1
|
Xu X, Zhang C, Trotter TN, Gowda PS, Lu Y, Ponnazhagan S, Javed A, Li J, Yang Y. Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Res 2020; 80:1036-1048. [PMID: 31911552 PMCID: PMC7056521 DOI: 10.1158/0008-5472.can-19-0284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM), with frequent progression to new local and distant bone sites. Our previous studies demonstrated that multiple myeloma cells at primary sites secrete soluble factors and suppress osteoblastogenesis via the inhibition of Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB) in new bone sites, prior to the arrival of metastatic tumor cells. However, it is unknown whether OB-Runx2 suppression in new bone sites feeds back to promote multiple myeloma dissemination to and progression in these areas. Hence, we developed a syngeneic mouse model of multiple myeloma in which Runx2 is specifically deleted in the immature OBs of C57BL6/KaLwRij mice (OB-Runx2-/- mice) to study the effect of OB-Runx2 deficiency on multiple myeloma progression in new bone sites. In vivo studies with this model demonstrated that OB-Runx2 deficiency attracts multiple myeloma cells and promotes multiple myeloma tumor growth in bone. Mechanistic studies further revealed that OB-Runx2 deficiency induces an immunosuppressive microenvironment in BM that is marked by an increase in the concentration and activation of myeloid-derived suppressor cells (MDSC) and the suppression and exhaustion of cytotoxic CD8+ T cells. In contrast, MDSC depletion by either gemcitabine or 5-fluorouracil treatment in OB-Runx2-/- mice prevented these effects and inhibited multiple myeloma tumor growth in BM. These novel discoveries demonstrate that OB-Runx2 deficiency in new bone sites promotes multiple myeloma dissemination and progression by increasing metastatic cytokines and MDSCs in BM and inhibiting BM immunity. Importantly, MDSC depletion can block multiple myeloma progression promoted by OB-Runx2 deficiency.Significance: This study demonstrates that Runx2 deficiency in immature osteoblasts at distant bone sites attracts myeloma cells and allows myeloma progression in new bone sites via OB-secreted metastatic cytokines and MDSC-mediated suppression of bone marrow immunity.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chao Zhang
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Selvarangan Ponnazhagan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juan Li
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Gowda PS, Wildman BJ, Trotter TN, Xu X, Hao X, Hassan MQ, Yang Y. Runx2 Suppression by miR-342 and miR-363 Inhibits Multiple Myeloma Progression. Mol Cancer Res 2018; 16:1138-1148. [PMID: 29592898 DOI: 10.1158/1541-7786.mcr-17-0606] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
In multiple myeloma, abnormal plasma cells accumulate and proliferate in the bone marrow. Recently, we observed that Runx2, a bone-specific transcription factor, is highly expressed in multiple myeloma cells and is a major driver of multiple myeloma progression in bone. The primary goal of the present study was to identify Runx2-targeting miRNAs that can reduce tumor growth. Expression analysis of a panel of miRNAs in multiple myeloma patient specimens, compared with healthy control specimens, revealed that metastatic multiple myeloma cells express low levels of miR-342 and miR-363 but high levels of Runx2. Reconstituting multiple myeloma cells (CAG) with miR-342 and miR-363 reduced the abundance of Runx2 and the expression of metastasis-promoting Runx2 target genes RANKL and DKK1, and suppressed Runx2 downstream signaling pathways Akt/β-catenin/survivin, which are required for multiple myeloma tumor progression. Intravenous injection of multiple myeloma cells (5TGM1), stably overexpressing miR-342 and miR-363 alone or together, into syngeneic C57Bl/KaLwRij mice resulted in a significant suppression of 5TGM1 cell growth, decreased osteoclasts and increased osteoblasts, and increased antitumor immunity in the bone marrow, compared with mice injected with 5TGM1 cells expressing a miR-Scramble control. In summary, these results demonstrate that enhanced expression of miR-342 and miR-363 in multiple myeloma cells inhibits Runx2 expression and multiple myeloma growth, decreases osteolysis, and enhances antitumor immunity. Thus, restoring the function of Runx2-targeting by miR-342 and miR-363 in multiple myeloma cells may afford a therapeutic benefit by preventing multiple myeloma progression.Implications: miR-342 and miR-363-mediated downregulation of Runx2 expression in multiple myeloma cells prevents multiple myeloma progression. Mol Cancer Res; 16(7); 1138-48. ©2018 AACR.
Collapse
Affiliation(s)
- Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin J Wildman
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoxuan Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoxiao Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Q Hassan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Myeloma cell-derived Runx2 promotes myeloma progression in bone. Blood 2015; 125:3598-608. [PMID: 25862559 DOI: 10.1182/blood-2014-12-613968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/β-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.
Collapse
|
4
|
Trepel M, Martens V, Doll C, Rahlff J, Gösch B, Loges S, Binder M. Phenotypic detection of clonotypic B cells in multiple myeloma by specific immunoglobulin ligands reveals their rarity in multiple myeloma. PLoS One 2012; 7:e31998. [PMID: 22384124 PMCID: PMC3285203 DOI: 10.1371/journal.pone.0031998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/17/2012] [Indexed: 11/20/2022] Open
Abstract
In multiple myeloma, circulating “clonotypic” B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential “feeder” cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10−3, this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology.
Collapse
Affiliation(s)
- Martin Trepel
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
- * E-mail: (MT); (MB)
| | - Victoria Martens
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
| | - Christian Doll
- Department of Oncology and Hematology, University Medical Center Freiburg, Freiburg, Germany
| | - Janina Rahlff
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
| | - Barbara Gösch
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, Hamburg, Germany
- * E-mail: (MT); (MB)
| |
Collapse
|
5
|
Nadav-Dagan L, Katz BZ. Malignant B-cell intra-clonal diversification: following the yarn in the labyrinth. Leuk Lymphoma 2011; 52:2050-6. [DOI: 10.3109/10428194.2011.587564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Abstract
Multiple myeloma (MM) remains incurable despite high-dose chemotherapy with stem cell support. There is need, therefore, for continuous efforts directed toward the development of novel rational-based therapeutics for MM, which requires a detailed knowledge of the mutations driving this malignancy. In improving the success rate of effective drug development, it is equally imperative that biologic systems be developed to better validate these target genes. Here we review the recent developments in the generation of mouse models of MM and their impact as preclinical models for designing and assessing target-based therapeutic approaches.
Collapse
|
7
|
Oyajobi BO, Muñoz S, Kakonen R, Williams PJ, Gupta A, Wideman CL, Story B, Grubbs B, Armstrong A, Dougall WC, Garrett IR, Mundy GR. Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging. Mol Cancer Ther 2007; 6:1701-8. [PMID: 17541032 PMCID: PMC4482358 DOI: 10.1158/1535-7163.mct-07-0121] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of new therapies for myeloma has been hindered by the lack of suitable preclinical animal models of the disease in which widespread tumor foci in the skeleton can be detected reliably. Traditional means of detecting skeletal tumor infiltration such as histopathology are cumbersome and labor-intensive and do not allow temporal monitoring of tumor progression or regression in response to therapy. To resolve this problem, we modified the Radl 5TGM1 model of myeloma bone disease such that fluorescent myeloma tumors can be optically imaged in situ. Here, we show that murine myeloma 5TGM1 tumor cells, engineered to express enhanced green fluorescent protein (eGFP; 5TGM1-eGFP cells), can be imaged in a temporal fashion using a fluorescence illuminator and a charge-coupled device camera in skeletons of live C57BL/KaLwRij mice. High-resolution, whole-body images of tumor-bearing mice revealed that myeloma cells homed almost exclusively to the skeleton, with multiple focal tumor foci in the axial skeleton, consistent with myeloma tumor distribution in humans. Finally, the tested antitumor treatment effect of Velcade (bortezomib), a proteasome inhibitor used clinically in myeloma, was readily detected by GFP imaging, suggesting the power of the technique in combination with the Radl 5TGM1-eGFP model for rapid preclinical assessment and sensitive monitoring of novel and potential therapeutics. Whole-body GFP imaging is practical, convenient, inexpensive, and rapid, and these advantages should enable a high throughput when evaluating in vivo efficacy of new potential antimyeloma therapeutics and assessing response to treatment.
Collapse
Affiliation(s)
- Babatunde O Oyajobi
- Department of Cellular and Structural Biology MSC 7762, University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Bakkus MHC, Bouko Y, Samson D, Apperley JF, Thielemans K, Van Camp B, Benner A, Goldschmidt H, Moos M, Cremer FW. Post-transplantation tumour load in bone marrow, as assessed by quantitative ASO-PCR, is a prognostic parameter in multiple myeloma. Br J Haematol 2004; 126:665-74. [PMID: 15327517 DOI: 10.1111/j.1365-2141.2004.05120.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-dose therapy (HDT) and autologous transplantation prolongs remission duration and survival in multiple myeloma (MM), but relapse still occurs at a median of 2 years post-HDT. In order to investigate whether the number of residual tumour cells in the bone marrow (BM) after transplantation can predict the duration of response, a quantitative allele-specific oligonucleotide polymerase chain reaction (qASO-PCR) assay was used to measure tumour load in BM at 3-6 months post-HDT in 67 patients. The method of maximally selected log-rank statistics was used to test for the existence of a cut-off value in the BM tumour load data set. A cut-off value with respect to progression-free survival (PFS) was identified (P = 0.001). The estimated threshold for placing patients into a "good" or "bad" prognostic group was 0.015% (n = 22 and 38 respectively) with a median PFS of 64 months vs. 16. Multivariate analysis showed grouping by PCR result to be an independent prognostic factor for PFS (estimated hazard ratio after shrinkage, 3.91). This study identifies for the first time a threshold of the post-HDT tumour load with prognostic significance for PFS in MM. Quantitative molecular assessment thus may help to identify those patients who are in need of further treatment early after autologous transplantation.
Collapse
Affiliation(s)
- Marleen H C Bakkus
- Laboratory of Haematology, Academic Hospital-Vrije Universiteit Brussel, Laarbeeklaan 105, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vanderkerken K, Asosingh K, Croucher P, Van Camp B. Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 2003; 194:196-206. [PMID: 12846816 DOI: 10.1034/j.1600-065x.2003.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple myeloma (MM) is a B cell neoplasm characterized by the monoclonal proliferation of plasma cells in the bone marrow, the development of osteolytic lesions and the induction of angiogenesis. These different processes require three-dimensional interactions, with both humoral and cellular contacts. The 5TMM models are suitable models to study these interactions. These murine models originate from spontaneously developed myeloma in elderly mice, which are propagated by in vivo transfer of the myeloma cells into young syngeneic mice. In this review we report on studies performed in the 5TMM models with special emphasis on the homing of the myeloma cells, the characterization of the migrating and proliferating clone and the identification of the isotype switch variants. The bone marrow microenvironment was further targeted with osteoprotegerin (OPG) to block the RANK/RANKL/OPG system and with potent bisphosphonates. Both treatments resulted in a significant protection against myeloma-associated bone disease, and they decreased myeloma disease, as evidenced by a lower tumor load and an increased survival of the mice. These different studies demonstrate the strength of these models, not only in unraveling basic biological processes but also in the testing of potentially new therapeutic targets.
Collapse
Affiliation(s)
- Karin Vanderkerken
- Vrije Universiteit Brussel, Department of Hematology and Immunology, Brussels, Belgium.
| | | | | | | |
Collapse
|
11
|
Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003; 102:311-9. [PMID: 12649140 DOI: 10.1182/blood-2002-12-3905] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent data have implicated macrophage inflammatory protein-1alpha (MIP-1alpha) in multiple myeloma (MM)-associated osteolysis. However, it is unclear whether the chemokine's effects are direct, to enhance osteolysis, or indirect and mediated through a reduction in tumor burden, or both. It is also unclear whether MIP-1alpha requires other factors such as receptor activator of nuclear factor-kappaB ligand (RANKL) for its effects on bone. In murine 5TGM1 (Radl) myeloma-bearing mice, administration of neutralizing anti-MIP-1alpha antibodies reduced tumor load assessed by monoclonal paraprotein titers, prevented splenomegaly, limited development of osteolytic lesions, and concomitantly reduced tumor growth in bone. To determine the effects of MIP-1alpha on bone in vivo, Chinese hamster ovary (CHO) cells secreting human MIP-1alpha (CHO/MIP-1alpha) were inoculated into athymic mice. Mice bearing intramuscular CHO/MIP-1alpha tumors developed lytic lesions at distant skeletal sites, which occurred earlier and were larger than those in mice with CHO/empty vector (EV) tumors. When experimental metastases were induced via intracardiac inoculation, mice bearing CHO/MIP-1alpha tumors developed hypercalcemia and significantly more osteolytic lesions than mice bearing CHO/EV tumors, with intramedullary CHO/MIP-1alpha tumors associated with significantly more tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Injection of recombinant MIP-1alpha over calvariae of normal mice evoked a striking increase in osteoclast formation, an effect dependent on RANK/RANKL signaling because MIP-1alpha had no effect in RANK-/- mice. Together, these results establish that MIP-1alpha is sufficient to induce MM-like destructive lesions in bone in vivo. Because, in the 5TGM1 model, blockade of osteoclastic resorption in other situations does not decrease tumor burden, we conclude that MIP-1alpha exerts a dual effect in myeloma, on osteoclasts, and tumor cells.
Collapse
Affiliation(s)
- Babatunde O Oyajobi
- Department of Cellular and Structural Biology (MSC 7762), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kovalchuk AL, Kim JS, Janz S. E mu/S mu transposition into Myc is sometimes a precursor for T(12;15) translocation in mouse B cells. Oncogene 2003; 22:2842-50. [PMID: 12743607 DOI: 10.1038/sj.onc.1206345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Misguided immunoglobulin (Ig) class switch recombination (CSR) has been implicated in the origin of Myc-activating chromosomal translocations, T(12;15), in BALB/c mouse plasmacytomas (PCTs). CSR has also been involved in the progression of T(12;15); for example, the approximation of Myc to the 3'-C alpha enhancer. This study provides evidence for an additional mechanism by which aberrant CSR may facilitate T(12;15): transposition of Ig heavy-chain (IgH) sequences to Myc. Five IgH transposons containing the intronic heavy-chain enhancer, E mu, and a truncated switch mu region, S mu, were found in the first intron of Myc in lymph node cells of IL-6 transgenic BALB/c mice. In two cases E mu/S mu transposition primed Myc to get involved in apparent trans-chromosomal CSR to C gamma 1, presumably leading to T(12;15). Translocations preceded by E mu/S mu transposition can sometimes be distinguished from de novo translocations by molecular fingerprints in translocation breakpoint regions (Ig switch region [S] inversions and unusual gene orders in composite S regions). The presence of such fingerprints in some PCTs suggests that the tumors sometimes evolve from transposition-bearing precursors. We propose that E mu/S mu transposition to Myc may facilitate plasmacytomagenesis by sensitizing Myc to undergo T(12;15) translocation. T(12;15), in turn, juxtaposes Myc to the 3'-C alpha enhancer, which appears to be required for deregulating Myc in a manner that is conducive to PCT development.
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
13
|
Ho PJ, Campbell LJ, Gibson J, Brown R, Joshua D. The biology and cytogenetics of multiple myeloma. REVIEWS IN CLINICAL AND EXPERIMENTAL HEMATOLOGY 2002; 6:276-300. [PMID: 12616699 DOI: 10.1046/j.1468-0734.2002.00081.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the advances in our knowledge of myeloma cell biology, our understanding of myeloma pathogenesis is still incomplete. In this review, we present a summary of the cellular and molecular aspects of B-cell development and immunoglobulin (lg) gene rearrangement which have been important in defining the characteristics of the myeloma plasma cell (MPC). The PMC has undergone variable gene recombination, somatic hypermutation and isotype switching, and is therefore at a postgerminal center stage of development. The finding of preswitch clonal cells and isotype variants have raised interesting questions about the cell of origin of myeloma, for which no conclusive data is as yet available. However much information has been obtained about the chromosomal and genetic aberrations in myeloma, including monosomy 13, Ig heavy chain (IgH) switch region translocations, numerical abnormalities and a multitude of heterogeneous changes. A variety of techniques have been developed to overcome the insensitivity of conventional karyotyping, utilizing molecular cytogenetic strategies ranging from the delineation of precise loci by fluorescent in situ hybridization, a more "global" assessment of the genome by multicolor spectral karyotyping, to the quantitation of chromosomal material of specific origin by comparative genomic hybridization. Whether the abnormalities detected represent oncogenic insults, are involved in disease progression or are simply "by-products" of genetic instability is still unclear. For IgH translocations, the role of candidate genes such as Cyclin D1 and FGFR3 has been studied extensively by quantitating their expression and assessment of their oncogenicity (e.g. for FGFR3) in animal models. The significance of other aberrations such as c-myc, ras and p53 has also been investigated. With the advent of oligonucleotide microarrays, the expression of thousands of genes can be efficiently examined. So far, this approach seems promising in defining subgroups of different disease behavior, and may highlight specific genes and molecular mechanisms which are important in myeloma pathogenesis.
Collapse
Affiliation(s)
- P Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Camperdown, Australia
| | | | | | | | | |
Collapse
|