1
|
Yang S, Sun M, Chen L, Zhang H, Sun L, Liu E, Tian X, Hou X, Lin Y, Lu M. WNT inhibitory factor 1 (WIF1) is a novel fusion partner of RUNX family transcription factor 1 (RUNX1) in acute myeloid leukemia with t(12;21)(q14;q22). J Hematop 2024; 17:245-249. [PMID: 39066949 DOI: 10.1007/s12308-024-00597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
As a member of the core transcription factor family, RUNX1 plays an important role in stem cell differentiation. RUNX1 rearrangements are common in myeloid and lymphoid tumors [1]. (Blood 129(15):2070-2082, 2017). One of the most commonly detected abnormalities in acute myeloid leukemia (AML) is the translocation t(8;21)(q22;q22) (Blood Adv 4(1):229-238, 2020), resulting in a RUNX1::RUNX1T1 fusion. Occasionally, RUNX1 is translocated with other genes. This article describes an AML patient with a specific chromosomal translocation involving the RUNX1 gene and the identification of the RUNX1::WIF1 fusion. Chromosomal abnormalities were detected through karyotype analysis, break gene involved was identified via fluorescence in situ hybridization (FISH), and the novel fusion was identified through transcriptome sequencing and subsequently confirmed through reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing. A 79-year-old female patient diagnosed with AML was found to have a t(12;21)(q14;q12) translocation. FISH analysis provided evidence of RUNX1 gene rearrangement. Additionally, transcriptomic sequencing revealed a novel fusion known as RUNX1::WIF1, which consists of RUNX1 exon 2 and WIF1 exon 3. The novel fusion was further confirmed through RT-PCR and Sanger sequencing. We identified WIF1 as a novel fusion partner of RUNX1 in AML. Additionally, this is the first report of a RUNX1 fusion gene with the break point in intron 2, resulting in an out-of-frame fusion. Further research is needed to investigate the impact of this novel fusion on the establishment and progression of the disease.
Collapse
Affiliation(s)
- Shaobin Yang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Ming Sun
- Department of Hematology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Hong Zhang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Lidan Sun
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Enbin Liu
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xin Tian
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xiaoju Hou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Mize Lu
- Department of Hematology, Affiliated Wuxi People's Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
2
|
Andersen K, Tjønnfjord GE, Ramslien LF, Panagopoulos I. RUNX1::MIR99AHG Chimera in Acute Myeloid Leukemia. Genes Chromosomes Cancer 2024; 63:e23272. [PMID: 39324493 DOI: 10.1002/gcc.23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
RUNX1 fuses with over 70 different partner genes in hematological neoplasms. While common RUNX1 chimeras have been extensively studied and their prognosis is well established, our current understanding of less common RUNX1 chimeras is limited. Here, we present a case of acute myeloid leukemia (AML) with a rare RUNX1 chimera. Bone marrow cells obtained at diagnosis from a 71-year-old patient diagnosed with AML-M5 were studied using G-banding, fluorescence in situ hybridization, array comparative genomic hybridization, RNA sequencing, PCR, and Sanger sequencing. Combined findings from the abovementioned assays suggested three cytogenetic clones: one with a normal karyotype, one with inv(21)(q21q22), and one with two inv(21)(q21q22). The molecular analysis revealed the fusion of RUNX1 with MIR99AHG (at 21q21.1), further supporting the presence of an inv(21)(q21q22). The present case is the third reported AML harboring a RUNX1::MIR99AHG chimera. Similar to the two previously described AML patients, our case also had an FLT3 aberration.
Collapse
Affiliation(s)
- Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - L Frode Ramslien
- Department of Internal Medicine, Telemark Hospital Trust, Skien, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Wang L, Chen G, Zhou C, Wu C, Jiang J. Expression and Significance of MTA2 and CPNE1 in Cervical Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:569-573. [PMID: 37399268 DOI: 10.1097/pai.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
The aim of this study was to investigate the expression and clinical significance of MTA2 and CPNE1 proteins in cervical squamous cell carcinoma. In this study, high-risk human papillomavirus (HPV) typing was performed on cervical cancer tissues. Reverse transcription polymerase chain reaction and immunochemical EliVision method were used to examine the expressions of MTA2 and CPNE1 in the cervix, and their relationship with clinicopathologic features. We found that it is mainly distributed in these types, namely HPV-16 (23.8%), HPV-18 (20.9%), HPV-53 (17.1%), HPV-52 (15.5%), HPV-82 (11.7%), HPV-56 (10.8%). The expressions of MTA2 and CPNE1 in cervical squamous cell carcinoma tissues were significantly higher than those in normal tissues ( P <0.01). The expressions of MTA2 and CPNE1 were correlated with FIGO stage, degree of differentiation, and lymph node metastasis of cervical cancer ( P <0.05), but not with the patient's age ( P >0.05). The rank correlation coefficient of MTA2 and CPNE1 protein expression in cervical squamous cell carcinoma was 0.668 ( P <0.01), and the 2 expressions were positively correlated. MTA2 and CPNE1 are closely related to the occurrence and development of cervical squamous cell carcinoma and may play a synergistic role in the evolution of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pathology, Jinhu County People's Hospital, Huaian, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
4
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Tang H, Pang P, Qin Z, Zhao Z, Wu Q, Song S, Li F. The CPNE Family and Their Role in Cancers. Front Genet 2021; 12:689097. [PMID: 34367247 PMCID: PMC8345009 DOI: 10.3389/fgene.2021.689097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite significant advances in cancer research and treatment, the overall prognosis of lung cancer patients remains poor. Therefore, the identification for novel therapeutic targets is critical for the diagnosis and treatment of lung cancer. CPNEs (copines) are a family of membrane-bound proteins that are highly conserved, soluble, ubiquitous, calcium dependent in a variety of eukaryotes. Emerging evidences have also indicated CPNE family members are involved in cancer development and progression as well. However, the expression patterns and clinical roles in cancer have not yet been well understood. In this review, we summarize recent advances concerning CPNE family members and provide insights into new potential mechanism involved in cancer development.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pei Pang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu Qin
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhu P, Qian T, Si C, Liu Y, Cui L, Huang W, Fu L, Deng C, Zeng T. High expression of CPNE5 and CPNE9 predicts positive prognosis in multiple myeloma. Cancer Biomark 2021; 31:77-85. [PMID: 33780365 DOI: 10.3233/cbm-203108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND CPNEs are significant biomarkers which can affect the progression and prognosis of various tumor diseases. However, the prognosis role of CPNEs in multiple myeloma (MM) is still unclear. OBJECTIVES To investigate the prognosis role of CPNEs in MM. METHODS Seven hundred and thirty-five samples from two independent data sets were involved to analyze the clinical and molecular characteristics, and prognosis role of the expression of CPNE1-9 in MM. RESULTS MM patients with higher expressions of CPNE5 and CPNE9 had longer event-free survival (EFS) and overall survival (OS) compared with CPNE5low and CPNE9low expression groups (EFS: P= 0.0054, 0.0065; OS: P= 0.015, 0.016, respectively). Multivariate regression analysis showed that CPNE5 was an independent favorable predictor for EFS and OS (EFS: P= 0.005; OS: P= 0.006), and CPNE9 was an independent positive indicator for EFS (P= 0.002). Moreover, the survival probability and the cumulative event of EFS and OS in CPNE5highCPNE9high group were significantly longer than other groups. CONCLUSIONS High expressions of CPNE5 and CPNE9 might be used as positive indicators for MM, and their combination was a better predictor for the survival of MM patients.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Cong Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines 2021; 9:biomedicines9020107. [PMID: 33499132 PMCID: PMC7910888 DOI: 10.3390/biomedicines9020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Collapse
|
8
|
Khaled SAA, Nabih O, Abdel Aziz NM, Mahran DG. Myeloid Leukemias: A Glance at Middle Eastern Centers. J Blood Med 2019; 10:425-433. [PMID: 31908557 PMCID: PMC6926095 DOI: 10.2147/jbm.s221317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/23/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Myeloid leukemias (MLs) are clonal stem cell disorders affecting myeloid lineage cells. Advances in cytogenetic and molecular studies partially disclosed the mystery about risk factors and pathophysiology of MLs. Regarding incidence, risk factors, response to treatment, and overall survival of patients, research showed differences among different countries. However, the Western registry data are the basis for the documented description of MLs in medical textbooks. This research aimed to study MLs in Middle Eastern health centers. Egypt has the highest population in the Middle East; furthermore, 96.6% of the population is native Egyptians; accordingly the study focused on Egypt. PATIENTS AND METHODS Data of 468 patients with MLs were collected from hospital records at two big tertiary health centers. They were grouped into group 1 (chronic myeloid leukemia, CML) and group 2 (acute myeloid leukemia, AML); the latter was subgrouped into 2a (primary AML) and 2b (secondary AML). RESULTS AND CONCLUSIONS The median age of patients was 43 years; males predominate in group 2a and females in groups 1 and 2b. 37.2% of group 1 patients were treated with Gleevec. Hematopoietic stem cell transplantation was planned for only 5% of group 2 and 18% relapsed. Of groups 1 and 2 patients, 25% and 12%, respectively, stopped follow up, and 15% and 35% died. ORR and overall survival were 53%, 27% and 7%, 0.4% for groups 1 and 2, respectively. Conclusively, this study showed a young age of ML patients, with female predominance in CML, and poor outcome. This reflected racial, ethnic and risk factor differences in incidence of MLs.
Collapse
Affiliation(s)
- Safaa AA Khaled
- Department of Internal Medicine, Clinical Hematology Unit, Assiut University Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
- Unit of Bone Marrow Transplantation, South Egypt Cancer Institute, Assiut, Egypt
| | - Ola Nabih
- Department of Clinical Oncology, Assiut University Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nashwa M Abdel Aziz
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Dalia G Mahran
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Panagopoulos I, Gorunova L, Andersen HK, Bergrem A, Dahm A, Andersen K, Micci F, Heim S. PAN3- PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia. Exp Hematol Oncol 2018; 7:7. [PMID: 29560286 PMCID: PMC5859504 DOI: 10.1186/s40164-018-0099-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Acquired primary chromosomal changes in cancer are sometimes found as sole karyotypic abnormalities. They are specifically associated with particular types of neoplasia, essential in establishing the neoplasm, and they often lead to the generation of chimeric genes of pathogenetic, diagnostic, and prognostic importance. Thus, the report of new primary cancer-specific chromosomal aberrations is not only of scientific but also potentially of clinical interest, as is the detection of their gene-level consequences. Case presentation RNA-sequencing was performed on a bone marrow sample from a patient with myelodysplastic syndrome (MDS). The karyotype was 46,XX,t(7;13)(p14;q12)[2]/46,XX[23]. The MDS later evolved into acute myeloid leukemia (AML) at which point the bone marrow cells also contained additional, secondary aberrations. The 7;13-translocation resulted in fusion of the gene PAN3 from 13q12 with PSMA2 from 7p14 to generate an out-of-frame PAN3–PSMA2 fusion transcript whose presence was verified by RT-PCR together with Sanger sequencing. Interphase fluorescence in situ hybridization analysis confirmed the existence of the chimeric gene. Conclusions The novel t(7;13)(p14;q12)/PAN3–PSMA2 in the neoplastic bone marrow cells could affect two key protein complex: (a) the PAN2/PAN3 complex (PAN3 rearrangement) which is responsible for deadenylation, the process of removing the poly(A) tail from RNA, and (b) the proteasome (PSMA2 rearrangement) which is responsible for degradation of intracellular proteins. The patient showed a favorable response to decitabine after treatment with 5-azacitidine and conventional intensive chemotherapy had failed. Whether this might represent a consistent feature of MDS/AML with this particular gene fusion, remains unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Ludmila Gorunova
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Hege Kilen Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Astrid Bergrem
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway
| | - Anders Dahm
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Francesca Micci
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Sverre Heim
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Foley N, Van Ziffle J, Yu J, Qi Z, Grenert JP, Yeh I, Bastian B, Kogan S, Mannis GN. Acute myeloid leukemia with t(14;21) involving RUNX1 and SYNE2: A novel favorable-risk translocation? Cancer Genet 2017; 216-217:74-78. [PMID: 29025598 DOI: 10.1016/j.cancergen.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
In acute myeloid leukemia (AML), a translocation between chromosomes 8q22 and 21q22 leads to the RUNX1-RUNXT1 fusion gene which, in the absence of a concomitant KIT mutation, generally portends a more favorable prognosis. Translocations at 21q22, other than those involving 8q22, are uncommon, and the specific prognostic and therapeutic implications are accordingly limited by the small number of reported cases. In this report, we describe the case of a 67-year-old gentleman who presented with AML harboring t(14;21)(q23;q22). Subsequent molecular analysis revealed mutations in RUNX1, ASXL1, and SF3B1, with translocation breakpoints identified within SYNE2 on chromosome 14 and RUNX1 on chromosome 21. The functional consequence of the DNA fusion between SYNE2 and RUNX1 is unclear. Nonetheless, despite several adverse risk factors associated with this patient's AML, he achieved a long-lasting remission with standard chemotherapy alone, potentially suggestive of a novel favorable-risk translocation in AML involving 21q22.
Collapse
Affiliation(s)
- Nicole Foley
- Western Michigan University School of Medicine, Kalamazoo, MI
| | | | - Jingwei Yu
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, CA
| | - Iwei Yeh
- Department of Pathology, University of California, San Francisco, CA
| | - Boris Bastian
- Department of Pathology, University of California, San Francisco, CA
| | - Scott Kogan
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Gabriel N Mannis
- Division of Hematology/Blood and Marrow Transplantation, Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
11
|
Chronic sun exposure-related fusion oncogenes EGFR-PPARGC1A in cutaneous squamous cell carcinoma. Sci Rep 2017; 7:12654. [PMID: 28978917 PMCID: PMC5627299 DOI: 10.1038/s41598-017-12836-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) differs from SCC of other organs in its strong association with chronic sun exposure. However, the specific driver mutations in cSCC remain unknown. Fusion genes in established cSCC cell lines (A431 and DJM-1) were predicted by transcriptome sequence, and validated by Sanger sequence, fluorescence in situ hybridization and G-banding. By transcriptome sequencing, we identified fusion gene EGFR-PPARGC1A in A431, which were expressed in 31 of 102 cSCCs. The lesions harboring the fusion gene tended to be located in sun-exposed areas. In vivo cutaneous implantation of EGFR-PPARGC1A-expressing NIH3T3 induced tumors resembling human cSCC, indicating its potent tumorigenicity. NIH3T3 transfected with EGFR-PPARGC1A as well as A431 showed increased cell proliferation activity. With regard to underlying mechanism, EGFR-PPARGC1A protein causes constitutive tyrosine phosphorylation, and induces the phosphorylation of wild-type full-length epidermal growth factor receptor (EGFR) by dimerization. Conversely, the RNAi-mediated attenuation of EGFR or CRISPR/Cas9-mediated knockdown of the fusion gene in A431 led to a decrease in the cell number, and may have therapeutic value. Our findings advance the knowledge concerning genetic causes of cSCC and the function of EGFR, with potential implications for new diagnostic and therapeutic approaches.
Collapse
|
12
|
Panagopoulos I, Gorunova L, Torkildsen S, Tierens A, Heim S, Micci F. FAM53B truncation caused by t(10;19)(q26;q13) chromosome translocation in acute lymphoblastic leukemia. Oncol Lett 2017; 13:2216-2220. [PMID: 28454383 PMCID: PMC5403202 DOI: 10.3892/ol.2017.5705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing of the patient's bone marrow detected fusion transcripts in which the coding sequence of the FAM53B gene (from 10q26) was fused to a genomic sequence (from 19q13) that mapped upstream of the SLC7A10 locus. Reverse transcription-polymerase chain reaction together with Sanger sequencing verified the presence of this fusion transcript. The FAM53B fusion transcript is not expected to produce any chimeric protein. However, it may code for a truncated FAM53B protein consisting of the first 302 amino acids of FAM53B together with amino acids from the 19q13 sequence. Functionally, the truncated FAM53B would be similar to the protein encoded by the FAM53B sequence with accession no. BC031654.1 (FAM53B protein accession no. AAH31654.1). Furthermore, the truncated protein contains the entire conserved domain of the FAM53 protein family. The chromosome aberration t(10;19)(q26;q13) detected in this study was previously reported in a single case of ALL, in which it was also the sole karyotypic change. Both patients entered complete hematological and cytogenetic remission following treatment.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Synne Torkildsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway.,Department of Hematology, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Anne Tierens
- Laboratory Medicine Program, Department of Haematopathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway.,Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| |
Collapse
|
13
|
Panagopoulos I, Torkildsen S, Gorunova L, Ulvmoen A, Tierens A, Zeller B, Heim S. RUNX1 truncation resulting from a cryptic and novel t(6;21)(q25;q22) chromosome translocation in acute myeloid leukemia: A case report. Oncol Rep 2016; 36:2481-2488. [PMID: 27667292 PMCID: PMC5055202 DOI: 10.3892/or.2016.5119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 12/28/2022] Open
Abstract
Fluorescence in situ hybridization examination of a pediatric AML patient whose bone marrow cells carried trisomy 4 and FLT3-ITD mutation, demonstrated that part of the RUNX1 probe had unexpectedly moved to chromosome band 6q25 indicating a cryptic t(6;21)(q25;q22) translocation. RNA sequencing showed fusion of exon 7 of RUNX1 with an intergenic sequence of 6q25 close to the MIR1202 locus, something that was verified by RT-PCR together with Sanger sequencing. The RUNX1 fusion transcript encodes a truncated protein containing the Runt homology domain responsible for both heterodimerization with CBFB and DNA binding, but lacking the proline-, serine-, and threonine-rich (PST) region which is the transcription activation domain at the C terminal end. Which genetic event (+4, FLT3-ITD, t(6;21)-RUNX1 truncation or other, undetected acquired changes) was more pathogenetically important in the present case of AML, remains unknown. The case illustrates that submicroscopic chromosomal rearrangements may accompany visible numerical changes and perhaps should be actively looked for whenever a single trisomy is found. An active search for them may provide both pathogenetic and prognostic novel information.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Synne Torkildsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Aina Ulvmoen
- Pediatric Medicine, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Anne Tierens
- Laboratory Medicine Program, Department of Haematopathology, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Bernward Zeller
- Pediatric Medicine, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| |
Collapse
|
14
|
Bidet A, Laharanne E, Achard S, Migeon M, Moreau C, Lippert E. Analysis ofRUNX1rearrangements: insights into leukaemogenesis mechanisms. Br J Haematol 2016; 175:738-740. [DOI: 10.1111/bjh.13881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Audrey Bidet
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | | | - Sandrine Achard
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Marina Migeon
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Candice Moreau
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Eric Lippert
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
- INSERM U1035; Laboratoire Hématopoïèse Leucémique et Cibles Thérapeutiques; Université de Bordeaux; Bordeaux France
| |
Collapse
|
15
|
Rodriguez-Perales S, Torres-Ruiz R, Suela J, Acquadro F, Martin MC, Yebra E, Ramirez JC, Alvarez S, Cigudosa JC. Truncated RUNX1 protein generated by a novel t(1;21)(p32;q22) chromosomal translocation impairs the proliferation and differentiation of human hematopoietic progenitors. Oncogene 2015; 35:125-34. [DOI: 10.1038/onc.2015.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 12/15/2022]
|
16
|
|
17
|
Acute myeloid leukemia with t(7;21)(q11.2;q22) expresses a novel, reversed-sequence RUNX1–DTX2 chimera. Int J Hematol 2012; 96:268-73. [DOI: 10.1007/s12185-012-1112-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
18
|
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol 2011; 7:77-91. [PMID: 21174539 DOI: 10.2217/fon.10.158] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The RUNX1 gene, located in chromosome 21q22, is crucial for the establishment of definitive hematopoiesis and the generation of hematopoietic stem cells in the embryo. It contains a 'Runt homology domain' as well as transcription activation and inhibition domains. RUNX1 can act as activator or repressor of target gene expression depending upon the large number of transcription factors, coactivators and corepressors that interact with it. Translocations involving chromosomal band 21q22 are regularly identified in leukemia patients. Most of them are associated with a rearrangement of RUNX1. Indeed, at present, 55 partner chromosomal bands have been described but the partner gene has solely been identified in 21 translocations at the molecular level. All the translocations that retain Runt homology domains but remove the transcription activation domain have a leukemogenic effect by acting as dominant negative inhibitors of wild-type RUNX1 in transcription activation.
Collapse
|
19
|
Giguère A, Hébert J. CLCA2, a novel RUNX1 partner gene in a therapy-related leukemia with t(1;21)(p22;q22). ACTA ACUST UNITED AC 2010; 202:94-100. [PMID: 20875871 DOI: 10.1016/j.cancergencyto.2010.07.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/16/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
The RUNX1 gene is frequently rearranged in de novo and therapy-related leukemia. In the present study, we identified the CLCA2 gene as a novel fusion partner of RUNX1 in a case of therapy-related acute myeloid leukemia associated with t(1;21)(p22;q22). Reverse transcriptase-polymerase chain reaction analysis and sequencing revealed that the t(1;21) results in out-of-frame RUNX1-CLCA2 fusions. Alternative splicing generates at least six fusion transcripts, including a major transcript fusing RUNX1 exon 6 with CLCA2 exon 2. These out-of-frame fusions produce putative truncated RUNX1 isoforms retaining the DNA binding Runt domain but not the transcriptional regulatory domain of RUNX1. No mutations were found in the exons encoding the Runt and C-terminal domains of the nonrearranged RUNX1 gene. Similar to truncated RUNX1 isoforms previously described, these shortened products could act as dominant negative inhibitors of RUNX1-dependent transactivation. CLCA2 is a breast tumor suppressor gene that encodes a member of the calcium-activated chloride channel family and is involved for the first time in a chromosomal translocation. The RUNX1-CLCA2 fusion is another example of out-of-frame fusion generating truncated RUNX1 isoforms that represent a recurrent molecular mechanism in RUNX1-related leukemias.
Collapse
Affiliation(s)
- Amélie Giguère
- Quebec Leukemia Cell Bank and Hematology-Oncology Division, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | | |
Collapse
|
20
|
Dai HP, Xue YQ, Zhou JW, Li AP, Wu YF, Pan JL, Wang Y, Zhang J. LPXN, a member of the paxillin superfamily, is fused to RUNX1 in an acute myeloid leukemia patient with a t(11;21)(q12;q22) translocation. Genes Chromosomes Cancer 2009; 48:1027-36. [PMID: 19760607 DOI: 10.1002/gcc.20704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RUNX1 (previously AML1) is involved in multiple recurrent chromosomal rearrangements in hematological malignances. Recently, we identified a novel fusion between RUNX1 and LPXN from an acute myeloid leukemia (AML) patient with t(11;21)(q12;q22). This translocation generated four RUNX1/LPXN and one LPXN/RUNX1 chimeric transcripts. Two representative RUNX1/LPXN fusion proteins, RL and RLs, were both found to localize in the nucleus and could bring the CBFB protein into the nucleus like the wild-type RUNX1. Both fusion proteins inhibit the ability of RUNX1 to transactivate the CSF1R promoter, probably through competition for its target sequences. Unlike RL and RLs, the LPXN/RUNX1 fusion protein LR was found to localize in the cytoplasm. Thus, we believe it has little impact on the transcriptional activity of RUNX1. We also found that fusion proteins RL, RLs, LR, and wild-type LPXN could confer NIH3T3 cells with malignant transformation characteristics such as more rapid growth, the ability to form colonies in soft agar, and the ability to form solid tumors in the subcutaneous tissue of the BALB/c nude mice. Taken together, our data indicated that the RUNX1/LPXN and LPXN/RUNX1 fusion proteins may play important roles in leukemogenesis and that deregulation of cell adhesion pathways may be pathogenetically important in AML. Our study also suggests that LPXN may play an important role in carcinogenesis.
Collapse
Affiliation(s)
- Hai-Ping Dai
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Müller AMS, Duque J, Shizuru JA, Lübbert M. Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 2008; 27:5759-73. [PMID: 18604246 DOI: 10.1038/onc.2008.196] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A great proportion of acute myeloid leukemias (AMLs) display cytogenetic abnormalities including chromosomal aberrations and/or submicroscopic mutations. These abnormalities significantly influence the prognosis of the disease. Hence, a thorough genetic work-up is an essential constituent of standard diagnostic procedures. Core binding factor (CBF) leukemias denote AMLs with chromosomal aberrations disrupting one of the CBF transcription factor genes; the most common examples are translocation t(8;21) and inversion inv(16), which result in the generation of the AML1-ETO and CBFbeta-MYH11 fusion proteins, respectively. However, in murine models, these alterations alone do not suffice to generate full-blown leukemia, but rather, complementary events are required. In fact, a substantial proportion of primary CBF leukemias display additional activating mutations, mostly of the receptor tyrosine kinase (RTK) c-KIT. The awareness of the impact and prognostic relevance of these 'second hits' is increasing with a wider range of mutations tested in clinical trials. Furthermore, novel agents targeting RTKs are emanating rapidly and entering therapeutic regimens. Here, we present a concise review on complementing mutations in CBF leukemias including pathophysiology, mouse models, and clinical implications.
Collapse
Affiliation(s)
- A M S Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Baden Wuerttemberg, Freiburg, Germany
| | | | | | | |
Collapse
|
22
|
Shann YJ, Cheng C, Chiao CH, Chen DT, Li PH, Hsu MT. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res 2008; 18:791-801. [PMID: 18256232 DOI: 10.1101/gr.070961.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have developed a method for mapping unmethylated sites in the human genome based on the resistance of TspRI-digested ends to ExoIII nuclease degradation. Digestion with TspRI and methylation-sensitive restriction endonuclease HpaII, followed by ExoIII and single-strand DNA nuclease allowed removal of DNA fragments containing unmethylated HpaII sites. We then used array comparative genomic hybridization (CGH) to map the sequences depleted by these procedures in human genomes derived from five human tissues, a primary breast tumor, and two breast tumor cell lines. Analysis of methylation patterns of the normal tissue genomes indicates that the hypomethylated sites are enriched in the 5' end of widely expressed genes, including promoter, first exon, and first intron. In contrast, genomes of the MCF-7 and MDA-MB-231 cell lines show extensive hypomethylation in the intragenic and intergenic regions whereas the primary tumor exhibits a pattern between those of the normal tissue and the cell lines. A striking characteristic of tumor cell lines is the presence of megabase-sized hypomethylated zones. These hypomethylated zones are associated with large genes, fragile sites, evolutionary breakpoints, chromosomal rearrangement breakpoints, tumor suppressor genes, and with regions containing tissue-specific gene clusters or with gene-poor regions containing novel tissue-specific genes. Correlation with microarray analysis shows that genes with a hypomethylated sequence 2 kb up- or downstream of the transcription start site are highly expressed, whereas genes with extensive intragenic and 3' untranslated region (UTR) hypomethylation are silenced. The method described herein can be used for large-scale screening of changes in the methylation pattern in the genome of interest.
Collapse
Affiliation(s)
- Yih-Jyh Shann
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Dai H, Xue Y, Pan J, Wu Y, Wang Y, Shen J, Zhang J. Two novel translocations disrupt the RUNX1 gene in acute myeloid leukemia. ACTA ACUST UNITED AC 2007; 177:120-4. [PMID: 17854666 DOI: 10.1016/j.cancergencyto.2007.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/02/2007] [Accepted: 05/15/2007] [Indexed: 11/21/2022]
Abstract
Translocations involving 21q22 are commonly observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). They often result in the disruption of RUNX1 and give rise to fusion genes consisting of RUNX1 and different partner genes, which contribute to leukemogenesis. To date, at least 21 such translocations are known from the literature. Here we report two novel translocations involving the RUNX1 gene: t(1;21)(q12;q22) in a 53-year-old woman with AML-M5b and t(11;21)(q13;q22) in a 65-year-old man with AML-M2. The abnormalities revealed by R-banding karyotypic analysis were confirmed with interphase and metaphase fluorescence in situ hybridization (FISH), chromosome painting, and M-FISH.
Collapse
MESH Headings
- Aged
- Chromosome Banding
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Myeloid, Acute/genetics
- Male
- Middle Aged
- Translocation, Genetic
Collapse
Affiliation(s)
- Haiping Dai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, 188 Shizi Street, 215006 Suzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Imagama S, Abe A, Suzuki M, Hayakawa F, Katsumi A, Emi N, Kiyoi H, Naoe T. LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 2007; 79:25-31. [PMID: 17532767 DOI: 10.1111/j.1600-0609.2007.00858.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The RUNX1 (also known as AML1) gene is observed frequently as the target of chromosomal rearrangements in human acute leukemia. We describe here a previously unreported rearrangement, t(11;21)(q13;q22), that disrupts the RUNX1 gene in a patient with acute leukemia and the molecular analysis of the fusion gene. METHODS We have established a monocytic leukemia cell line, ELAM-1, from a patient with acute leukemia evolving from myelodysplastic syndrome (MDS). Translocation (11;21) (q13;q22) was observed in both patient leukemia cells and ELAM-1. RESULTS The split signal of RUNX1 was detected by fluorescence in situ hybridization and indicated the involvement of RUNX1 in ELAM-1. Using 3'- Rapid amplification of cDNA ends and reverse transcription-Polymerase chain reaction analysis, we detected both RUNX1 (exon 5)-LRP16 and RUNX1 (exon 6)-LRP16 transcripts, suggesting that the RUNX1 breakpoint lies in intron 6 and that alternative fusion splice variants are generated. Reciprocal LRP16-RUNX1 fusion was also detected. CONCLUSIONS We identified a novel RUNX1 fusion partner, LRP16 on 11q13 involving t(11;21)(q13;q22). Although it was reported that overexpression of LRP16 promotes human breast cancer cell proliferation, the function of LRP16 in leukemia remains to be studied. This fusion gene and cell line may provide a new research tool to investigate the mechanism of leukemogenesis generated by the RUNX1 fusion gene.
Collapse
MESH Headings
- Base Sequence
- Carboxylic Ester Hydrolases
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Primers
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Middle Aged
- Neoplasm Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Shizuka Imagama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Peterson LF, Yan M, Zhang DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 2007; 109:4392-8. [PMID: 17284535 PMCID: PMC1885483 DOI: 10.1182/blood-2006-03-012575] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/physiology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/physiology
- Gene Expression Regulation, Leukemic
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia/genetics
- Leukemia/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein
- Signal Transduction/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Agerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B, Fioretos T. Fusion gene-mediated truncation ofRUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007; 46:635-43. [PMID: 17394134 DOI: 10.1002/gcc.20442] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 8p11 myeloproliferative syndrome (EMS) is a chronic myeloproliferative disorder molecularly characterized by fusion of various 5' partner genes to the 3' part of the fibroblast growth factor receptor 1 (FGFR1) gene at 8p, resulting in constitutive activation of the tyrosine kinase activity contained within FGFR1. EMS is associated with a high risk of transformation to acute myeloid leukemia (AML), but the mechanisms underlying the disease progression are unknown. In the present study, we have investigated a case of EMS harboring a t(8;22)(p11;q11)/BCR-FGFR1 rearrangement as well as a t(9;21)(q34;q22) at the time of AML transformation. FISH and RT-PCR analyses revealed that the t(9;21) leads to a fusion gene consisting of the 5' part of RUNX1 (exons 1-4) fused to repetitive sequences of a gene with unknown function on chromosome 9, adding 70 amino acids to RUNX1 exon 4. The t(9;21) hence results in a truncation of RUNX1. No point mutations were found in the other RUNX1 allele. The most likely functional outcome of the rearrangement was haploinsufficiency of RUNX1, which thus may be one mechanism by which EMS transforms to AML.
Collapse
Affiliation(s)
- Helena Agerstam
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nguyen TT, Ma LN, Slovak ML, Bangs CD, Cherry AM, Arber DA. Identification of novel Runx1 (AML1) translocation partner genes SH3D19, YTHDf2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer 2006; 45:918-32. [PMID: 16858696 DOI: 10.1002/gcc.20355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Three patients diagnosed with acute myeloid leukemia (AML) with reciprocal 21q22/RUNX1(AML1) translocations involving chromosomes 1 and 4 were studied. Three novel RUNX1 translocation partner genes on 1q21.2 (ZNF687), 1p35 (YTHDF2), and 4q31.3 (SH3D19) were identified using a panhandle polymerase chain reaction and the 3' rapid amplification of cDNA ends method. The translocation events occurred between exons 3 and 7 of the RUNX1 gene. The partner gene breakpoints localized to the region in the partner gene with the highest Alu density, suggesting that Alus may contribute to the recombination events. Two out of three of the cases retained RUNX1's entire RUNT domain in the translocation, and RUNX1 mutations were absent in the fusion transcripts, confirmed by reverse transcription-polymerase chain reaction and sequencing analysis. SH3D19 encodes a cytoplasmic protein EBP known to suppress RAS-induced cellular transformation, which can be inhibited by nuclear recruitment. The t(4;21) created a hybrid RUNX1-EBP protein retaining RUNX1's DNA binding domain, which may result in nuclear localization of the chimeric protein and inhibition of EBP's RAS-suppressive functions. Future studies would be useful to further characterize these novel fusion protein products.
Collapse
MESH Headings
- Acute Disease
- Aged
- Aged, 80 and over
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 4/genetics
- Cloning, Molecular
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Leukemia, Myeloid/genetics
- Male
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Zinc Fingers/genetics
- src Homology Domains/genetics
Collapse
Affiliation(s)
- TuDung T Nguyen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mikhail FM, Sinha KK, Saunthararajah Y, Nucifora G. Normal and transforming functions of RUNX1: a perspective. J Cell Physiol 2006; 207:582-93. [PMID: 16250015 DOI: 10.1002/jcp.20538] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Converging studies from many investigators indicate that RUNX1 has a critical role in the correct maintenance of essential cellular functions during embryonic development and after birth. The discovery that this gene is also frequently mutated in human leukemia has increased the interest in the role that RUNX1 plays in both normal and transforming pathways. Here, we provide an overview of the many roles of RUNX1 in hematopoietic self-renewal and differentiation and summarize the information that is currently available on the many mechanisms of RUNX1 deregulation in human leukemia.
Collapse
Affiliation(s)
- Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
29
|
Reilly JT. Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis? Br J Haematol 2005; 128:18-34. [PMID: 15606546 DOI: 10.1111/j.1365-2141.2004.05236.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute myeloid leukaemia (AML) has been proposed to arise from the collaboration between two classes of mutation, a class I, or proliferative, mutation and a class II, or blocking, mutation. A limitation of this so-called 'two-hit' hypothesis has been the lack of identifiable proliferative and blocking mutations in most AML cases. However, it is now known that the CBFbeta-MYH11 fusion gene in AML and inv(16), by disrupting the normal transcription factor activity of core binding factor (CBF), functions as a class II mutation. In addition, nearly 70% of patients with AML and inv(16) are known to possess mutually exclusive mutations of the receptor tyrosine kinases (RTKs), c-KIT and FLT3, as well as RAS genes, that provide a class I, or proliferative, signal. AML and inv(16), therefore, is one of the best understood of the acute leukaemias at the genetic level and so provides a paradigm for the 'two-hit' hypothesis of leukaemogenesis. This paper reviews the recent advances in the molecular pathology of AML and inv(16) and discusses possible therapeutic implications of the current pathogenetic model.
Collapse
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
30
|
Ramsey H, Christopherson K, Hromas R. Forced expression of AML1–AMP19, a fusion transcript generated from a radiation-associated t(19;21) leukemia, blocks myeloid differentiation. Leuk Res 2004; 28:863-8. [PMID: 15203284 DOI: 10.1016/j.leukres.2003.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 12/14/2003] [Indexed: 11/19/2022]
Abstract
We isolated and characterized a novel AML1 (also termed Runx1) fusion transcript from a radiation-associated acute myeloid leukemia with a t(19;21). This fusion transcript, termed AML1-AMPl9, was joined out of frame, resulting in a truncated AML1 protein that inhibits activation of AML1 target promoters. It is now becoming clear that truncations of AMLl are more common in leukemia than previously thought. To analyze the effect of truncated AML1 species on myeloid differentiation and proliferation, AML1-AMPl9 was retrovirally transduced into the IL-3-dependent 32D cells. 32D cells over-expressing AML1-AMPl9 failed to differentiate normally when stimulated with G-CSF, but continued to proliferate and maintained a primitive phenotype. However, AML1-AMPl9 did not transform the cells to cytokine independence, implying that for full transformation of a myeloid progenitor by truncated AML1 another genetic lesion is required.
Collapse
MESH Headings
- Cell Cycle
- Cell Differentiation
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit
- Cytokines/metabolism
- Flow Cytometry
- Granulocyte Colony-Stimulating Factor/pharmacology
- Humans
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Radiation-Induced/genetics
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion
- Recombinant Fusion Proteins/genetics
- Retroviridae/genetics
- Stem Cells
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Heather Ramsey
- Cancer Research and Treatment Center, University of New Mexico Health Science Center, 900 Camino de Salud, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
31
|
Cho JY, Akbarali Y, Zerbini LF, Gu X, Boltax J, Wang Y, Oettgen P, Zhang DE, Libermann TA. Isoforms of the Ets transcription factor NERF/ELF-2 physically interact with AML1 and mediate opposing effects on AML1-mediated transcription of the B cell-specific blk gene. J Biol Chem 2004; 279:19512-22. [PMID: 14970218 DOI: 10.1074/jbc.m309074200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated different isoforms of a new Ets transcription factor family member, NERF/ELF-2, NERF-2, NERF-1a, and NERF-1b. In contrast to the inhibitory isoforms NERF-1a and NERF-1b, NERF-2 acts as a transactivator of the B cell-specific blk promoter. We now report that NERF-2 and NERF-1 physically interact with AML1 (RUNX1), a frequent target for chromosomal translocations in leukemia. NERF-2 bound to AML1 via an interaction site located in a basic region upstream of the Ets domain. This is in contrast to most other Ets factors such as Ets-1 that bind to AML1 via the Ets domain, suggesting that different Ets factors utilize different domains for interaction with AML1. The interaction between AML1 and NERF-2 led to cooperative transactivation of the blk promoter, whereas the interaction between AML1 and NERF-1a led to repression of AML1-mediated transactivation. To delineate the differences in function of the different NERF isoforms, we determined that the transactivation domain of NERF-2 is encoded by the N-terminal 100 amino acids, which have been replaced in NERF-1a by a 19-amino acid transcriptionally inactive sequence. Furthermore, acidic domains A and B, which are conserved in NERF-2 and the related proteins ELF-1 and MEF/ELF-4, but not in NERF-1a, are largely responsible for NERF-2-mediated transactivation. Because translocation of the Ets factor Tel to AML1 is a frequent event in childhood pre-B leukemia, understanding the interaction of Ets factors with AML1 in the context of a B cell-specific promoter might help to determine the function of Ets factors and AML1 in leukemia.
Collapse
Affiliation(s)
- Je-Yoel Cho
- BIDMC Genomics Center and the New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|