1
|
Hou CX, Chen Y, Liu SH, Jiang YZ, Huang DP, Chen SN. Effective treatment with Gilteritinib-based regimens for FLT3-mutant extramedullary relapse in acute promyelocytic leukemia. Hematology 2024; 29:2293496. [PMID: 38095349 DOI: 10.1080/16078454.2023.2293496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Extramedullary relapse (EMR) is rare in acute promyelocytic leukemia (APL) and, there is a lack of information on its management. Current practices for EMR in APL are always to adopt strategies from other subtypes of Acute lymphoblastic leukemia (ALL) and Acute myeloid leukemia (AML). Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated a remarkable effect on EMR in FLT3-mutant AML. Therefore, it is worthwhile exploring if FLT3 mutation can be a therapeutic target and assessing the efficacy of Gilteritinib on FLT3-mutant EMR in APL. METHODS We described three cases of FLT3-mutant EMR in APL, comprising two isolated EMR cases and one systemic relapse. The patients underwent treatment with Gilteritinib-based regimens based on FLT3 mutation. RESULTS All three patients achieved complete regression of EMR, and no signs of tumor lysis syndrome during Gilteritinib-based therapy, only patient 1 showed mild granulocytopenia. They all maintained molecular complete remission (mCR) during the follow-up period. CONCLUSIONS The Gilteritinib-based regimen shows a high and sustained therapeutic effect with minimal adverse effects, and provides a valuable experience for further evaluation in EMR APL patients.
Collapse
Affiliation(s)
- Chun-Xiao Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Yu Chen
- Department of Hematology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Shan-Hao Liu
- Department of Hematology, the First Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Yi-Zhi Jiang
- Department of Hematology, the First Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Dong-Ping Huang
- Department of Hematology, the First Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Cabrera ME, Monardes V, Salgado C, Cares C, Gonzalez C. Incidence and clinical significance of FLT3 and nucleophosmin mutation in childhood acute myeloid leukemia in Chile. Hematol Transfus Cell Ther 2023; 45:77-82. [PMID: 34690101 PMCID: PMC9938456 DOI: 10.1016/j.htct.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a heterogeneous disease and approximately one-third of its carriers do not have evident genetic abnormalities. The mutation of specific molecular markers, such as fms-like tyrosine kinase 3 (FTL3) internal tandem duplication (ITD), FLT3 tyrosine kinase domain (TKD) and nucleophosmin (NPM1), are associated with an adverse and favorable prognosis, respectively. OBJECTIVE The objective was to determine the prevalence of FLT3/ITD and NPM1 in Chilean patients and their association with clinical data and prognosis. METHOD AND RESULTS Two hundred and thirty-two children were studied between 2011 and 2017, the median being 8.6 years (ranging from 1 to 18 months). Acute promyelocytic leukemia (APL) was diagnosed in 29%. The FLT3/ITD-mutated in non-promyelocytic AML was at 10% (14/133) and the FLT3/TKD, at 3.7% (2/54). In APL, it was at 25.4% (16/63). In non-promyelocytic AML, the FLT3/ITD-mutated was associated with a high leucocyte count, the median being 28.5 x mm3 (n = 14) versus 19.4 x mm3 (n = 119), (p = 0.25), in non-mutated cases. In APL, the median was 33.6 x mm3 (n = 15) versus 2.8 x mm3 (n = 47), (p < 0.001). The five-year overall survival (OS) in non-promyelocytic AML with non-mutated and mutated FLT3/ITD were 62.7% and 21.4%, respectively, (p < 0.001); the 5-year event-free survival (EFS) were 79.5% and 50%, respectively, (p < 0.01). The five-year OS in APL with non-mutated and mutated FLT3/ITD was 84.7% and 62.5%, respectively, (p = 0.05); the 5-year EFS was 84.7% and 68.8%, respectively, (p = 0.122). The NPM1 mutation was observed in 3.2% (5/155), all non-promyelocytic AML with the normal karyotype. CONCLUSION The FLT3/ITD mutation was observed more frequently in APL and associated with a higher white cell count at diagnosis. However, the most important finding was that the FLT3/ITD mutation was associated with a shorter survival in non-promyelocytic AML.
Collapse
Affiliation(s)
| | | | - Carmen Salgado
- Programa de Salud de Cáncer Infantil (PINDA), Santiago, Chile
| | | | | |
Collapse
|
3
|
Liu G, Liu L, Bartolo DD, Li KY, Li X. Acute Promyelocytic Leukemia with Rare Genetic Aberrations: A Report of Three Cases. Genes (Basel) 2022; 14:genes14010046. [PMID: 36672788 PMCID: PMC9858271 DOI: 10.3390/genes14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML) that is characterized by the PML::RARA fusion or, more rarely, a variant RARA translocation. While APL can be clinically suspected, diagnosis of APL requires genetic confirmation. Targeted therapy such as all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has dramatically improved the prognosis of APL patients, but this is dependent on timely genetic testing as different fusions and/or mutations can affect therapeutic outcomes. Here we report three APL cases with various genetic aberrations: cryptic PML::RARA fusion, variant RARA rearrangement, and typical PML::RARA fusion with co-existing FLT3-ITD mutation. They serve to illustrate the utility of integrating genetic testing, using chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR), and next-generation sequencing (NGS) in providing a detailed understanding of the genetic alterations underlying each patient's disease.
Collapse
Affiliation(s)
- Guang Liu
- Genetics/Genomics Division, Sonora Quest Laboratories, University of Arizona College of Medicine, Phoenix, AZ 85034, USA
- Correspondence: (G.L.); (X.L.)
| | - Lanting Liu
- AmeriPath Indiana, Indianapolis, IN 46219, USA
| | | | - Katie Y. Li
- Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Xia Li
- Department of Pathology, University of Arizona College of Medicine, Sonora Quest Laboratories, Phoenix, AZ 85034, USA
- Correspondence: (G.L.); (X.L.)
| |
Collapse
|
4
|
A novel RARA-SNX15 fusion in PML-RARA-positive acute promyelocytic leukemia with t(11;17;15)(q13;q21.2;q24.1). Int J Hematol 2022; 116:956-960. [PMID: 35854096 DOI: 10.1007/s12185-022-03421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.
Collapse
|
5
|
FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification. BIOLOGY 2021; 10:biology10030243. [PMID: 33800974 PMCID: PMC8003857 DOI: 10.3390/biology10030243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
The significance of FLT3-ITD in acute promyelocytic leukemia (APL) is not well-established. We performed a bi-center retrospective study of 138 APL patients, 59 (42.8%) of whom had FLT3-ITD. APL patients with FLT3-ITD had higher baseline white blood cell counts (WBCs) (p < 0.001), higher hemoglobin, (p = 0.03), higher aspartate aminotransferase (p = 0.001), lower platelets (p = 0.004), lower fibrinogen (p = 0.003), and higher incidences of disseminated intravascular coagulation (p = 0.005), M3v variant morphology (p < 0.001), and the bcr3 isoform (p < 0.001). FLT3-ITD was associated with inferior post-consolidation complete remission (CR) (p = 0.02) and 5-year overall survival (OS) of 79.7%, compared to 94.4% for FLT3-WT (wild-type) (p = 0.02). FLT3-ITD was strongly associated with baseline WBCs ≥ 25 × 109/L (odds ratio (OR): 54.4; 95% CI: 10.4-286.1; p < 0.001). High FLT3-ITD allelic burdens correlated with high-risk (HR) Sanz scores and high WBCs, with every 1% increase in allelic burden corresponding to a 0.6 × 109/L increase in WBC. HR APL was associated with a 38.5% increase in allelic burden compared with low-risk (LR) APL (95% CI: 19.8-57.2; p < 0.001). Our results provide additional evidence that FLT3-ITD APL is a distinct subtype of APL that warrants further study to delineate potential differences in therapeutic approach.
Collapse
|
6
|
Andrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, dos Santos-Bueno FV, Vianna DT, Marques LVC, Terra-Granado E, Zalcberg I, Santos MDO, Costa JT, Noronha EP, Thuler LCS, Wiemels JL, Pombo-de-Oliveira MS. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol 2021; 11:642744. [PMID: 33816294 PMCID: PMC8017304 DOI: 10.3389/fonc.2021.642744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have suggested a variation in the incidence of acute promyelocytic leukemia (APL) among the geographic regions with relatively higher percentages in the Latin American population. We aimed to explore the population burden of pediatric APL, gathering information from the population-based cancer registry (PBCR) and the diagnosis of APL obtained through incident cases from a hospital-based cohort. The homozygous deletion in glutathione S-transferases (GSTs) leads to a loss of enzyme detoxification activity, possibly affecting the treatment response. Mutations in the RAS pathway genes are also considered to be a key component of the disease both in the pathogenesis and in the outcomes. We have assessed mutations in a RAS-MAP kinase pathway (FLT3, PTPN11, and K-/NRAS) and GST variant predisposition risk in the outcome. Out of the 805 children and adolescents with acute myeloid leukemia (AML) who are registered in the PBCR, 35 (4.3%) were APL cases. The age-adjusted incidence rate (AAIR) was 0.03 per 100,000 person-years. One-hundred and sixty-three patients with APL were studied out of 931 AML cases (17.5%) from a hospital-based cohort. Mutations in FLT3, KRAS, and NRAS accounted for 52.1% of the cases. Patients with APL presented a 5-year probability of the overall survival (OS) of 67.3 ± 5.8%. A GST-theta 1 (GSTT1) null genotype conferred adverse prognosis, with an estimated hazard ratio of 2.8, 95% confidence interval (CI) 1.2-6.9. We speculate that the GSTT1 polymorphism is associated with therapeutics and would allow better OS of patients with APL with a GSTT1 null genotype.
Collapse
Affiliation(s)
- Francianne G. Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suellen V. M. Feliciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ingrid Sardou-Cezar
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gisele D. Brisson
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Filipe V. dos Santos-Bueno
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Danielle T. Vianna
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa V. C. Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ilana Zalcberg
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marceli de O. Santos
- Surveillance and Prevention, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Juliana T. Costa
- Department of Pediatric Hematology-Oncology, Hospital Martagão Gesteira, Salvador, Brazil
| | - Elda P. Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luiz C. S. Thuler
- Clinical Research Department, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Naseem S, Binota J, Varma N, Virk H, Varma S, Malhotra P. NPM1 and FLT3-ITD/TKD Gene Mutations in Acute Myeloid Leukemia. Int J Hematol Oncol Stem Cell Res 2021; 15:15-26. [PMID: 33613897 PMCID: PMC7885130 DOI: 10.18502/ijhoscr.v15i1.5246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: A number of mutations have been reported to occur in patients with acute myeloid leukemia (AML), of which NPM1 and FLT3 genes mutations are the commonest and have important diagnostic and therapeutic implications. Material and Methods: Molecular testing for NPM1 and FLT3 genes was performed in 92 de-novo AML patients. The frequency and characteristics of NPM1 and FLT3 mutations were analyzed. Results: Nucleophosmin 1(NPM1) and fms-like tyrosine kinase 3 (FLT3) mutations were seen in 22.8% and 16.3% of patients, respectively. Amongst FLT3 mutations, FLT3-ITD mutation was seen in 8.7% cases, FLT3-TKD in 5.4%, and FLT3-ITD+TKD in 2.2% cases. Certain associations between the gene mutations and clinical characteristics were found, including in NPM1 mutated group- female preponderance, higher incidence in M4/M5 categories and decreased expression of CD34 and HLA-DR; and in FLT3-ITD mutated group- higher age of presentation, higher total leucocyte count and blast percentage. Conclusion- AML patients with NPM1 and FLT3 mutations have differences in clinical and hematological features, which might represent their different molecular mechanism in leukemogenesis. The frequency of NPM1 and FLT3 mutations in this study was comparable to reports from Asian countries but lower than that reported from western countries. However, as the number of patients in the study was less, a larger number of patients need to be studied to corroborate these findings.
Collapse
Affiliation(s)
- Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Virk
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells 2020; 9:cells9112423. [PMID: 33167477 PMCID: PMC7716236 DOI: 10.3390/cells9112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation. In keeping with this, we reasoned that a better understanding of the molecular mechanisms pivotal for ATRA-driven differentiation could definitely bolster the identification of new therapeutic strategies in APL patients. We thus performed an in-depth high-throughput transcriptional profile analysis and metabolic characterization of a well-established APL experimental model based on NB4 cells that represent an unevaluable tool to dissect the complex mechanism associated with ATRA-induced granulocytic differentiation. Pathway-reconstruction analysis using genome-wide transcriptional data has allowed us to identify the activation/inhibition of several cancer signaling pathways (e.g., inflammation, immune cell response, DNA repair, and cell proliferation) and master regulators (e.g., transcription factors, epigenetic regulators, and ligand-dependent nuclear receptors). Furthermore, we provide evidence of the regulation of a considerable set of metabolic genes involved in cancer metabolic reprogramming. Consistently, we found that ATRA treatment of NB4 cells drives the activation of aerobic glycolysis pathway and the reduction of OXPHOS-dependent ATP production. Overall, this study represents an important resource in understanding the molecular “portfolio” pivotal for APL differentiation, which can be explored for developing new therapeutic strategies.
Collapse
|
9
|
Reduced SLIT2 is Associated with Increased Cell Proliferation and Arsenic Trioxide Resistance in Acute Promyelocytic Leukemia. Cancers (Basel) 2020; 12:cancers12113134. [PMID: 33120864 PMCID: PMC7693375 DOI: 10.3390/cancers12113134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary In solid tumors, the altered expression of embryonic genes such as the SLIT-ROBO family has been associated with poor prognosis, while little is known about their role in acute myeloid leukemia (AML). Previous studies reported frequent hypermethylation of SLIT2 mediated by the methyltransferase enzyme EZH2 and more recently the PML protein, which are commonly found to be aberrantly expressed in AML. Here, we aim to assess retrospectively the clinical relevance of the SLIT2 gene in acute promyelocytic leukemia, a homogenous subtype of AML. We demonstrated that reduced SLIT2 expression was associated with high leukocyte counts and reduced overall survival in different APL cohorts. STLI2 treatment decreased APL growth, while SLIT2 knockdown accelerated cell cycle progression and proliferation. Finally, reduced expression of SLIT2 in murine APL blasts resulted in fatal leukemia associated with increased leukocyte counts in vivo. These findings demonstrate that SLIT2 can be considered as a prognostic marker in APL, and a potential candidate for clinical studies of a more heterogeneous disease, such as AML. Abstract The SLIT-ROBO axis plays an important role in normal stem-cell biology, with possible repercussions on cancer stem cell emergence. Although the Promyelocytic Leukemia (PML) protein can regulate SLIT2 expression in the central nervous system, little is known about SLIT2 in acute promyelocytic leukemia. Hence, we aimed to investigate the levels of SLIT2 in acute promyelocytic leukemia (APL) and assess its biological activity in vitro and in vivo. Our analysis indicated that blasts with SLIT2high transcript levels were associated with cell cycle arrest, while SLIT2low APL blasts displayed a more stem-cell like phenotype. In a retrospective analysis using a cohort of patients treated with all-trans retinoic acid (ATRA) and anthracyclines, high SLIT2 expression was correlated with reduced leukocyte count (p = 0.024), and independently associated with improved overall survival (hazard ratio: 0.94; 95% confidence interval: 0.92–0.97; p < 0.001). Functionally, SLIT2-knockdown in primary APL blasts and cell lines led to increased cell proliferation and resistance to arsenic trioxide induced apoptosis. Finally, in vivo transplant of Slit2-silenced primary APL blasts promoted increased leukocyte count (p = 0.001) and decreased overall survival (p = 0.002) compared with the control. In summary, our data highlight the tumor suppressive function of SLIT2 in APL and its deteriorating effects on disease progression when downregulated.
Collapse
|
10
|
Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, Flores Aguilar H, Núñez Enríquez JC, Jiménez Hernández E, Bekker Méndez VC, Torres Nava JR, Flores Lujano J, Martín Trejo JA, Mata Rocha M, Medina Sansón A, Espinoza Hernández LE, Peñaloza Gonzalez JG, Espinosa Elizondo RM, Flores Villegas LV, Amador Sanchez R, Pérez Saldívar ML, Sepúlveda Robles OA, Rosas Vargas H, Rangel López A, Domínguez López ML, García Latorre EA, Reyes Maldonado E, Galindo Delgado P, Mejía Aranguré JM, Alaez Verson C. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr 2020; 8:586. [PMID: 33042924 PMCID: PMC7525023 DOI: 10.3389/fped.2020.00586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is the second most frequent leukemia in childhood. The FLT3 gene participates in hematopoietic stem cell proliferation. FLT3 mutations are recurrent in AML and influence prognosis. In Mexican pediatric AML patients, FLT3 mutational profile, and their clinical impact have not been evaluated. Aim of the study: This study aimed to identify the profile of FLT3 mutations in pediatric patients with de novo AML and to assess their possible influence on overall survival (OS) and other clinical features. Methods: Massive parallel target sequencing of FLT3 was performed in 80 patients. Results: FLT3 mutations [internal tandem duplication (ITD) or tyrosine kinase domain (TKD)] were identified in 24% of them. OS was significantly lower in FLT3 POS cases than in FLT3 NEG (p = 0.03). The average OS for FLT3 POS was 1.2 vs. 2.2 years in FLT3 NEG. There were no significant differences in the children's sex, age, percentage of blasts in bone marrow aspirate, or white blood cell count in peripheral blood at diagnosis between both groups. No differences were identified stratifying by the mutational load (high > 0.4) or type of mutation. The negative effect of FLT3 mutations was also observed in patients with acute promyelocytic leukemia (APL). Conclusions: FLT3 mutational profile is described in Mexican pediatric AML patients for the first time. Mutated FLT3 negatively impacts the outcome of AML patients, even considering the APL group. The clinical benefit from treatment with tyrosine kinase inhibitors in the FLT3 POS pediatric patients needs to be assessed in clinical trials. FLT3 testing may contribute to better risk stratification in our pediatric AML patients.
Collapse
Affiliation(s)
- Carolina Molina Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Karol Carrillo Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | - Marco Jiménez Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Anallely Muñoz Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | | | - Juan Carlos Núñez Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaria de Salud del D.F., Mexico City, Mexico
| | - Janet Flores Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martín Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina Sansón
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSa), Mexico City, Mexico
| | - Laura Eugenia Espinoza Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Luz Victoria Flores Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Raquel Amador Sanchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Maria Luisa Pérez Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Angélica Rangel López
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Elba Reyes Maldonado
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Juan Manuel Mejía Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carmen Alaez Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| |
Collapse
|
11
|
Zhang C, Dong H, Lin Y, Xu P, Zhou R, Zeng H. Higher Level of Peripheral Blood CD34 Positive Cells Presented with Unfavorable Prognosis in Intermediate-Low Risk Acute Promyelocytic Leukemia. Indian J Hematol Blood Transfus 2020; 36:309-315. [PMID: 32425382 DOI: 10.1007/s12288-019-01232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022] Open
Abstract
Our previous work has demonstrated that some acute promyelocytic leukemia (APL) patients had significantly elevated circulating CD34+ cell count (≥ 10 × 106/L), and these patients with higher CD34+ cell level usually presented with high-risk disease (WBC > 10,000/μL). The aim of this study was to investigate whether circulating CD34+ cell count is a prognostic marker in intermediate-low risk APL patients. In this study, 76 intermediate-low risk APL patients and 56 age-adjusted healthy volunteers were evaluated. Enumeration of CD34+ cells was investigated before the treatment. A cut-off value of 10 × 106/L CD34+ cells could just distinguish APL patients with adverse prognostic factors from others and may have the power to predict shorter progression-free survival (PFS) and poor prognosis. Higher count of CD34+ cells was usually associated with nonclassical chromosomal translocation, PML/RARα gene complex fusion, APL history, chemotherapy-related APL, disease progression, second tumor, extramedullary infiltration, FLT3-ITD positive mutation, atypical morphology, BM promyelocyte CD56/CD34 positive expression, myelofibrosis, PCR-positive PML/RARa gene fusion but FISH-negative, marrow necrosis and shorter PFS. Our results suggest that the level of CD34+ cells can be further the stratification of disease risk, a higher CD34+ cell count may be indicative of inferior survival and serve as an adverse biomarker for intermediate-low risk APL.
Collapse
Affiliation(s)
- Cuiling Zhang
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China
| | - Haibo Dong
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China
| | - Yipeng Lin
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China
| | - Peipei Xu
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China
| | - Rongfu Zhou
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China
| | - Hui Zeng
- 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210093 People's Republic of China.,2Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People's Republic of China
| |
Collapse
|
12
|
Conneely SE, Stevens AM. Advances in Pediatric Acute Promyelocytic Leukemia. CHILDREN-BASEL 2020; 7:children7020011. [PMID: 32024232 PMCID: PMC7072343 DOI: 10.3390/children7020011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a rare disease accounting for only 5%-10% of pediatric acute myeloid leukemia (AML) and fewer than 1000 cases occur annually in the United States across all age groups. Characterized by t (15; 17), with a resultant PML-RARA gene fusion driving leukemia development, advances in therapy have improved outcomes for APL significantly in the past several decades, now making APL the most curable form of AML in both children and adults. Cure rates in APL are now comparable to pediatric B-lymphoid leukemias. The success of APL treatment is due, in part, to the breadth of understanding of the driver PML-RARA mutation as well as collaborative efforts to quickly introduce and maximize the benefit of new therapies. Here, we review the presentation, clinical features, pathogenesis, and treatment advances in pediatric APL.
Collapse
|
13
|
How I treat acute myeloid leukemia in the era of new drugs. Blood 2020; 135:85-96. [DOI: 10.1182/blood.2019001239] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
AbstractThe acute myeloid leukemia (AML) treatment landscape has changed substantially since 2017. New targeted drugs have emerged, including venetoclax to target B-cell lymphoma 2, midostaurin and gilteritinib to target FLT3, and ivosidenib and enasidenib to target mutant isocitrate dehydrogenase 1 and 2, respectively. Other additions include reapproval of gemtuzumab ozogomycin to target CD33, glasdegib to target the hedgehog pathway, and a liposomal formulation of daunorubicin and cytarabine (CPX-351). Genomically heterogeneous AML has a tendency to evolve, particularly under selective treatment pressure. For decades, treatment decisions have largely centered around chemotherapy drug intensity. Physicians now have access to an increasing number of drugs with novel mechanisms of action and distinctive side-effect profiles. Key issues faced by hematologists in this era of new drugs include (1) the timely identification of actionable mutations at diagnosis and at relapse; (2) deciding which drug to use among several therapeutic options; and (3) increasing awareness of how to anticipate, mitigate, and manage common complications associated with these new agents. This article will use 3 case presentations to discuss some of the new treatment challenges encountered in AML management, with the goal of providing practical guidance to aid the practicing physician.
Collapse
|
14
|
Picharski GL, Andrade DP, Fabro ALMR, Lenzi L, Tonin FS, Ribeiro RC, Figueiredo BC. The Impact of Flt3 Gene Mutations in Acute Promyelocytic Leukemia: A Meta-Analysis. Cancers (Basel) 2019; 11:E1311. [PMID: 31492033 PMCID: PMC6770268 DOI: 10.3390/cancers11091311] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
The association of FLT3 mutations with white blood cell (WBC) counts at diagnosis and early death was studied in patients with acute promyelocytic leukemia (APL). Publications indexed in databases of biomedical literature were analyzed. Potential publication bias was evaluated by analyzing the standard error in funnel plots using the estimated relative risk (RR). Mixed-effect models were used to obtain the consolidated RR. All analyses were conducted using the R statistical software package. We used 24 publications in the final meta-analysis. Of 1005 males and 1376 females included in these 24 publications, 645 had FLT3-ITD (internal tandem duplication) mutations. Information on FLT3-D835 mutations was available in 10 publications for 175 patients. Concurrent occurrence of the two mutations was rare. WBC count at diagnosis was ≥10 × 109/L in 351 patients. For patients with the FLT3-ITD mutation, RR was 0.59 for overall survival (OS) and 1.62 for death during induction. For those with FLT3-D835 mutations, the RR was 0.50 for OS and 1.77 for death during induction. RR for WBC count ≥10 × 109/L was 3.29 and 1.48 for patients with FLT3-ITD and FLT3-D835, respectively. APL patients with FLT3-ITD or FLT3-D835 are more likely to present with elevated WBC counts and poorer prognosis than those without these mutations.
Collapse
Affiliation(s)
- Gledson L Picharski
- Instituto de Pesquisa Pelé Pequeno Príncipe, 1532 Silva Jardim, AV., Curitiba, Paraná 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, Paraná 80230-902, Brazil
| | - Diancarlos P Andrade
- Instituto de Pesquisa Pelé Pequeno Príncipe, 1532 Silva Jardim, AV., Curitiba, Paraná 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, Paraná 80230-902, Brazil
| | - Ana Luiza M R Fabro
- Instituto de Pesquisa Pelé Pequeno Príncipe, 1532 Silva Jardim, AV., Curitiba, Paraná 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, Paraná 80230-902, Brazil
- Unidade de Hematologia e Oncologia Pequeno Príncipe Hospital, 1070 Dsembargador Motta Av., Curitiba, Paraná 80250-060, Brazil
| | - Luana Lenzi
- Instituto de Pesquisa Pelé Pequeno Príncipe, 1532 Silva Jardim, AV., Curitiba, Paraná 80250-200, Brazil
- Universidade Federal do Paraná, 632 Pref Lothário Meissner Av., Curitiba, Paraná 80210-170, Brazil
| | - Fernanda S Tonin
- Universidade Federal do Paraná, 632 Pref Lothário Meissner Av., Curitiba, Paraná 80210-170, Brazil
| | - Raul C Ribeiro
- Department of Oncology, Leukemia and Lymphoma Division, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Bonald C Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, 1532 Silva Jardim, AV., Curitiba, Paraná 80250-200, Brazil.
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, Paraná 80230-902, Brazil.
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), 400 Agostinho Leão Jr. Av., Curitiba, Paraná 80030-110, Brazil.
- Departamento de Saúde Coletiva, Universidade Federal do Paraná, 260 Padre Camargo St., Centro, Curitiba, Paraná 80060-240, Brazil.
| |
Collapse
|
15
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
16
|
Kamath GR, Tremblay D, Coltoff A, Caro J, Lancman G, Bhalla S, Najfeld V, Mascarenhas J, Taioli E. Comparing the epidemiology, clinical characteristics and prognostic factors of acute myeloid leukemia with and without acute promyelocytic leukemia. Carcinogenesis 2019; 40:651-660. [PMID: 30715157 PMCID: PMC6610162 DOI: 10.1093/carcin/bgz014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a particularly aggressive subtype of acute myeloid leukemia (AML), with high rates of early death. It is important to examine how epidemiological characteristics, clinical and treatment factors, cytogenetic and genetic data affect survival and differ between APL and non-APL AML patients. We analyzed population data from the New York State Cancer Registry to characterize AML including APL incidence rates by demographics. APL incidence rates were higher among Hispanics than non-Hispanics [incidence rate ratio = 1.22; 95% confidence interval (CI) = 1.02-1.43]; and among foreign-born than USA-born persons. APL incidence rates increased more rapidly through 1995-2014 than non-APL AML; and its frequency increased faster among foreign-born persons. In a hospital cohort of 390 AML patients, the risk of death was significantly higher among APL patients with FLT3-internal tandem duplications than those without [hazard ratio (HR) = 11.74; 95% CI = 1.03-134.5]; and among APL patients with secondary versus de novo disease (HR = 17.32; 95% CI = 1.56-192.1). Among non-APL AML patients, risk of death was significantly associated with prior chemotherapy with antitubulin agents after adjusting for age, gender and ethnicity (adjusted HR = 3.30; 95% CI = 1.49-7.32); and separately with older age, unfavorable cytogenetics and complex karyotype. This study highlights FLT3-internal tandem duplications as a prognostic factor in APL and proposes consideration of prior antitubulin therapy as a prognostic factor in non-APL AML.
Collapse
Affiliation(s)
- Geetanjali R Kamath
- The Tisch Cancer Institute, New York, NY, USA
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | | | | | | | | | | | - Vesna Najfeld
- The Tisch Cancer Institute, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emanuela Taioli
- The Tisch Cancer Institute, New York, NY, USA
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| |
Collapse
|
17
|
Zhao J, Liang JW, Xue HL, Shen SH, Chen J, Tang YJ, Yu LS, Liang HH, Gu LJ, Tang JY, Li BS. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia 2019; 33:1387-1399. [PMID: 30575821 DOI: 10.1038/s41375-018-0338-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by t(15;17)(q22;q21), resulting in a PML-RARA fusion that is the master driver of APL. A few cases that cannot be identified with PML-RARA by using conventional methods (karyotype analysis, FISH, and RT-PCR) involve abnormal promyelocytes that are fully in accordance with APL in morphology, cytochemistry, and immunophenotype. To explore the mechanisms involved in pathogenesis and recurrence of morphologically diagnosed APL, we performed comprehensive variant analysis by next-generation sequencing in 111 pediatric patients morphologically diagnosed as APL. Structural variant (SV) analysis in 120 DNA samples from both diagnosis and relapse stage identified 95 samples with RARA rearrangement (including 94 with PML-RARA and one with NPM-RARA) and two samples with KMT2A rearrangement. In the eligible 13 RNA samples without any RARA rearrangement at diagnosis, one case each with CPSF6-RARG, NPM1-CCDC28A, and TBC1D15-RAB21 and two cases with a TBL1XR1-RARB fusion were discovered. These uncovered fusion genes strongly suggested their contributions to leukemogenesis as driver alternations and APL phenotype may arise by abnormalities of other members of the nuclear receptor superfamily involved in retinoid signaling (RARB or RARG) or even by mechanisms distinct from the formation of aberrant retinoid receptors. Single-nucleotide variant (SNV) analysis in 77 children (80 samples) with RARA rearrangement showed recurrent alternations of primary APL in FLT3, WT1, USP9X, NRAS, and ARID1A, with a strong potential for involvement in pathogenesis, and WT1 as the only recurrently mutated gene in relapsed APL. WT1, NPM1, NRAS, FLT3, and NSD1 were identified as recurrently mutated in 17 primary samples without RARA rearrangement and WT1, NPM1, TP53, and RARA as recurrently mutated in 9 relapsed samples. The survival of APL with RARA rearrangement is much better than without RARA rearrangement. Thus, patients morphologically diagnosed as APL that cannot be identified as having a RARA rearrangement are more reasonably classified as a subclass of AML other than APL, and individualized treatment should be considered according to the genetic abnormalities.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Granulocyte Precursor Cells/metabolism
- Granulocyte Precursor Cells/pathology
- Humans
- Infant
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Male
- Mutation
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Nucleophosmin
- Oncogene Proteins, Fusion/genetics
- Prognosis
- Retrospective Studies
- Survival Rate
- Translocation, Genetic
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Wei Liang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Liang Xue
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Jing Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Sha Yu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan-Huan Liang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long-Jun Gu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yan Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ben-Shang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Kamath GR, Tremblay D, Coltoff A, Caro J, Lancman G, Bhalla S, Najfeld V, Mascarenhas J, Taioli E. Differences in the clinical and genetic profile of Hispanic and non-Hispanic acute myeloid leukemia patients. Leuk Res 2019; 77:1-4. [DOI: 10.1016/j.leukres.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
19
|
Baba SM, Shah ZA, Pandith AA, Dil-Afroze, Jan A, Mir KA, Aziz SA, Ahmad Z. Influence of bcr-3 PML-RARα transcript on outcome in Acute Promyelocytic Leukemia patients of Kashmir treated with all-trans retinoic acid and/or arsenic tri-oxide. Cancer Genet 2019; 231-232:14-21. [DOI: 10.1016/j.cancergen.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
|
20
|
FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood 2019; 133:1495-1506. [PMID: 30674471 DOI: 10.1182/blood-2018-07-866095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is often associated with activating FLT3 signaling mutations. These are highly related to hyperleukocytosis, a major adverse risk factor with chemotherapy-based regimens. APL is a model for oncogene-targeted therapies: all-trans retinoic acid (ATRA) and arsenic both target and degrade its ProMyelocytic Leukemia/Retinoic Acid Receptor α (PML/RARA) driver. The combined ATRA/arsenic regimen now cures virtually all patients with standard-risk APL. Although FLT3-internal tandem duplication (ITD) was an adverse risk factor for historical ATRA/chemotherapy regimens, the molecular bases for this effect remain unknown. Using mouse APL models, we unexpectedly demonstrate that FLT3-ITD severely blunts ATRA response. Remarkably, although the transcriptional output of initial ATRA response is unaffected, ATRA-induced PML/RARA degradation is blunted, as is PML nuclear body reformation and activation of P53 signaling. Critically, the combination of ATRA and arsenic fully rescues therapeutic response in FLT3-ITD APLs, restoring PML/RARA degradation, PML nuclear body reformation, P53 activation, and APL eradication. Moreover, arsenic targeting of normal PML also contributes to APL response in vivo. These unexpected results explain the less favorable outcome of FLT3-ITD APLs with ATRA-based regimens, and stress the key role of PML nuclear bodies in APL eradication by the ATRA/arsenic combination.
Collapse
|
21
|
Zhang YL, Jiang M, Luan SQ, Liu SY, Wan JH, Wan LG, Zhang ZL. The novel three-way variant t(6;17;15)(p21;q21;q22) in acute promyelocytic leukemia with an FLT3-ITD mutation: A case report. Oncol Lett 2018; 16:6121-6125. [PMID: 30344754 DOI: 10.3892/ol.2018.9413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/04/2018] [Indexed: 12/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the reciprocal translocation t(15;17)(q22;q21), resulting in the fusion of the promyelocytic leukemia gene at 15q22 with the retinoic acid receptor α at 17q21. Additionally, all patients with APL who have additional chromosome abnormalities (ACA) and gene mutations are resistant to all-trans retinoic acid (ATRA), the drug that causes disease regression specifically in patients with APL globally. The present study describes a case of a 19-year-old female with APL carrying a novel complex variant translocation t(6;17;15)(p21;q21;q22), add(7)(q32) and an FMS-related tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation. Complete remission was attained following a course of chemotherapy with ATRA and arsenic trioxide. To the best of our knowledge, this is the first report of a novel three-way translocation of 6p21 and a FLT3-ITD mutation involved with APL.
Collapse
Affiliation(s)
- Yong-Lu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu-Qing Luan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu-Yuan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jin-Hua Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - La-Gen Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhang-Lin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Singh ZN, Duong VH, Koka R, Zou Y, Sawhney S, Tang L, Baer MR, Ambulos N, El Chaer F, Emadi A. High-Risk Acute Promyelocytic Leukemia with Unusual T/Myeloid Immunophenotype Successfully Treated with ATRA and Arsenic Trioxide-Based Regimen. J Hematop 2018; 11:67-74. [PMID: 30294391 DOI: 10.1007/s12308-018-0329-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe two patients with acute promyelocytic leukemia (APL) with an unusual immunophenotype with co-expression of myeloperoxidase (MPO) with cytoplasmic CD3 (cCD3) representing myeloid and T-lineage differentiation. Both harbored FLT3-ITD mutations. One additionally had a deletion in the PML gene affecting the primer binding site, thus limiting measurable residual disease (MRD) analysis during follow-up. Both patients achieved durable remission with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapy, thus mitigating the need for repetitive conventional chemotherapy cycles and allogeneic stem cell transplantation. Our report highlights the complexity and challenge of diagnosis and management of APL due to the variant immunophenotype and genetics, and underscores the importance of synthesizing information from all testing modalities. The association of the unusual immunophenotype and FLT3-ITD mutation illustrates the plasticity of the hematopoietic stem cell and the pathobiology of leukemia with mixed lineage or lineage infidelity.
Collapse
Affiliation(s)
- Zeba N Singh
- Department of Pathology, University of Maryland School of Medicine
| | - Vu H Duong
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Rima Koka
- Department of Pathology, University of Maryland School of Medicine
| | - Ying Zou
- Department of Pathology, University of Maryland School of Medicine
| | - Sameer Sawhney
- Department of Pathology, University of Maryland School of Medicine
| | - Li Tang
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Nicholas Ambulos
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Firas El Chaer
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Ashkan Emadi
- Department of Medicine, University of Maryland School of Medicine.,Department of Pharmacology, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| |
Collapse
|
23
|
Chen C, Huang X, Wang K, Chen K, Gao D, Qian S. Early mortality in acute promyelocytic leukemia: Potential predictors. Oncol Lett 2018; 15:4061-4069. [PMID: 29541170 PMCID: PMC5835847 DOI: 10.3892/ol.2018.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/08/2017] [Indexed: 01/18/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a rare leukemia characterized by the balanced reciprocal translocation between the promyelocytic leukemia gene on chromosome 15 and the retinoic acid receptor α (RARα) gene on chromosome 17, and accounts for 10-15% of newly diagnosed acute myeloid leukemia each year. The combined use of all-trans retinoic acid and arsenic trioxide (ATO) as primary therapy has markedly improved the survival rate of patients with APL. Mortality in the first 30 days following therapy remains a major contribution to treatment failure. In the present study, published data was reviewed with a focus on the factors associated with early mortality. When treated with ATO as a primary treatment, the fms-like tyrosine kinase-internal tandem deletion has no impact on early mortality. Low lymphoid enhancer binding factor-1 expression may be a reliable marker for early mortality and the target of therapy if it could be proven by further studies. Cluster of differentiation (CD)56+ and CD34+/CD2+ may be candidates to select high-risk patients. The risk of early mortality in APL still cannot be predicted via the cell surface makers, despite multiple studies on their prognostic significance. Typically, a complex translocation did not alter the survival rate in patients with APL; however, if an abnormal karyotype [e.g., Ide(17), ZBTB16/RARα and STAT5B/RARα] appeared singularly or as part of a complex mutation, there is a high possibility of early mortality if clinicians are unable to identify or monitor it.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xilian Huang
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kaile Wang
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kuang Chen
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Danquan Gao
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenxian Qian
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
24
|
Fan Y, Cao Y, Bai X, Zhuang W. The clinical significance of FLT3 ITD mutation on the prognosis of adult acute promyelocytic leukemia. ACTA ACUST UNITED AC 2017; 23:379-384. [PMID: 29251252 DOI: 10.1080/10245332.2017.1415717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS To explore the relationship between FLT3 (encoding Fms related tyrosine kinase 3) internal tandem duplication (ITD) mutations with the prognosis of acute promyelocytic leukemia. The PubMed database, the Cochrane Library, conference proceedings, the EMBASE databases, and references of published trials and review articles were searched. Two reviewers independently assessed the quality of the trials and extracted the data. Odd ratios (ORs) for complete remission (CR) rate after induction therapy, 5-year overall survival (OS), and 5-year disease free survival (DFS) were pooled using the STATA package. MAIN RESULTS Seventeen trials involving 2252 patients were ultimately analyzed. The pooled OR showed that the FLT3 ITD mutation group had a poor prognosis in terms of CR rate (OR = 0.53, 95% confidence interval (CI), 0.30-0.95, P = 0.03), 5-year OS (OR = 0.47, 95% CI, 0.29-0.75, P = 0.002), and as 5-year DFS (OR = 0.48, 95% CI, 0.29-0.78; p = 0.003). CONCLUSIONS The results suggested that FLT3 ITD mutations could become an indicator of poor prognosis of APL, and these patients should receive more intensive therapy according to current guidelines.
Collapse
Affiliation(s)
- Yingchao Fan
- a Department of Laboratory Diagnosis , Shidong Hospital of Yangpu Distric , Shanghai , People's Republic of China
| | - Yanan Cao
- a Department of Laboratory Diagnosis , Shidong Hospital of Yangpu Distric , Shanghai , People's Republic of China
| | - Xiaosong Bai
- a Department of Laboratory Diagnosis , Shidong Hospital of Yangpu Distric , Shanghai , People's Republic of China
| | - Wenfang Zhuang
- a Department of Laboratory Diagnosis , Shidong Hospital of Yangpu Distric , Shanghai , People's Republic of China
| |
Collapse
|
25
|
Acute Myeloid Leukaemia: New Targets and Therapies. Int J Mol Sci 2017; 18:ijms18122577. [PMID: 29189736 PMCID: PMC5751180 DOI: 10.3390/ijms18122577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
|
26
|
Guinn BA, Mohamedali A, Mills KI, Czepulkowski B, Schmitt M, Greiner J. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia. Biomark Insights 2017. [DOI: 10.1177/117727190700200015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Azim Mohamedali
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Ken I. Mills
- Department of Haematology, University Hospital of Wales, Heath Park, Cardiff, CF4 4XN, U.K
| | - Barbara Czepulkowski
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Michael Schmitt
- Third Clinic for Internal Medicine, University of Ulm, Germany
| | - Jochen Greiner
- Third Clinic for Internal Medicine, University of Ulm, Germany
| |
Collapse
|
27
|
Fasan A, Haferlach C, Perglerovà K, Kern W, Haferlach T. Molecular landscape of acute promyelocytic leukemia at diagnosis and relapse. Haematologica 2017; 102:e222-e224. [PMID: 28341736 DOI: 10.3324/haematol.2016.162206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
28
|
Zhang X, Yang C, Peng X, Chen X, Feng Y. Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report. SAO PAULO MED J 2017; 135:179-184. [PMID: 28125133 PMCID: PMC9977332 DOI: 10.1590/1516-3180.2016.020104102016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
CONTEXT: Acute promyelocytic leukemia (APL) accounts for 8% to 10% of cases of acute myeloid leukemia (AML). Remission in cases of high-risk APL is still difficult to achieve, and relapses occur readily. CASE REPORT: Here, we describe a case of APL with high white blood cell counts in blood tests and hypogranular variant morphology in bone marrow, together with fms-like tyrosine kinase-3 with internal tandem duplication mutations (FLT3-ITD), and bcr-3 isoform of PML-RARα. Most importantly, we detected high level of Wilms' tumor gene (WT1) in marrow blasts, through the reverse transcription polymerase chain reaction (RT-PCR). To date, no clear conclusions about an association between WT1 expression levels and APL have been reached. This patient successively received a combined treatment regimen consisting of hydroxycarbamide, arsenic trioxide and idarubicin plus cytarabine, which ultimately enabled complete remission. Unfortunately, he subsequently died of sudden massive hemoptysis because of pulmonary infection. CONCLUSION: Based on our findings and a review of the literature, abnormal functioning of WT1 may be a high-risk factor in cases of APL. Further studies aimed towards evaluating the impact of WT1 expression on the prognosis for APL patients are of interest.
Collapse
Affiliation(s)
- Xi Zhang
- MD, PhD. Professor, Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Yang
- MD. Attending Physician, Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xiangui Peng
- MD. Affiliated Professor, Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xinghua Chen
- MD, PhD. Full Professor, Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Yimei Feng
- MD, PhD. Assistant Professor, Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
29
|
Bochtler T, Fröhling S, Weichert W, Endris V, Thiede C, Hutter B, Hundemer M, Ho AD, Krämer A. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia. Cold Spring Harb Mol Case Stud 2016; 2:a001123. [PMID: 27626069 PMCID: PMC5002926 DOI: 10.1101/mcs.a001123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site.
Collapse
Affiliation(s)
- Tilmann Bochtler
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany;; Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;; Section for Personalized Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;; DKFZ-Heidelberg Center for Personalized Oncology (HIPO), 69120 Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany;; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University of Dresden, 01307 Dresden, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Alwin Krämer
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany;; Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J, Kanojia D, Yoshida K, Ganesan S, Hattori N, Fulton N, Tan KT, Alpermann T, Kuo MC, Rostami S, Matthews J, Sanada M, Liu LZ, Shiraishi Y, Miyano S, Chendamarai E, Hou HA, Malnassy G, Ma T, Garg M, Ding LW, Sun QY, Chien W, Ikezoe T, Lill M, Biondi A, Larson RA, Powell BL, Lübbert M, Chng WJ, Tien HF, Heuser M, Ganser A, Koren-Michowitz M, Kornblau SM, Kantarjian HM, Nowak D, Hofmann WK, Yang H, Stock W, Ghavamzadeh A, Alimoghaddam K, Haferlach T, Ogawa S, Shih LY, Mathews V, Koeffler HP. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016; 30:1672-81. [PMID: 27063598 PMCID: PMC4972641 DOI: 10.1038/leu.2016.69] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 12/16/2022]
Abstract
Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential.
Collapse
Affiliation(s)
- V Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - P Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - L Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - A Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Y Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - D Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - N Hattori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - N Fulton
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - K-T Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - T Alpermann
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - M-C Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - S Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - J Matthews
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L-Z Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - E Chendamarai
- Department of Haematology, Christian Medical College, Vellore, India
| | - H-A Hou
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taipei, Taiwan
| | - G Malnassy
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - T Ma
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - M Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - L-W Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Q-Y Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - W Chien
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - T Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - M Lill
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA
| | - A Biondi
- Paediatric Haematology-Oncology Department and 'Tettamanti' Research Centre, Milano-Bicocca University, 'Fondazione MBBM', San Gerardo Hospital, Monza, Italy
| | - R A Larson
- Department of Medicine, University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - B L Powell
- Department of Internal Medicine, Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - M Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Internal Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - W J Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| | - H-F Tien
- Department of Internal Medicine, National Taiwan University, Medical College and Hospital, Taipei, Taiwan
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Koren-Michowitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Tel Hashomer, Israel
| | - S M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H M Kantarjian
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - W-K Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - H Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - W Stock
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - A Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - K Alimoghaddam
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - T Haferlach
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L-Y Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - V Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - H P Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
31
|
Liu TT, Zeng KE, Wang L, Liu T, Niu T. Acute promyelocytic leukemia harbouring rare FLT3-TKD and WT1 mutations: A case report. Oncol Lett 2015; 10:1858-1862. [PMID: 26622765 DOI: 10.3892/ol.2015.3437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 05/12/2015] [Indexed: 02/05/2023] Open
Abstract
The involvement of the central nervous system (CNS) is rare in acute promyelocytic leukemia (APL). The present study reported the case of a 34-year-old male patient with APL that possessed a rare point mutation (p.Asn841Gly, c.2523C>A) in the tyrosine kinase domain of the FMS-like tyrosine kinase 3 (FLT3) gene and a novel Wilm tumor gene mutation (c.1209_1210insT/p.K404X). The patient suffered central nervous system and systemic relapses twice during systemic and intrathecal chemotherapy. At present, the patient is undergoing alternative induction and consolidation therapies, including the administration of FLT3 inhibitor, tetraarsenic tetrasulfide and novel cytotherapy, and is prepared for salvage allogeneic hematopoietic stem cell transplantion (allo-HSCT). The present study indicated that patients with APL that are at a high risk of relapse and unfavorable gene mutations should receive immediate allo-HSCT, whenever possible.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China ; Department of Internal Medicine, Fourth Hospital of West China, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - K E Zeng
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Liu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
32
|
Gaillard C, Tokuyasu TA, Rosen G, Sotzen J, Vitaliano-Prunier A, Roy R, Passegué E, de Thé H, Figueroa ME, Kogan SC. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. Haematologica 2015; 100:1064-75. [PMID: 26088929 DOI: 10.3324/haematol.2014.123018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.
Collapse
Affiliation(s)
- Coline Gaillard
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA Institut Universitaire d'Hématologie, Université Paris-Diderot UMR 944/7212, France
| | - Taku A Tokuyasu
- Computational Biology Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Galit Rosen
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, AZ, USA
| | - Jason Sotzen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Ritu Roy
- Computational Biology Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Emmanuelle Passegué
- Department of Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Hugues de Thé
- Institut Universitaire d'Hématologie, Université Paris-Diderot UMR 944/7212, France
| | - Maria E Figueroa
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
FLT3-ITD in acute promyelocytic leukemia: Clinical distinct profile but still controversial prognosis. Leuk Res 2015; 39:397-9. [DOI: 10.1016/j.leukres.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 11/22/2022]
|
34
|
Abstract
In this issue of Blood, Ostronoff et al report a low remission rate in acute myeloid leukemia (AML) patients coexpressing FLT3/ITD and cryptic translocation t(5;11)(q35;p15.5), known as NUP98/NSD1.
Collapse
|
35
|
Souza Melo CP, Campos CB, Dutra ÁP, Neto JCA, Fenelon AJS, Neto AH, Carbone EK, Pianovski MAD, Ferreira ACDS, Assumpcão JG. Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk Res 2014; 39:131-7. [PMID: 25530565 DOI: 10.1016/j.leukres.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Internal tandem duplications (ITD) of FLT3 gene occur in about a third of acute promyelocytic leukemias (APL). We investigated the patterns of blood count, surface antigen, expression, chromosome aberrations, PML-RARa isoform, gene expression profile (GEP) and survival in 34 APL patients according to FLT3-ITD status. 97% had a t(15;17) and all of them carried PML-RARa gene fusion, 8 (23.5%) had a FLT3-ITD mutation. Presence of ITD was associated with higher Hb and WBC levels, bcr3 isoform, CD34 expression, CD2 or CD2/CD34 expression. In a multivariate analysis, Hb>9.6g/dL and WBC≥20 × 10(9)/L were important factors for predicting ITD presence. GEP showed that FLT3-ITD carriers clustered separately, even when as few as 5 genes were considered. This study provides further evidence that FLT3-ITDs carriers constitute a biologically distinct group of APL patients.
Collapse
Affiliation(s)
- Carolina Pereira Souza Melo
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| | - Catharina Brant Campos
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| | - Álvaro Pimenta Dutra
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Joaquim Caetano Aguirre Neto
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Alexandre José Silva Fenelon
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales 1111, Belo Horizonte CEP 30150-221, MG, Brazil.
| | - Abrahão Hallack Neto
- Hospital Universitário da Universidade Federal de Juiz de Fora, Rua Catulo Breviglieri s/n, Juiz de Fora CEP 36036-110, MG, Brazil.
| | - Edna Kakitani Carbone
- Hospital Pequeno Príncipe, Rua Desembargador Motta 1070, Curitiba CEP 80250-060, PR, Brazil.
| | | | | | - Juliana Godoy Assumpcão
- Laboratório BIOCOD Biotecnologia Ltda., Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil; Setor de Pesquisa e Desenvolvimento-Instituto Hermes Pardini, Av. das Nações 2448, Portaria A, Vespasiano CEP 33200-000, MG, Brazil.
| |
Collapse
|
36
|
Swaminathan S, Garg S, Madkaikar M, Gupta M, Jijina F, Ghosh K. FLT3 and NPM-1 mutations in a cohort of acute promyelocytic leukemia patients from India. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:160-5. [PMID: 25400345 PMCID: PMC4228568 DOI: 10.4103/0971-6866.142884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse. METHODS This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing. RESULTS Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients.
Collapse
Affiliation(s)
- Suchitra Swaminathan
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Indian Council of Medical Research, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India ; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Swati Garg
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Indian Council of Medical Research, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Indian Council of Medical Research, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Indian Council of Medical Research, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India
| | - Farah Jijina
- Department of Hematology, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India
| | - Kanjaksha Ghosh
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Indian Council of Medical Research, K.E.M. Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 2014; 124:2400-7. [PMID: 25145343 DOI: 10.1182/blood-2014-04-570929] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NUP98/NSD1 has recently been reported in association with poor outcome in acute myeloid leukemia (AML). Previous studies also observed a high overlap between NUP98/NSD1 and FLT3/ITD, raising the question as to whether the reported poor outcome is due to NUP98/NSD1 or caused by the co-occurrence of these 2 genetic lesions. We aimed to determine the prognostic significance of NUP98/NSD1 in the context of FLT3/ITD AML. A total of 1421 patients enrolled in 5 consecutive Children's Oncology Group/Children's Cancer Group and SWOG trials were evaluated. NUP98/NSD1 was found in 15% of FLT3/ITD and 7% of cytogenetically normal (CN)-AML. Those with dual FLT3/ITD and NUP98/NSD1 (82% of NUP98/NSD1 patients) had a complete remission rate of 27% vs 69% in FLT3/ITD without NUP98/NSD1 (P < .001). The corresponding 3-year overall survival was 31% vs 48% (P = .011), respectively. In CN-AML, patients with concomitant NUP98/NSD1 and FLT3/ITD had a worse outcome than those harboring NUP98/NSD1 only. In multivariate analysis, the dual NUP98/NSD1 and FLT3/ITD remained an independent predictor of poor outcome, and NUP98/NSD1 without FLT3/ITD lost its prognostic significance. Our study demonstrates that it is the interaction between NUP98/NSD1 and FLT3/ITD that determines the poor outcome of patients with NUP98/NSD1 disease.
Collapse
|
38
|
Lucena-Araujo AR, Kim HT, Jacomo RH, Melo RA, Bittencourt R, Pasquini R, Pagnano K, Fagundes EM, Chauffaille MDL, Chiattone CS, Lima AS, Ruiz-Argüelles G, Undurraga MS, Martinez L, Kwaan HC, Gallagher R, Niemeyer CM, Schrier SL, Tallman MS, Grimwade D, Ganser A, Berliner N, Ribeiro RC, Lo-Coco F, Löwenberg B, Sanz MA, Rego EM. Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukemia study. Ann Hematol 2014; 93:2001-10. [DOI: 10.1007/s00277-014-2142-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
|
39
|
Testi AM, D’Angiò M, Locatelli F, Pession A, Lo Coco F. Acute Promyelocytic Leukemia (APL): Comparison Between Children and Adults. Mediterr J Hematol Infect Dis 2014; 6:e2014032. [PMID: 24804005 PMCID: PMC4010611 DOI: 10.4084/mjhid.2014.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/10/2014] [Indexed: 01/20/2023] Open
Abstract
The outcome of adults and children with Acute Promyelocytic Leukemia (APL) has dramatically changed since the introduction of all trans retinoic acid (ATRA) therapy. Based on the results of several multicenter trials, the current recommendations for the treatment of patients with APL include ATRA and anthracycline-based chemotherapy for the remission induction and consolidation, and ATRA combined with low-dose chemotherapy for maintenance. This has improved the prognosis of APL by increasing the complete remission (CR) rate, actually > 90%, decreasing the induction deaths and by reducing the relapse rate, leading to cure rates nowadays exceeding 80% considering both adults and children.1-9 More recently the combination of ATRA and arsenic trioxide (ATO) as induction and consolidation therapy has been shown to be at least not inferior and possibly superior to ATRA plus chemotherapy in adult patients with APL conventionally defined as non-high risk (Sanz score).10 Childhood APL has customarily been treated on adult protocols. Data from several trials have shown that the overall outcome in pediatric APL appears similar to that reported for the adult population; however, some clinical and therapeutic aspects differ in the two cohorts which require some important considerations and treatment adjustments.
Collapse
Affiliation(s)
- Anna Maria Testi
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Italy
| | - Mariella D’Angiò
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology, IRCCS Ospedale Bambino Gesù, Roma University of Pavia, Italy
| | - Andrea Pession
- Department of Pediatric Hemato-Oncology, University of Bologna, Italy
| | - Francesco Lo Coco
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Laboratory of Neuro-Oncoematology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
40
|
Poiré X, Moser BK, Gallagher RE, Laumann K, Bloomfield CD, Powell BL, Koval G, Gulati K, Holowka N, Larson RA, Tallman MS, Appelbaum FR, Sher D, Willman C, Paietta E, Stock W. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma 2014; 55:1523-32. [PMID: 24160850 DOI: 10.3109/10428194.2013.842985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The addition of arsenic trioxide (ATO) to frontline therapy of acute promyelocytic leukemia (APL) has been shown to result in significant improvements in disease-free survival (DFS). FLT3 mutations are frequently observed in APL, but its prognostic significance remains unclear. We analyzed 245 newly diagnosed adult patients with APL treated on intergroup trial C9710 and evaluated previously defined biological and prognostic factors and their relationship to FLT3 mutations and to additional karyotypic abnormalities. FLT3 mutations were found in 48% of patients, including 31% with an internal tandem duplication (FLT3-ITD), 14% with a point mutation (FLT3-D835) and 2% with both mutations. The FLT3-ITD mutant level was uniformly low, < 0.5. Neither FLT3 mutation had an impact on remission rate, induction death rate, DFS or overall survival (OS). The addition of ATO consolidation improved outcomes regardless of FLT3 mutation type or level, initial white blood cell count, PML-RARA isoform type or transcript level. The presence of a complex karyotype was strongly associated with an inferior OS independently of post-remission treatment. In conclusion, the addition of ATO to frontline therapy overcomes the impact of previously described adverse prognostic factors including FLT3 mutations. However, complex karyotype is strongly associated with an inferior OS despite ATO therapy.
Collapse
Affiliation(s)
- Xavier Poiré
- Section of Hematology/Oncology, The University of Chicago Medical Center , Chicago, IL , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
FMS-related tyrosine kinase 3. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Lu J, Huang X, Bao L, Jiang H, Zhu H, Jiang B. Treatment outcomes in relapsed acute promyelocytic leukemia patients initially treated with all- trans retinoic acid and arsenic compound-based combined therapies. Oncol Lett 2013; 7:177-182. [PMID: 24348844 PMCID: PMC3861585 DOI: 10.3892/ol.2013.1643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
Contemporary combined therapies that include the use of all-trans retinoic acid (ATRA) and arsenic compounds have reduced relapse rates from ~50 to <10% in acute promyelocytic leukemia (APL) patients, however relapse treatment remains controversial. Treatment outcomes in relapsed patients with APL previously treated with combined ATRA + arsenic compound therapy were investigated. A retrospective, observational study was conducted of 25 patients with APL (male to female ratio, 17:8; mean age, 36.4±10.3 years) exhibiting first-time relapse following combined ATRA + arsenic compound therapy. These patients were subsequently treated with secondary ATRA + arsenic compound therapy, salvage chemotherapy, monoclonal antibody therapy or intrathecal chemotherapy, between January 1994 and December 2010. The overall remission rate, duration of remission and toxic effects were assessed. Patient outcomes included mortality during secondary induction therapy (6/25, 24.0%); complete recovery from central nervous system (CNS) relapse following intrathecal chemotherapy (1/25, 4.0%); complete remission following ATRA + arsenic compound therapy (10/25, 40.0%), chemotherapy (3/25, 12.0%) and targeted therapy (1/25, 4.0%); and non-remission (NR) following ATRA + arsenic compound therapy (4/25, 16%). Four (16.0%) patients were subsequently treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT), two of which remained disease-free at the end of the study period and two of which succumbed to the disease. Secondary bone marrow and CNS relapse occurred in 14 (56.0%) patients and one (4.0%) patient, respectively. ATRA + arsenic compound-based combination therapy was effective in re-inducing morphological remission in relapsed patients with APL with previous exposure to ATRA + arsenic compounds, producing low molecular remission rates and high risk of secondary relapse. Furthermore, investigation of early allo-HSCT is required to determine its potential as a therapeutic option for re-inducing morphological remission in relapsed patients with APL with previous exposure to ATRA + arsenic compounds.
Collapse
Affiliation(s)
- Jin Lu
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiaojun Huang
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Li Bao
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Hao Jiang
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Honghu Zhu
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Bin Jiang
- Institute of Hematology, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
43
|
The shortest isoform of C/EBPβ, liver inhibitory protein (LIP), collaborates with Evi1 to induce AML in a mouse BMT model. Blood 2013; 121:4142-55. [PMID: 23547050 DOI: 10.1182/blood-2011-07-368654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecotropic viral integration site 1 (Evi1) is one of the master regulators in the development of acute myeloid leukemia (AML) and myelodysplastic syndrome. High expression of Evi1 is found in 10% of patients with AML and indicates a poor outcome. Several recent studies have indicated that Evi1 requires collaborative factors to induce AML. Therefore, the search for candidate factors that collaborate with Evi1 in leukemogenesis is one of the key issues in uncovering the mechanism of Evi1-related leukemia. Previously, we succeeded in making a mouse model of Evi1-related leukemia using a bone marrow transplantation (BMT) system. In the Evi1-induced leukemic cells, we identified frequent retroviral integrations near the CCAAT/enhancer-binding protein β (C/EBPβ) gene and overexpression of its protein. These findings imply that C/EBPβ is a candidate gene that collaborates with Evi1 in leukemogenesis. Cotransduction of Evi1 and the shortest isoform of C/EBPβ, liver inhibitory protein (LIP), induced AML with short latencies in a mouse BMT model. Overexpression of LIP alone also induced AML with longer latencies. However, excision of all 3 isoforms of C/EBPβ (LAP*/LAP/LIP) did not inhibit the development of Evi1-induced leukemia. Therefore, isoform-specific intervention that targets LIP is required when we consider C/EBPβ as a therapeutic target.
Collapse
|
44
|
Inclusion of hemoglobin level in prognostic score provides better prognostic stratification in patients with acute promyelocytic leukemia (APL). Int J Hematol 2013; 97:388-96. [PMID: 23397209 DOI: 10.1007/s12185-013-1276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 01/04/2023]
Abstract
The clinical outcomes of acute promyelocytic leukemia (APL) have improved greatly, but treatment failure still occurs. Identification of patients with poor prognosis is fundamental, and we propose a new clinical prognostic system (CBC-score) consisting of WBC, platelet count, and hemoglobin level. Between 1995 and 2009, 156 patients with APL from seven institutes in Korea were retrospectively reviewed. In the new CBC-score system, each of the following (WBC ≥ 10 × 109/L, platelet <40 × 109/L, hemoglobin <8.0 g/dL) was considered as a risk factor; the sum of each was designated as the CBC-score. With a median follow-up of 8.4 years, the complete remission (CR) rate was 81.4 % (127/156), while 24 (15.4 %) were considered as treatment failures due to early death (ED). The 5-year overall survival (OS), leukemia-free survival, and cumulative incidence of relapse were 73.8, 82.8, and 13.5 %, respectively. Compared to the individual CBC parameters, combined prognostic systems such as PETHEMA or CBC-score provided better prognostic stratification. Compared to PETHEMA stratification, the proposed prognostic CBC-score system showed better stratification of APL patients in terms of CR rates (p = 0.004), OS (p = 0.004), and ED (p = 0.008). This retrospective study suggests that the proposed CBC-score may provide better prognostic stratification of APL patients.
Collapse
|
45
|
Zou XL, Zeng K, Xie LP, Wang L, Chen M, Liu T, Niu T. Acute promyelocytic leukemia with Flt3-TKD and WT1 mutations relapsing in a testicle and followed by systemic relapse. Acta Haematol 2013; 130:223-9. [PMID: 23816818 DOI: 10.1159/000351054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/17/2013] [Indexed: 12/22/2022]
Abstract
Extramedullary relapse is a rare phenomenon in patients with acute promyelocytic leukemia (APL), especially that derived from urogenital systems like the testicles. In this report, we describe an APL patient who had received standard induction/maintenance therapy resulting in durable remission for 4.5 years, when he presented with a unilateral testicular mass confirmed as myeloid sarcoma; this was followed by systemic relapse of APL. Retrospective analysis of the involved blood and bone marrow samples at the time of the initial diagnosis revealed a rare point mutation of FLT3-TKD and a novel mutation of WT1. These mutations were detected recurrently throughout the course of the disease. After reinduction therapy with arsenic trioxide and all-trans retinoic acid combined with daunorubicin, complete hematological remission was achieved for the ensuing salvage allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Xing-li Zou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Takenokuchi M, Kawano S, Nakamachi Y, Sakota Y, Syampurnawati M, Saigo K, Tatsumi E, Kumagai S. FLT3/ITD associated with an immature immunophenotype in PML-RARα leukemia. Hematol Rep 2012; 4:e22. [PMID: 23355940 PMCID: PMC3555210 DOI: 10.4081/hr.2012.e22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/25/2012] [Accepted: 10/11/2012] [Indexed: 12/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the specific PML-RARα fusion gene resulting from translocation t(15;17) (q22;q12). Internal tandem duplication (ITD) of the FLT3 gene has been observed in approximately 35% of APLs, and large-scale studies have identified the presence of ITD as an adverse prognostic factor for acute myeloblastic leukemia (AML) patients. Aberrant expressions of surface antigens, such as CD2, CD34, and CD56, have been found in APL, but the implications of this are not well understood. We investigated the incidence of the FLT3/ITD mutation and FLT3/D835 (I836) point mutation in 25 APL patients. Incidence ratios of FLT3/ITD, D835 (I836), and both FLT3/ITD and D835 (I836) were 36%, 36% and 8%, respectively. FLT3/ITD+ cases showed a predominance of the bcr3 isoform (P=0.008) and M3v morphology (P<0.001). We found that all FLT3/ITD+ cases expressed CD2 (9 of 9) more frequently than that of FLT3/ITD− (1 of 16) (P<0.001), while only one of the CD2+ cases (1 of 10, 10%) did not harbor FLT3/ITD, and all CD2+CD34+ cases (5 of 5, 100%) harbored FLT3/ITD. In addition, quantitative polymerase chain reaction analysis showed that FLT3 mRNA was more abundantly expressed in FLT3/ITD+ than that in FLT3/ITD− (P=0.025), while there was no difference between D835(I836) + and D835(I836)− with regards to aberrant surface-antigen expression, expression levels of FLT3 mRNA, M3v morphology, and the bcr3 isoform of PML-RARα mRNA. This study demonstrates that the presence of FLT3/ITD, but not D835 (I836), is closely related to aberrant CD2 expression and high expression levels of FLT3 mRNA. Our findings also suggest that FLT3/ITD as a secondary genetic event may block differentiation at the immature stage of APL.
Collapse
Affiliation(s)
- Mariko Takenokuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Hyogo; Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kutny MA, Moser BK, Laumann K, Feusner JH, Gamis A, Gregory J, Larson RA, Powell BL, Stock W, Willman CL, Woods WG, Meshinchi S. FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from the Children's Oncology Group. Pediatr Blood Cancer 2012; 59:662-7. [PMID: 22378655 PMCID: PMC3368997 DOI: 10.1002/pbc.24122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/08/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND FLT3 mutations (FLT3/Mut) are prevalent in de novo AML and are associated with early relapse. The prevalence and prognostic significance of FLT3/Mut have not been well defined in childhood acute promyelocytic leukemia (APL). PROCEDURE Diagnostic specimens from 104 pediatric APL patients were screened for FLT3/Mut (FLT3/ITD or FLT3/ALM). FLT3/Mut status was correlated with disease characteristics and clinical outcome for patients treated on CALGB C9710 (n = 50). RESULTS Forty-two of the 104 patients (40%) had either FLT3/ITD (n = 28, 27%) or FLT3/ALM (n = 15, 14%). Median diagnostic WBC count was 23,400 cells/µl vs. 3,600 cells/µl for those with and without FLT3/Mut (P < 0.001), and similar results for the cohort of 50 patients treated on C9710 (P < 0.001). In patients treated on C9710, presence of a FLT3 mutation was highly correlated with diagnostic WBC count >10,000 (P = 0.004), microgranular variant histology (P = 0.035), and a lower remission rate (P = 0.009). In patients who received ATRA (C9710 or CCG-2911, n = 8), those with FLT3/Mut had an induction death rate of 30% (7/23) compared to 3% (1/35) in FLT3/WT patients (P = 0.005). In patients with high WBC counts (>10,000), those with FLT3/Mut had a significantly higher risk of induction death versus FLT3/WT patients (47% vs. 0%, P = 0.05). FLT3/Mut was not associated with adverse outcome in those who survived induction therapy. CONCLUSIONS FLT3/Mut are prevalent in pediatric APL and are associated with high WBC count and increased induction death. This study provides further evidence for testing APL patients for FLT3/Mut and the potential role for FLT3 inhibitors in this disease.
Collapse
Affiliation(s)
- Matthew A. Kutny
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Division of Pediatric Hematology/Oncology, University of Washington School of Medicine, Seattle, WA
| | - Barry K. Moser
- CALGB (Cancer and Leukemia Group B) Statistical Center, Duke University Medical Center, Durham, NC
| | - Kristina Laumann
- Mayo Cancer Center Department of Biostatistics, Mayo Clinic, Rochester, MN
| | - James H. Feusner
- Department of Hematology/Oncology, Children's Hospital & Research Center Oakland, Oakland, CA
| | - Alan Gamis
- Division of Hematology/Oncology/Bone Marrow Transplantation, Children's Mercy Hospital & Clinics, Kansas City, MO
| | - John Gregory
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ
| | | | | | | | - Cheryl L. Willman
- Department of Pathology, University of New Mexico, School of Medicine
| | - William G. Woods
- Aflac Cancer Center & Blood Disorders Service, Children's Healthcare of Atlanta/Emory University, Atlanta, GA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Division of Pediatric Hematology/Oncology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
48
|
De Mello MRB, Albuquerque DM, Pereira-Cunha FG, Albanez KB, Pagnano KBB, Costa FF, Metze K, Lorand-Metze I. Molecular characteristics and chromatin texture features in acute promyelocytic leukemia. Diagn Pathol 2012; 7:75. [PMID: 22742960 PMCID: PMC3478223 DOI: 10.1186/1746-1596-7-75] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023] Open
Abstract
Background Acute promyelocytic leukemia is a cytogenetically well defined entity. Nevertheless, some features observed at diagnosis are related to a worse outcome of the patients. Methods In a prospective study, we analyzed peripheral (PB) leukocyte count, immunophenotype, methylation status of CDKN2B, CDKN2A and TP73; FLT3 and NPM1 mutations besides nuclear chromatin texture characteristics of the leukemic cells. We also examined the relation of these features with patient’s outcome. Results Among 19 cases, 4 had a microgranular morphology, 7 presented PB leukocytes >10x109/l, 2 had FLT3-ITD and 3 had FLT3-TKD (all three presenting a methylated CDKN2B). NPM1 mutation was not observed. PB leukocyte count showed an inverse relation with standard deviation of gray levels, contrast, cluster prominence, and chromatin fractal dimension (FD). Cases with FLT3-ITD presented a microgranular morphology, PB leukocytosis and expression of HLA-DR, CD34 and CD11b. Concerning nuclear chromatin texture variables, these cases had a lower entropy, contrast, cluster prominence and FD, but higher local homogeneity, and R245, in keeping with more homogeneously distributed chromatin. In the univariate Cox analysis, a higher leukocyte count, FLT3-ITD mutation, microgranular morphology, methylation of CDKN2B, besides a higher local homogeneity of nuclear chromatin, a lower chromatin entropy and FD were associated to a worse outcome. All these features lost significance when the cases were stratified for FLT3-ITD mutation. Methylation status of CDNK2A and TP73 showed no relation to patient’s survival. Conclusion in APL, patients with FLT3-ITD mutation show different clinical characteristics and have blasts with a more homogeneous chromatin texture. Texture analysis demonstrated that FLTD-ITD was accompanied not only by different cytoplasmic features, but also by a change in chromatin structure in routine cytologic preparations. Yet we were not able to detect chromatin changes by nuclear texture analysis of patients with the FTLD-TKD or methylation of specific genes.
Collapse
|
49
|
Treatment-influenced associations of PML-RARα mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia. Blood 2012; 120:2098-108. [PMID: 22734072 DOI: 10.1182/blood-2012-01-407601] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the all-trans retinoic acid (ATRA)-targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA. Thirteen of 21 patients (62%) had additional chromosome abnormalities (ACAs); all coanalyzed PRα/LBD mutant patients who relapsed off-ATRA (n = 5) had associated ACA. After relapse Off-ATRA, ACA and FLT3-ITD+ were negatively associated and were oppositely associated with presenting white blood count and PML-RARα type: ACA, low, L-isoform; FLT3-ITD+, high, S-isoform. These exploratory results suggest that differing PRα/LBD+ activities may interact with FLT3-ITD+ or ACA, that FLT3-ITD+ and ACA are associated with different intrinsic disease progression pathways manifest at relapse Off-ATRA, and that these different pathways may be short-circuited by ATRA-selectable defects at relapse On-ATRA. ACA and certain PRα/LBD+ were also associated with reduced postrelapse survival.
Collapse
|
50
|
Yaghmaie M, Alimoghaddam K, Mozdarani H, Ghavamzadeh A, Hajhashemi M, Aznab M, Ghaffari SH. Cytogenetic and FMS-like tyrosine kinase 3 mutation analyses in acute promyelocytic leukemia patients. IRANIAN BIOMEDICAL JOURNAL 2012; 16:10-7. [PMID: 22562027 DOI: 10.6091/ibj.961.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutations in acute promyelocytic leukemia (APL) is not firmly established. METHODS In this study, the chromosomal abnormalities were analyzed by bone marrow cytogenetic in 45 APL patients and FLT3 internal tandem duplications (ITD) screening by fragment length analysis and FLT3 D835 mutation by melting curve analysis were screened in 23 APL samples. RESULTS Cytogenetic study showed 14.3% trisomy 8 and 17.1% chromosomal abnormalities other than t(15;17). About 13% of the patients had FLT3 ITD, and 26% had D835 point mutation. FLT3 ITD mutation was associated with higher white blood cell count at presentation and poor prognosis. CONCLUSION The PML-RARA translocation alone may not be sufficient to induce leukemia. Therefore, we assume that FLT3 mutations and the other genetic and chromosomal alterations may cooperate with PML-RARA in the development of APL disease.
Collapse
Affiliation(s)
- Marjan Yaghmaie
- Dept. of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modarres University, P. O. Box 14115-111, Tehran.,Haematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Haematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Dept. of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modarres University, P. O. Box 14115-111, Tehran
| | - Ardeshir Ghavamzadeh
- Haematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Hajhashemi
- Haematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozaffar Aznab
- Hematology, Oncology Ward of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed H Ghaffari
- Haematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|