1
|
Ren P, Wang J, Li L, Lin X, Wu G, Chen J, Zeng Z, Zhang H. Identification of key genes involved in the recurrence of glioblastoma multiforme using weighted gene co-expression network analysis and differential expression analysis. Bioengineered 2021; 12:3188-3200. [PMID: 34238116 PMCID: PMC8806787 DOI: 10.1080/21655979.2021.1943986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most fatal malignancy, and despite extensive treatment, tumors inevitably recur. This study aimed to identify recurrence-associated molecules in GBM. The gene expression profile GSE139533, containing 70 primary and 47 recurrent GBM tissues and their corresponding clinical traits, was downloaded from the Gene Expression Omnibus (GEO) database and used for weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis. After identifying the hub genes which differentially expressed in recurrent GBM tissues and in the gene modules correlated with recurrence, data from the Chinese Glioma Genome Atlas (CCGA) and The Cancer Genome Atlas (TCGA) databases were analyzed with GSE43378 to determine the relationship between hub genes and patient prognosis. The diagnostic value of the identified hub genes was verified using 52 GBM tissues. Three gene modules were correlated with recurrence and 2623 genes were clustered in these clinically significant modules. Among these, 13 genes - EHF, TRPM1, FXYD4, CDH15, LHX5, TP73, FBN3, TLX1, C1QL4, COL2A, SEC61G, NEUROD4 and GPR139 - were differentially expressed in recurrent GBM samples; low LHX5 and TLX1 expression predicted poor outcomes. LHX5 and TLX1 expression showed weak positive relationships with Karnofsky performance scale scores. Additionally, LHX5 and TLX1 expression was found to be decreased in our recurrent GBM samples compared with that in primary samples; these genes exhibited high diagnostic value in distinguishing recurrent samples from primary samples. Our findings indicate that LHX5 and TLX1 might be involved in GBM recurrence and act as potential biomarkers for this condition.
Collapse
Affiliation(s)
- Peng Ren
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - JingYa Wang
- Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- Department of Physiology of Basic Medicine College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Li
- Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - XiaoWan Lin
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - GuangHan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - JiaYi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - ZhiRui Zeng
- Department of Physiology of Basic Medicine College, Guizhou Medical University, Guiyang, Guizhou, China
| | - HongMei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Mei E, Wei X, Gao J, Tian X, Li W, Liu L, Qian C. Association of TLX1 gene polymorphisms with the risk of acute lymphoblastic leukemia and B lineage acute lymphoblastic leukemia in Han Chinese children. J Clin Lab Anal 2020; 34:e23414. [PMID: 32488880 PMCID: PMC7521250 DOI: 10.1002/jcla.23414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Studies on gene polymorphism association are centered on childhood acute lymphoblastic leukemia (ALL), a common hematological malignancy in children younger than 16 years. Single‐nucleotide polymorphisms (SNPs) in some genes, such as ARID5B and CDKN2B, are associated with the risk of childhood ALL. T‐cell leukemia homeobox 1 (TLX1), a member of the HOX gene family, was identified based on its abnormal expression in T‐lineage leukemia. This study aimed to determine whether TLX1 is associated with B‐ALL and which SNP plays a significant role in ALL. Methods A total of 217 cases of ALL and 241 controls were included in this study. Six tag SNPs (rs75329544, rs946328, rs12415670, rs2075879, rs17113735, and rs1051723) were selected, and genotyping was carried out on Sequenom MassARRAY platform. Results Rs17113735 was possibly the risk locus associated with increased risk for ALL, whereas rs946328 was possibly associated with decreased risk for ALL. Moreover, rs17113735 was likely to be the risk locus for B‐cell ALL (B‐ALL), and rs2075879 was associated with decreased risk for B‐ALL (P < .05). All SNPs in the two sample types (ALL and B‐ALL samples) demonstrated linkage disequilibrium except between rs75329544 and rs2075879. Haplotype analysis showed no significant difference between the cases and controls in the two sample types. Conclusion TLX1 gene polymorphisms are associated with ALL (rs17113735 and rs946328) and possibly play a significant role in B‐ALL (rs17113735 and rs2075879). This work provides a reference for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Endian Mei
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Xubin Wei
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Jiadong Gao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Xiaolong Tian
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Clinical Laboratory, School of Medicine, Children's Hospital, Zhejiang University, Hangzhou, China
| | - Li Liu
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Cheng Qian
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Jefferson A, Colella S, Moralli D, Wilson N, Yusuf M, Gimelli G, Ragoussis J, Volpi EV. Altered intra-nuclear organisation of heterochromatin and genes in ICF syndrome. PLoS One 2010; 5:e11364. [PMID: 20613881 PMCID: PMC2894064 DOI: 10.1371/journal.pone.0011364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/27/2010] [Indexed: 12/16/2022] Open
Abstract
The ICF syndrome is a rare autosomal recessive disorder, the most common symptoms of which are immunodeficiency, facial anomalies and cytogenetic defects involving decondensation and instability of chromosome 1, 9 and 16 centromeric regions. ICF is also characterised by significant hypomethylation of the classical satellite DNA, the major constituent of the juxtacentromeric heterochromatin. Here we report the first attempt at analysing some of the defining genetic and epigenetic changes of this syndrome from a nuclear architecture perspective. In particular, we have compared in ICF (Type 1 and Type 2) and controls the large-scale organisation of chromosome 1 and 16 juxtacentromeric heterochromatic regions, their intra-nuclear positioning, and co-localisation with five specific genes (BTG2, CNN3, ID3, RGS1, F13A1), on which we have concurrently conducted expression and methylation analysis. Our investigations, carried out by a combination of molecular and cytological techniques, demonstrate the existence of specific and quantifiable differences in the genomic and nuclear organisation of the juxtacentromeric heterochromatin in ICF. DNA hypomethylation, previously reported to correlate with the decondensation of centromeric regions in metaphase described in these patients, appears also to correlate with the heterochromatin spatial configuration in interphase. Finally, our findings on the relative positioning of hypomethylated satellite sequences and abnormally expressed genes suggest a connection between disruption of long-range gene-heterochromatin associations and some of the changes in gene expression in ICF. Beyond its relevance to the ICF syndrome, by addressing fundamental principles of chromosome functional organisation within the cell nucleus, this work aims to contribute to the current debate on the epigenetic impact of nuclear architecture in development and disease.
Collapse
Affiliation(s)
- Andrew Jefferson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stefano Colella
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natalie Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mohammed Yusuf
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G. Gaslini, Genova, Italy
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emanuela V. Volpi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Milech N, Gottardo NG, Ford J, D'Souza D, Greene WK, Kees UR, Watt PM. MEIS proteins as partners of the TLX1/HOX11 oncoprotein. Leuk Res 2009; 34:358-63. [PMID: 19559479 DOI: 10.1016/j.leukres.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/03/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Aberrant expression of the TLX1/HOX11 proto-oncogene is associated with a significant subset of T-cell acute lymphoblastic leukemias (T-ALL). Yet the manner in which TLX1 contributes to oncogenesis is not fully understood. Since, typically, interactions of HOX and TALE homeodomain proteins are determinant of HOX function, and HOX/MEIS co-expression has been shown to accelerate some leukemias, we systematically examined whether TLX1 interacts with MEIS and PBX proteins. Here, we report that TLX1 and MEIS proteins both interact and are co-expressed in T-ALL, and suggest that co-operation between TLX1 and MEIS proteins may have a significant role in T-cell leukemogenesis.
Collapse
Affiliation(s)
- Nadia Milech
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, WA 6008, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Riz I, Lee HJ, Baxter KK, Behnam R, Hawley TS, Hawley RG. Transcriptional activation by TLX1/HOX11 involves Gro/TLE corepressors. Biochem Biophys Res Commun 2009; 380:361-5. [PMID: 19250647 PMCID: PMC2654413 DOI: 10.1016/j.bbrc.2009.01.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/16/2009] [Indexed: 11/25/2022]
Abstract
The role of Groucho/transducin-like Enhancer of split (Gro/TLE) family members as corepressors of transcription is well documented. TLX1 is a homeodomain transcription factor involved in splenogenesis and neuron formation, and its aberrant expression gives rise to T-cell acute lymphoblastic leukemia. We demonstrate by glutathione-S-transferase pull-down assays, in vivo biotinylation tagging and confocal laser microscopy that TLX1 interacts with TLE1 via an Eh1-like motif. Paradoxically, we found that this motif is essential for optimal transcriptional activation of two TLX1 target genes, Aldh1a1 and Fhl1. Using a well characterized target of the Hairy/Enhancer of split 1 (HES1).TLE1 repressor complex, the ASCL1 gene, we show that TLX1 counteraction of ASCL1 repression by HES1 in SK-N-BE(2) neuroblastoma cells is associated with dismissal of TLE1 from the ASCL1 promoter and requires the Eh1-like motif for maximal effect. Collectively, these results indicate that TLX1-mediated target gene activation can occur in part via derepression strategies involving Gro/TLE corepressors.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Hyo Jung Lee
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Kristin K. Baxter
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Reza Behnam
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Robert G. Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| |
Collapse
|
6
|
Dixon DN, Izon DJ, Dagger S, Callow MJ, Taplin RH, Kees UR, Greene WK. TLX1/HOX11 transcription factor inhibits differentiation and promotes a non-haemopoietic phenotype in murine bone marrow cells. Br J Haematol 2007; 138:54-67. [PMID: 17555447 DOI: 10.1111/j.1365-2141.2007.06626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TLX/HOX11 subfamily of divergent homeobox genes are involved in various aspects of embryogenesis and, in the case of TLX1/HOX11 and TLX3/HOX11L2, feature prominently as oncogenes in human T-cell acute lymphoblastic leukaemia. TLX1 possesses immortalising activity in a wide variety of blood cell lineages, however, the effect of this oncogene on haemopoietic cell differentiation has not been fully investigated. We therefore constitutively expressed TLX1 in murine bone marrow or fetal liver cells using retroviral transfer followed by transplantation and/or in vitro culture. TLX1 was found to dramatically alter haemopoiesis, promoting the emergence of a non-haemopoietic CD45(-) CD31(+) cell population while markedly inhibiting erythroid and granulocytic cell differentiation. To identify genetic programs perturbed by TLX1, a comparison of transcript profiles from J2E erythroid cells with and without enforced TLX1 expression was undertaken. This revealed a pattern of gene expression indicative of enhanced proliferation coupled to differentiation arrest. Of the genes identified, two, KIT and VEGFC, were found to be potential TLX1 targets based on transcriptional assays. These results demonstrate that TLX1 can act broadly to impair haemopoiesis and divert differentiation to an alternative fate. This may account for its ability to promote the pre-leukaemic state via perturbation of specific gene expression programs.
Collapse
Affiliation(s)
- Darcelle N Dixon
- School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Riz I, Akimov SS, Eaker SS, Baxter KK, Lee HJ, Mariño-Ramírez L, Landsman D, Hawley TS, Hawley RG. TLX1/HOX11-induced hematopoietic differentiation blockade. Oncogene 2007; 26:4115-23. [PMID: 17213805 PMCID: PMC1955382 DOI: 10.1038/sj.onc.1210185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 02/07/2023]
Abstract
Aberrant expression of the human homeobox-containing proto-oncogene TLX1/HOX11 inhibits hematopoietic differentiation programs in a number of murine model systems. Here, we report the establishment of a murine erythroid progenitor cell line, iEBHX1S-4, developmentally arrested by regulatable TLX1 expression. Extinction of TLX1 expression released the iEBHX1S-4 differentiation block, allowing erythropoietin-dependent acquisition of erythroid markers and hemoglobin synthesis. Coordinated activation of erythroid transcriptional networks integrated by the acetyltransferase co-activator CREB-binding protein (CBP) was suggested by bioinformatic analysis of the upstream regulatory regions of several conditionally induced iEBHX1S-4 gene sets. In accord with this notion, CBP-associated acetylation of GATA-1, an essential regulator of erythroid differentiation, increased concomitantly with TLX1 downregulation. Coimmunoprecipitation experiments and glutathione-S-transferase pull-down assays revealed that TLX1 directly binds to CBP, and confocal laser microscopy demonstrated that the two proteins partially colocalize at intranuclear sites in iEBHX1S-4 cells. Notably, the distribution of CBP in conditionally blocked iEBHX1S-4 cells partially overlapped with chromatin marked by a repressive histone methylation pattern, and downregulation of TLX1 coincided with exit of CBP from these heterochromatic regions. Thus, we propose that TLX1-mediated differentiation arrest may be achieved in part through a mechanism that involves redirection of CBP and/or its sequestration in repressive chromatin domains.
Collapse
Affiliation(s)
- I Riz
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
| | - SS Akimov
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
| | - SS Eaker
- NanoDetection Technology, Knoxville, TN, USA
| | - KK Baxter
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Molecular Medicine Program, The George Washington University Medical Center, Washington, DC, USA
| | - HJ Lee
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Genomics and Bioinformatics Program, The George Washington University Medical Center, Washington, DC, USA
| | - L Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - D Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - TS Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC, USA
| | - RG Hawley
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Molecular Medicine Program, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|