siRNA and shRNA, we observed no induction of gamma-globin mRNA or HbF. These results suggest that 5-Aza induction of HbF is not the result of global DNA demethylation or of changes in differentiation kinetics, but involves an alternative, previously unrecognized mechanism. Other results suggest that posttranscriptional regulation plays an important role in the 5-Aza response.
Collapse
|
19
|
Moosavi MA, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5'-triphosphate-mediated terminal erythroid differentiation of K562 cells. Int J Biochem Cell Biol 2007; 39:1685-97. [PMID: 17543571 DOI: 10.1016/j.biocel.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
20
|
Moosavi MA, Yazdanparast R, Lotfi A. GTP induces S-phase cell-cycle arrest and inhibits DNA synthesis in K562 cells but not in normal human peripheral lymphocytes. BMB Rep 2006; 39:492-501. [PMID: 17002868 DOI: 10.5483/bmbrep.2006.39.5.492] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 microM, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [3H]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellular degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, P O Box. 13145-1384, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
21
|
Szulawska A, Arkusinska J, Czyz M. Accumulation of gamma-globin mRNA and induction of irreversible erythroid differentiation after treatment of CML cell line K562 with new doxorubicin derivatives. Biochem Pharmacol 2006; 73:175-84. [PMID: 17097070 DOI: 10.1016/j.bcp.2006.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/10/2006] [Accepted: 09/27/2006] [Indexed: 11/21/2022]
Abstract
Human chronic myelogenous leukemia (CML) cell line K562 can be chemically induced to differentiate and express embryonic and fetal globin genes. In this study, the effects of doxorubicin (DOX), an inducer of K562 cell erythroid differentiation, with those of epidoxorubicin (EDOX) as well as newly synthesized derivatives of both drugs (DOXM, DOXH, and EDOXM) on cell growth and differentiation were compared. Our results revealed that DOX, EDOX and their derivatives caused irreversible differentiation of K562 cells into more mature hemoglobin-containing cells. This phenomenon was linked to time-dependent inhibition of cell proliferation. Considering the impact of the structure of newly synthesized anthracyclines on their cellular activity, our data clearly indicated that among tested anthracyclines DOXM, a morpholine derivative of DOX exerted the highest antiproliferative and differentiating activity. An increase of gamma-globin mRNA level caused both by high transcription rate and by mRNA stabilization, as well as an enhancement of expression but not activity of erythroid transcription factor GATA-1 were observed. Therefore, a high level of hemoglobin-containing cells in the presence of DOXM resulted from transcriptional and post-transcriptional events on gamma-globin gene regulation. The same morpholine modification introduced to EDOX did not cause, however, similar effects on cellular level. Characterization of new powerful inducers of erythroid differentiation may contribute to the development of novel compounds for pharmacological approach by differentiation therapy to leukemia or to beta-globin disorder, beta-thalassemia.
Collapse
Affiliation(s)
- Agata Szulawska
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | | | | |
Collapse
|
22
|
Yazdanparast R, Moosavi MA, Mahdavi M, Lotfi A. Guanosine 5'-triphosphate induces differentiation-dependent apoptosis in human leukemia U937 and KG1 cells. Acta Pharmacol Sin 2006; 27:1175-84. [PMID: 16923338 DOI: 10.1111/j.1745-7254.2006.00364.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The differentiation capability of guanosine 5'-triphosphate (GTP) was studied using U937 and KG1 cells. METHODS Cell cycle was analyzed by PI staining using flow cytometry. Apoptosis was measured by Annexin-V-FITC/PI double staining using flow cytometry. Differentiation was observed by morphological criteria, Wright-Giemsa staining and expression of cell surface markers CD11b and CD14. RESULTS Variable GTP concentrations (25-200 micromol/L) at short treatment times (up to 24 h) showed significant anti-proliferative activities among both cell types. However, longer treatment times (up to 72 h) were required to trigger apoptosis. Cell-cycle analyses of the GTP-treated cells indicated an increase in S-phase population by 48 h followed by the appearance of a sub-G(1) peak after 72 h of treatment. The effects of GTP on U937 and KG1 cells were accompanied with differentiation toward monocyte/macrophage lineage. This was evidenced by a sharp increase in the extent of CD11b and CD14 expression after 24 h of exposure to GTP. The viability of both cell types did not significantly change during the first 24 h. However, at longer treatment times (72-96 h), dramatic decreases in both the extent of CD14 expression and the cell viabilities were observed. Simultaneous measurement of apoptosis and CD14 expression in GTP-treated U937 cells indicated that cells with lower CD14 content underwent more apoptosis. CONCLUSION These finding may pave the way for further pharmaceutical evaluation of GTP as a suitable differentiating agent for acute myeloblastic leukemia (AML) therapy.
Collapse
Affiliation(s)
- Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, P O Box 13145-1384 University of Tehran, Tehran, Iran.
| | | | | | | |
Collapse
|
23
|
Moosavi MA, Yazdanparast R. Differentiation therapy as an effective strategy for the treatment of chronic myelogenous leukemia. Med Hypotheses 2006; 67:1470-1. [PMID: 16919395 DOI: 10.1016/j.mehy.2006.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 06/14/2006] [Indexed: 11/16/2022]
|
24
|
Morceau F, Schnekenburger M, Blasius R, Buck I, Dicato M, Diederich M. Tumor necrosis factor alpha inhibits aclacinomycin A-induced erythroid differentiation of K562 cells via GATA-1. Cancer Lett 2006; 240:203-12. [PMID: 16274927 DOI: 10.1016/j.canlet.2005.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 09/15/2005] [Accepted: 09/19/2005] [Indexed: 11/17/2022]
Abstract
Up-regulation of tumor necrosis factor alpha (TNFalpha) is linked to solid tumors as well as to hematologic disorders including different forms of anemia and multiple myeloma. This cytokine was shown to contribute to inhibition of erythroid maturation mechanisms which are characterized by the expression of specific genes regulated by GATA-1 and NF-E2 transcription factors. Here, we assessed the inhibiting effect of TNFalpha on erythroid differentiation using K562 cells which can be chemically induced to differentiate towards the erythroid pathway by aclacinomycin A, an anthracyclin. Results show that induced hemoglobinization of K562 cells as well as gamma-globin and erythropoietin receptor gene expression are decreased by TNFalpha via the inhibition of GATA-1 at its mRNA and protein expression level. Additionally, both constitutive and induced binding activity of GATA-1 is abolished and induced activation of a GATA-1 driven luciferase reporter construct is inhibited. Altogether, our results provide insight into the molecular mechanisms of inflammation-induced inhibition of erythroid differentiation.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
25
|
Tang DC, Zhu J, Liu W, Chin K, Sun J, Chen L, Hanover JA, Rodgers GP. The hydroxyurea-induced small GTP-binding protein SAR modulates gamma-globin gene expression in human erythroid cells. Blood 2005; 106:3256-63. [PMID: 15985540 PMCID: PMC1895330 DOI: 10.1182/blood-2003-10-3458] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydroxyurea (HU), a drug effective in the treatment of sickle cell disease, is thought to indirectly promote fetal hemoglobin (Hb F) production by perturbing the maturation of erythroid precursors. The molecular mechanisms involved in HU-mediated regulation of gamma-globin expression are currently unclear. We identified an HU-induced small guanosine triphosphate (GTP)-binding protein, secretion-associated and RAS-related (SAR) protein, in adult erythroid cells using differential display. Stable SAR expression in K562 cells increased gamma-globin mRNA expression and resulted in macrocytosis. The cells appeared immature. SAR-mediated induction of gamma-globin also inhibited K562 cell growth by causing arrest in G1/S, apoptosis, and delay of maturation, cellular changes consistent with the previously known effects of HU on erythroid cells. SAR also enhanced both gamma- and beta-globin transcription in primary bone marrow CD34+ cells, with a greater effect on gamma-globin than on beta-globin. Although up-regulation of GATA-2 and p21 was observed both in SAR-expressing cells and HU-treated K562 cells, phosphatidylinositol 3 (PI3) kinase and phosphorylated ERK were inhibited specifically in SAR-expressing cells. These data reveal a novel role of SAR distinct from its previously known protein-trafficking function. We suggest that SAR may participate in both erythroid cell growth and gamma-globin production by regulating PI3 kinase/extracellular protein-related kinase (ERK) and GATA-2/p21-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Delia C Tang
- Bldg 10, Rm 9N119, Molecular and Clinical Hematology Branch and Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Morceau F, Schnekenburger M, Dicato M, Diederich M. GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 2005; 1030:537-54. [PMID: 15659837 DOI: 10.1196/annals.1329.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GATA-1 is the founding member of the GATA family of transcription factors. GATA-1 and GATA family member GATA-2 are expressed in erythroid and megakaryocytic lineages, in which they play a crucial role in cell maturation and differentiation. GATA-1 regulates the transcription of many specific and nonspecific erythroid genes by binding to DNA at the consensus sequence WGATAR, which is recognized by all of the GATA family of transcription factors. However, it was identified in eosinophilic cells and also in Sertoli cells in testis. Its activity depends on close cooperation with a functional network of cofactors, among them Friend of GATA, PU.1, and CBP/p300. The GATA-1 protein structure has been well described and includes two zinc fingers that are directly involved in the interaction with DNA and other proteins in vivo. GATA-1 mutations in the zinc fingers can cause deregulation of required interactions and lead to severe dysfunction in the hematopoietic system.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
27
|
Schnekenburger M, Morceau F, Duvoix A, Delhalle S, Trentesaux C, Dicato M, Diederich M. Increased glutathione S-transferase P1-1 expression by mRNA stabilization in hemin-induced differentiation of K562 cells. Biochem Pharmacol 2004; 68:1269-77. [PMID: 15313425 DOI: 10.1016/j.bcp.2004.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 03/26/2004] [Indexed: 11/22/2022]
Abstract
GSTP1-1 gene expression mechanisms were investigated in hemin-induced erythroid differentiation of K562 cells. Hemoglobin production during differentiation was followed by a significant increase in GSTP1-1 mRNA (1.7-fold, P < 0.01) and protein (1.2-fold, P < 0.01) after 4 days of induction. This increase in mRNA production was not due to transcriptional up-regulation by GATA-1 previously shown to regulate GSTP1-1 during erythroid and megakaryocytic differentiation. Moreover, a drastic decrease in differentiation-specific GATA-1 mRNA expression was correlated to a reduction in GATA-1 promoter binding activity. Neither AP-1 nor NF-kappaB transcription factor binding activities could provide an explanation to the GSTP1-1 mRNA overexpression in hemin-treated cells. GSTP1-1 mRNA stability analysis using actinomycin D as an inhibitor of mRNA neosynthesis showed that mRNA half-life was doubled in hemin-induced erythroid differentiation of K562 cells. These results allow us to add stabilization of GSTP1-1 mRNA as a novel regulatory mechanism during hemin-mediated differentiation of K562 cells.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | | | | | |
Collapse
|