1
|
Song Y, Ren S, Wu S, Liu W, Hu C, Feng S, Chen X, Tu R, Gao F. Glucocorticoid promotes metastasis of colorectal cancer via co-regulation of glucocorticoid receptor and TET2. Int J Cancer 2025; 156:1572-1582. [PMID: 39661335 DOI: 10.1002/ijc.35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Glucocorticoids (GCs), commonly used for anti-inflammatory and cancer treatments, have been linked to the promotion of cancer metastasis. Yet, the molecular mechanisms behind this potential remain poorly understood. Clarifying these mechanisms is crucial for a nuanced understanding and potential refinement of GC therapies in the context of cancer treatment. In HEK293T cells, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation sequencing (ChIP-seq) were used with antibodies of glucocorticoid receptor (GR) and ten-eleven translocation enzymes (TET) family proteins (TET1, TET2, TET3). Drug repositioning was performed through the Connectivity Map database, using common target genes of GR and TET2 in HEK293 and HCT116 cell lines and differentially expressed genes (DEGs) of colorectal cancer (CRC). Cell migration and invasion were tested in CRC cell lines with varying GR expression, that is, HCT116 and HT29 cell lines. Dexamethasone (Dex) treatment resulted in a significant difference in cell migration rates in two CRC cell lines with disparate GR expression levels. Co-IP and ChIP-seq analyses substantiated the interaction between GR and TET family proteins in HEK293T cells. Belinostat, the selected compound, was successfully validated for its potential to counteract the effects of GC-induced invasion in CRC cells in vitro. Transcriptomic analyses of Belinostat-treated HCT116 cells revealed down-regulation of target genes associated with cancer metastasis. This study provides valuable insights into the molecular mechanisms underlying GC-induced metastasis, introducing newly repositioned compounds that could serve as potential adjuvant therapy to GC treatment. Furthermore, it opens avenues for exploring novel drug candidates for CRC treatment.
Collapse
Affiliation(s)
- Yanwei Song
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shumei Wu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siting Feng
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tu
- E-GENE Co., Ltd, Shenzhen, China
| | - Fei Gao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang Y, Li X, Zhou R, Lin A, Cao M, Lyu Q, Luo P, Zhang J. Glycogen Metabolism Predicts the Efficacy of Immunotherapy for Urothelial Carcinoma. Front Pharmacol 2021; 12:723066. [PMID: 34512351 PMCID: PMC8424112 DOI: 10.3389/fphar.2021.723066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Urothelial cancer (UC) is one of the common refractory tumors and chemotherapy is the primary treatment for it. The advent of immune checkpoint inhibitors (ICI) has facilitated the development of treatment strategies for UC patients. To screen out UC patients sensitive to ICI, researchers have proposed that PD-L1, tumor mutation burden and TCGA molecular subtypes can be used as predictors of ICI efficacy. However, the performance of these predictors needs further validation. We need to identify novel biomarkers to screen out UC patients sensitive to ICI. In our study, we collected the data of two clinical cohorts: the ICI cohort and the TCGA cohort. The result of the multivariate Cox regression analysis showed that glycogen metabolism score (GMS) (HR = 1.26, p = 0.017) was the negative predictor of prognosis for UC patients receiving ICI treatment. Low-GMS patients had a higher proportion of patients achieving complete response or partial response to ICI. After the comparison of gene mutation status between high-GMS and low-GMS patients, we identified six genes with significant differences in mutation frequencies, which may provide new directions for potential drug targets. Moreover, we analyzed the immune infiltration status and immune-related genes expression between high-GMS and low-GMS patients. A reduced proportion of tumor-associated fibroblasts and elevated proportion of CD8+ T cells can be observed in low-GMS patients while several immunosuppressive molecules were elevated in the high-GMS patients. Using the sequencing data of the GSE164042 dataset, we also found that myeloid-derived suppressor cell and neutrophil related signature scores were lower in α-glucosidase knockout bladder carcinoma cells when compared to the control group. In addition, angiogenesis, classic carcinogenic pathways, immunosuppressive cells related pathways and immunosuppressive cytokine secretion were mainly enriched in high-GMS patients and cell samples from the control group. Finally, we suspected that the combination treatment of ICI and histone deacetylase inhibitors may achieve better clinical responses in UC patients based on the analysis of drug sensitivity data. In conclusion, our study revealed the predictive value of GMS for ICI efficacy of UC patients, providing a novel perspective for the exploration of new drug targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuechun Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Fox CR, Parks GD. Histone Deacetylase Inhibitors Enhance Cell Killing and Block Interferon-Beta Synthesis Elicited by Infection with an Oncolytic Parainfluenza Virus. Viruses 2019; 11:E431. [PMID: 31083335 PMCID: PMC6563284 DOI: 10.3390/v11050431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Previous results have shown that infection with the cytoplasmic-replicating parainfluenza virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in lung cancer cells that were engineered to express a protein which sequesters double stranded RNA. Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses - the La Crosse virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus through a population of cancer cells, and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together, these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI- mutant along with chemotherapeutic agents.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
4
|
Lehmann SG, Seve M, Vanwonterghem L, Michelland S, Cunin V, Coll JL, Hurbin A, Bourgoin-Voillard S. A large scale proteome analysis of the gefitinib primary resistance overcome by KDAC inhibition in KRAS mutated adenocarcinoma cells overexpressing amphiregulin. J Proteomics 2019; 195:114-124. [PMID: 30660770 DOI: 10.1016/j.jprot.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
KDAC inhibitors (KDACi) overcome gefitinib primary resistance in non-small cell lung cancer (NSCLC) including mutant-KRAS lung adenocarcinoma. To identify which proteins are involved in the restoration of this sensitivity and to provide new therapeutic targets for mutant-KRAS lung adenocarcinoma, we performed an iTRAQ quantitative proteomic analysis after subcellular fractionation of H358-NSCLC treated with gefitinib and KDACi (TSA/NAM) versus gefitinib alone. The 86 proteins found to have been significantly dysregulated between the two conditions, were mainly involved in cellular metabolism and cell transcription processes. As expected, the pathway related to histone modifications was affected by the KDACi. Pathways known for controlling tumor development and (chemo)-resistance (miRNA biogenesis/glutathione metabolism) were affected by the KDACi/gefitinib treatment. Moreover, 57 dysregulated proteins were upstream of apoptosis (such as eEF1A2 and STAT1) and hence provide potential therapeutic targets. The inhibition by siRNA of eEF1A2 expression resulted in a slight decrease in H358-NSCLC viability. In addition, eEF1A2 and STAT1 siRNA transfections suggested that both STAT1 and eEF1A2 prevent AKT phosphorylation known for enhancing gefitinib resistance in NSCLC. Therefore, altogether our data provide new insights into proteome regulations in the context of overcoming the NSCLC resistance to gefitinib through KDACi in H358 KRAS mutated and amphiregulin-overexpressing NSCLC cells.
Collapse
Affiliation(s)
- Sylvia G Lehmann
- Univ. Grenoble Alpes, LBFA and BEeSy, PROMETHEE Proteomic Platform, Grenoble, France; Inserm, U1055, PROMETHEE Proteomic Platform, Grenoble, France; CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France; Univ. Grenoble Alpes, ISTerre, F-38000 Grenoble, France
| | - Michel Seve
- Univ. Grenoble Alpes, LBFA and BEeSy, PROMETHEE Proteomic Platform, Grenoble, France; Inserm, U1055, PROMETHEE Proteomic Platform, Grenoble, France; CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France
| | - Laetitia Vanwonterghem
- Cancer target and experimental therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5301, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Sylvie Michelland
- Univ. Grenoble Alpes, LBFA and BEeSy, PROMETHEE Proteomic Platform, Grenoble, France; Inserm, U1055, PROMETHEE Proteomic Platform, Grenoble, France; CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France
| | - Valérie Cunin
- Univ. Grenoble Alpes, LBFA and BEeSy, PROMETHEE Proteomic Platform, Grenoble, France; Inserm, U1055, PROMETHEE Proteomic Platform, Grenoble, France; CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France
| | - Jean-Luc Coll
- Cancer target and experimental therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5301, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Amandine Hurbin
- Cancer target and experimental therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5301, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Sandrine Bourgoin-Voillard
- Univ. Grenoble Alpes, LBFA and BEeSy, PROMETHEE Proteomic Platform, Grenoble, France; Inserm, U1055, PROMETHEE Proteomic Platform, Grenoble, France; CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, Grenoble, France.
| |
Collapse
|
5
|
Noack K, Mahendrarajah N, Hennig D, Schmidt L, Grebien F, Hildebrand D, Christmann M, Kaina B, Sellmer A, Mahboobi S, Kubatzky K, Heinzel T, Krämer OH. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Arch Toxicol 2016; 91:2191-2208. [PMID: 27807597 DOI: 10.1007/s00204-016-1878-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.
Collapse
Affiliation(s)
- Katrin Noack
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Dorle Hennig
- Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Katharina Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
6
|
HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8797206. [PMID: 27556043 PMCID: PMC4983322 DOI: 10.1155/2016/8797206] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments.
Collapse
|
7
|
Abstract
Adult T-cell Leukemia (ATL) is an aggressive malignant disease of CD4+ T-cells associated with human T-cell leukemia virus type I (HTLV-I). Prognosis of ATL patients is directly correlated to the subtype of ATL. Treatment of the aggressive forms (acute and lymphoma types) of ATL remains inadequate, as most ATL patients receive conventional chemotherapy without stem cell rescue. At present, LSG15 is the standard chemotherapy for the treatment of aggressive ATL, but the efficacy of LSG15 in most patients is transient. To prolong median survival time, additional therapies for maintenance of complete response (CR) are needed after achieving CR by induction chemotherapy. Improved outcome after allogeneic stem cell transplantation (allo-SCT), despite a high incidence of graft-versus-host disease, has been reported. Thus, allogeneic bone marrow transplantation and allogeneic peripheral blood SCT may have great potential for eradication of HTLV-1 and cure of ATL. Recently, reduced-intensity conditioning stem cell transplantation was also reported to be effective for ATL. Although several issues, including selection criteria for patients and sources of stem cells remain to be resolved, allo-SCT may be considered as a treatment option for patients with aggressive ATL. To evaluate whether allo-SCT is more effective than the standard chemotherapy (LSG15) for aggressive ATL, an up front phase II clinical trial of JCOG-LSG is now being planned. Novel innovative targeted strategies, such as antiretroviral therapy, arsenic trioxide, nuclear factor-kappaB inhibitors, proteasome inhibitors, histone deacetylase inhibitors, several monoclonal antibodies including anti-CC chemokine receptor 4, anti-folate, purine nucleotide phosphorylase inhibitor, mTOR (mammalian target of rapamycin) inhibitor, bendamustine, small molecule Bcl-2 inhibitors and Tax-targeted immunotherapy, should be promptly studied in order to develop curative treatments for ATL in the near future.
Collapse
Affiliation(s)
- Kimiru Uozumi
- Department of Hematology and Immunology, Kagoshima University Hospital.
| |
Collapse
|
8
|
Itoh Y, Suzuki T. Molecular Technology for Controlling Epigenetics: Regulation of Histone Acetylation and Methylation by Small Molecules. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
9
|
Fadeyi OO, Mousseau JJ, Feng Y, Allais C, Nuhant P, Chen MZ, Pierce B, Robinson R. Visible-Light-Driven Photocatalytic Initiation of Radical Thiol–Ene Reactions Using Bismuth Oxide. Org Lett 2015; 17:5756-9. [DOI: 10.1021/acs.orglett.5b03184] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olugbeminiyi O. Fadeyi
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James J. Mousseau
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiqing Feng
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christophe Allais
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Philippe Nuhant
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ming Z. Chen
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Betsy Pierce
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ralph Robinson
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
10
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-336. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Sekizawa H, Amaike K, Itoh Y, Suzuki T, Itami K, Yamaguchi J. Late-Stage C-H Coupling Enables Rapid Identification of HDAC Inhibitors: Synthesis and Evaluation of NCH-31 Analogues. ACS Med Chem Lett 2014; 5:582-6. [PMID: 24900884 DOI: 10.1021/ml500024s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022] Open
Abstract
We previously reported the discovery of NCH-31, a potent histone deacetylase (HDAC) inhibitor. By utilizing our C-H coupling reaction, we rapidly synthesized 16 analogues (IYS-1 through IYS-15 and IYS-Me) of NCH-31 with different aryl groups at the C4-position of 2-aminothiazole core of NCH-31. Subsequent biological testing of these derivatives revealed that 3-fluorophenyl (IYS-10) and 4-fluorophenyl (IYS-15) derivatives act as potent pan-HDAC inhibitor. Additionally, 4-methylphenyl (IYS-1) and 3-fluoro-4-methylphenyl (IYS-14) derivatives acted as HDAC6-insensitive inhibitors. The present work clearly shows the power of the late-stage C-H coupling approach to rapidly identify novel and highly active/selective biofunctional molecules.
Collapse
Affiliation(s)
- Hiromi Sekizawa
- Institute
of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of
Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kazuma Amaike
- Institute
of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of
Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-Cho, Kita-ku, Kyoto 603-8334, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-Cho, Kita-ku, Kyoto 603-8334, Japan
- JST, PRESTO, 4-1-8 Honcho
Kawaguchi, Saitama 332-0012, Japan
| | - Kenichiro Itami
- Institute
of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of
Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon
Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Junichiro Yamaguchi
- Institute
of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of
Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
12
|
Imai K, Kamio N, Cueno ME, Saito Y, Inoue H, Saito I, Ochiai K. Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells. FEBS J 2014; 281:2148-58. [PMID: 24588869 DOI: 10.1111/febs.12768] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/12/2014] [Accepted: 02/26/2014] [Indexed: 12/27/2022]
Abstract
The ability of Epstein-Barr Virus (EBV) to establish latent infection is associated with infectious mononucleosis and a number of malignancies. In EBV, the product of the BZLF1 gene (ZEBRA) acts as a master regulator of the transition from latency to the lytic replication cycle in latently infected cells. EBV latency is primarily maintained by hypoacetylation of histone proteins in the BZLF1 promoter by histone deacetylases. Although histone methylation is involved in the organization of chromatin domains and has a central epigenetic role in gene expression, its role in maintaining EBV latency is not well understood. Here we present evidence that the histone H3 lysine 9 (H3K9) methyltransferase suppressor of variegation 3-9 homolog 1 (Suv39 h1) transcriptionally represses BZLF1 in B95-8 cells by promoting repressive trimethylation at H3K9 (H3K9me3). Suv39 h1 significantly inhibited basal expression and ZEBRA-induced BZLF1 gene expression in B95-8 B cells. However, mutant Suv39 h1 lacks the SET domain responsible for catalytic activity of histone methyl transferase and thus had no such effect. BZLF1 transcription was augmented when Suv39 h1 expression was knocked down by siRNA in B95-8 cells, but not in Akata or Raji cells. In addition, treatment with a specific Suv39 h1 inhibitor, chaetocin, significantly enhanced BZLF1 transcription. Furthermore, chromatin immunoprecipitation assays revealed the presence of Suv39 h1 and H3K9me3 on nucleosome histones near the BZLF1 promoter. Taken together, these results suggest that Suv39 h1-H3K9me3 epigenetic repression is involved in BZLF1 transcriptional silencing, providing a molecular basis for understanding the mechanism by which EBV latency is maintained.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Uehara TN, Yamaguchi J, Itami K. Palladium-Catalyzed CH and CN Arylation of Aminothiazoles with Arylboronic Acids. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Abstract
Histone deacetylase inhibitors (HDACis) increase gene expression through induction of histone acetylation. However, it remains unclear whether specific gene expression changes determine the apoptotic response following HDACis administration. Herein, we discuss evidence that HDACis trigger in cancer and leukemia cells not only widespread histone acetylation but also actual increases in reactive oxygen species (ROS) and DNA damage that are further increased following treatment with DNA-damaging chemotherapies. While the origins of ROS production are not completely understood, mechanisms, including inflammation and altered antioxidant signaling, have been reported. While the generation of ROS is an explanation, at least in part, for the source of DNA damage observed with HDACi treatment, DNA damage can also be independently induced by changes in the DNA repair activity and chromatin remodeling factors. Recent development of sirtuin inhibitors (SIRTis) has shown that, similar to HDACis, these drugs induce increases in ROS and DNA damage used singly, or in combination with HDACis and other drugs. Thus, induction of apoptosis by HDACis/SIRTis may result through oxidative stress and DNA damage mechanisms in addition to direct activation of apoptosis-inducing genes. Nevertheless, while DNA damage and stress responses could be of interest as markers for clinical responses, they have yet to be validated as markers for responses to HDACi treatment in clinical trials, alone, and in combination.
Collapse
Affiliation(s)
- Carine Robert
- Department of Radiation Oncology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 2013; 116:165-97. [PMID: 23088871 DOI: 10.1016/b978-0-12-394387-3.00005-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that impede the growth and/or survival of tumor cells. Depending on the physiological context, HDACi can induce apoptosis via two well-defined apoptotic pathways; the intrinsic/mitochondrial pathway and the death receptor (DR)/extrinsic pathway. A number of groups have demonstrated that overexpression of prosurvival Bcl-2 family members significantly reduces HDACi-mediated tumor cell death and therapeutic efficacy in preclinical models. In many cases, HDACi activate the intrinsic pathway via upregulation of a number of proapoptotic BH3-only Bcl-2 family genes including Bim, Bid, and Bmf. Additionally, HDACi can engage the extrinsic pathway through upregulation of DR expression, reductions in c-FLIP, and upregulation of ligands such as TRAIL. Overall, it appears that activation of the intrinsic apoptotic pathway is the predominant mechanism of HDACi-induced tumor cell death; however, the DR pathway may also be engaged, either to amplify the apoptotic signal through the intrinsic pathway or to directly induce cell death.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Cancer Therapeutics Program, Gene Regulation Laboratory, The Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | | | | |
Collapse
|
16
|
Al-Yacoub N, Fecker LF, Möbs M, Plötz M, Braun FK, Sterry W, Eberle J. Apoptosis induction by SAHA in cutaneous T-cell lymphoma cells is related to downregulation of c-FLIP and enhanced TRAIL signaling. J Invest Dermatol 2012; 132:2263-74. [PMID: 22551975 DOI: 10.1038/jid.2012.125] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been approved for the treatment of cutaneous T-cell lymphoma (CTCL), but its mode of action remained largely elusive. As shown here in four CTCL cell lines, loss of cell viability correlated with significant time- and dose-dependent induction of apoptosis, whereas cytotoxicity was less pronounced. Both extrinsic and intrinsic apoptosis pathways were activated, as seen by processing of initiator caspases 8 and 9, loss of mitochondrial membrane potential, and cytochrome c release. Characteristically, antiapoptotic mediators such as Mcl-1, XIAP, survivin, and c-FLIP were downregulated. Consistent with its critical function, c-FLIP overexpression resulted in a significant decrease of SAHA-mediated apoptosis. Enhanced sensitivity to TRAIL (TNF-related apoptosis-inducing ligand) and enhanced TRAIL signaling was seen in CTCL cell lines with high sensitivity, whereas cell lines with moderate response were characterized by downregulation of TRAIL-R2 and weaker TRAIL expression. Comparable proapoptotic responses to SAHA and to the combination with TRAIL were seen in ex vivo tumor T cells of CTCL patients. Thus, activation of extrinsic apoptosis pathways, related to c-FLIP downregulation and enhanced TRAIL signaling, appeared as characteristic for CTCL cell responsiveness to SAHA. An improved understanding of the pathways may facilitate its targeted use and the selection of suitable combinations.
Collapse
Affiliation(s)
- Nadya Al-Yacoub
- Department of Dermatology and Allergy, Skin Cancer Center Charité (HTCC), Charité-University Medical Center Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Bianchi L, Bruzzese F, Leone A, Gagliardi A, Puglia M, Di Gennaro E, Rocco M, Gimigliano A, Pucci B, Armini A, Bini L, Budillon A. Proteomic analysis identifies differentially expressed proteins after HDAC vorinostat and EGFR inhibitor gefitinib treatments in Hep-2 cancer cells. Proteomics 2012; 11:3725-42. [PMID: 21761561 DOI: 10.1002/pmic.201100092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several solid tumors are characterized by poor prognosis and few effective treatment options, other than palliative chemotherapy in the recurrent/metastatic setting. Epidermal growth factor receptor (EGFR) has been considered an important anticancer target because it is involved in the development and progression of several solid tumors; however, only a subset of patients show a clinically meaningful response to EGFR inhibition, particularly to EGFR tyrosine kinase inhibitors such as gefitinib. We have recently demonstrated synergistic antitumor effect of the histone deacetylase inhibitor vorinostat combined with gefitinib. To further characterize the interaction between these two agents, cellular extracts from Hep-2 cancer cells that were untreated or treated for 24 h with either vorinostat or gefitinib alone or with a vorinostat/gefitinib combination were analyzed using 2-D DIGE. Software analysis using DeCyder was performed, and numerous differentially expressed protein spots were visualized between the four examined settings. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified; some of these were validated by Western blotting. Finally, a pathway analysis of experimental data performed using MetaCore highlighted a relevant relationship between the identified proteins and additional potential effectors. In conclusion, we performed a comprehensive analysis of proteins regulated by vorinostat and gefitinib, alone and in combination, providing a useful insight into their mechanisms of action as well as their synergistic interaction.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujii K, Suzuki N, Ikeda K, Hamada T, Yamamoto T, Kondo T, Iwatsuki K. Proteomic study identified HSP 70 kDa protein 1A as a possible therapeutic target, in combination with histone deacetylase inhibitors, for lymphoid neoplasms. J Proteomics 2011; 75:1401-10. [PMID: 22123078 DOI: 10.1016/j.jprot.2011.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/07/2023]
Abstract
Histone deacetylase inhibitors (HDACi) demonstrate possible anticancer activities in various malignancies including lymphoid neoplasms. However, the anticancer effects of HDACi are often limited, and combination therapy with other drugs has been undertaken to improve the outcome of patients. Here we conducted proteomic investigation of 33 lymphoid cell lines to identify novel therapeutic targets for enhancing the effects of HDACi. Using the proteomic data in our published 2D-DIGE database, we examined the proteins associated with resistance to valproic acid (VPA). The lymphoid neoplasm cell lines in the database were grouped according to their sensitivity to VPA treatment. A comparative proteomic study of the cell line groups resulted in the identification of 10 protein spots, whose intensity was associated with chemosensitivity. Among the identified proteins, HSPA1A showed higher expression in cell lines with resistance to VPA, and the results were validated by Western blotting. In vitro experiments demonstrated that treatment with KNK-437, an inhibitor of HSPA1A, enhanced the cytotoxic effects of VPA, as well as vorinostat, in the lymphoid neoplasm cell line. Treatment with KNK-437 facilitated the apoptotic effects of VPA. In conclusion, we identified HSPA1A as a possible therapeutic target, in combination with HDACi, for lymphoid neoplasms.
Collapse
Affiliation(s)
- Kazuyasu Fujii
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry Pharmaceutical Sciences,Okayama 700-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a "direct acting" compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin-yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - David E. Williams
- Linus Pauling Institute and Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute and Department of Nutrition & Exercise Sciences, Oregon State University, Corvallis, OR, USA
| | - Roderick H. Dashwood
- Linus Pauling Institute and Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
20
|
Victoriano AFB, Imai K, Togami H, Ueno T, Asamitsu K, Suzuki T, Miyata N, Ochiai K, Okamoto T. Novel histone deacetylase inhibitor NCH-51 activates latent HIV-1 gene expression. FEBS Lett 2011; 585:1103-11. [DOI: 10.1016/j.febslet.2011.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/24/2011] [Accepted: 03/07/2011] [Indexed: 12/20/2022]
|
21
|
Watanabe T. Investigational histone deacetylase inhibitors for non-Hodgkin lymphomas. Expert Opin Investig Drugs 2011; 19:1113-27. [PMID: 20649502 DOI: 10.1517/13543784.2010.504710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Histone deacetylase inhibitors (HDIs) have been shown effective as single agents for cutaneous T-cell lymphomas, peripheral T-cell lymphomas, and B-cell lymphomas, such as follicular lymphoma and mantle cell lymphoma. Of interest, HDIs in combination with other drugs can be a treatment for Epstein-Barr virus-associated lymphoproliferative disorders. Our data of gene expression profiles in PBMCs of responders to vorinostat was discussed. AREAS COVERED IN THIS REVIEW This review summarizes recent clinical trials of HDIs in non-Hodgkin lymphomas, the effects of HDIs in in vitro and mouse models, and the possibility of future combination treatments. WHAT THE READER WILL GAIN The HDI dosing schedule is crucial to optimize outcomes and avoid irreversible adverse effects. Responses to HDIs are slow, highlighting the need to continue treatment until the maximum response is achieved. HDIs cause hyperacetylation of histone and nonhistone proteins, resulting in various effects on neoplastic cells and immune responses in their microenvironment. TAKE HOME MESSAGE Even though HDIs are not potent as single agents, they are likely to provide promising therapeutic options when combined with other agents, i.e., BCL2/BCL-XL antagonists and proteasome inhibitors. Future studies should seek to identify biomarkers that predict patient responses to HDIs.
Collapse
Affiliation(s)
- Takashi Watanabe
- National Cancer Center Hospital, Hematology Division, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
22
|
Dickinson M, Johnstone RW, Prince HM. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28 Suppl 1:S3-20. [PMID: 21161327 PMCID: PMC3003794 DOI: 10.1007/s10637-010-9596-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
The histone deacetylase inhibitors (HDACi) have demonstrated anticancer efficacy across a range of malignancies, most impressively in the hematological cancers. It is uncertain whether this clinical efficacy is attributable predominantly to their ability to induce apoptosis and differentiation in the cancer cell, or to their ability to prime the cell to other pro-death stimuli such as those from the immune system. HDACi-induced apoptosis occurs through altered expression of genes encoding proteins in both intrinsic and extrinsic apoptotic pathways; through effects on the proteasome/aggresome systems; through the production of reactive oxygen species, possibly by directly inducing DNA damage; and through alterations in the tumor microenvironment. In addition HDACi increase the immunogenicity of tumor cells and modulate cytokine signaling and potentially T-cell polarization in ways that may contribute the anti-cancer effect in vivo. Here, we provide an overview of current thinking on the mechanisms of HDACi activity, with attention given to the hematological malignancies as well as scientific observations arising from the clinical trials. We also focus on the immune effects of these agents.
Collapse
Affiliation(s)
- Michael Dickinson
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| | - Ricky W. Johnstone
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| | - H. Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne, VIC 3002 Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Darvas K, Rosenberger S, Brenner D, Fritsch C, Gmelin N, Krammer PH, Rösl F. Histone deacetylase inhibitor-induced sensitization to TNFalpha/TRAIL-mediated apoptosis in cervical carcinoma cells is dependent on HPV oncogene expression. Int J Cancer 2010; 127:1384-92. [PMID: 20087862 DOI: 10.1002/ijc.25170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Histone-deacetylase (HDAC) inhibitors (HDACi) can block proliferation and induce intrinsic apoptosis in human papillomavirus (HPV)-positive cervical carcinoma cells, independently of copy number and integration locus of the viral DNA. Using HPV18-positive HeLa cells as model systems, we provide evidence that HDAC inhibition leads to transcriptional suppression of c-FLIP, which negatively regulates extrinsic apoptosis by preventing the recruitment of caspase-8 to the death-inducing signaling complex. Consequently, HDACi pretreatment renders cervical cancer cells sensitive to TNFalpha and TRAIL-induced apoptosis. Already 5-hr incubation with TNFalpha or TRAIL was sufficient to eradicate more than 40% of pretreated cells, which are normally completely refractory against respective death-ligands alone even under long-term incubation. Ectopic expression of either short or long splicing variant of c-FLIP, c-FLIP(s) and c-FLIP(L), abrogates sensitization. Notably, combined HDACi/death ligand treatment did not result in eradication of HPV-negative cells, despite the fact that both c-FLIP isoforms were also downregulated. However, knocking down HPV18 E6/E7 transcription by siRNA prevents HDACi/death-ligand mediated apoptosis, indicating that continued viral oncogene expression favors sensitization. Here, the viral oncoprotein E7 seems to play a functional role, since only HPV16 E7-immortalized human keratinocytes underwent significant apoptosis on HDACi/TNFalpha treatment, whereas keratinocytes expressing only HPV16 E6 or primary keratinocytes were refractory under the same experimental conditions. Taken together, HDACi can be considered as an alternative therapeutic option in the treatment of premalignant and malignant lesions.
Collapse
Affiliation(s)
- Katalin Darvas
- Infektionen und Krebs, Deutsches Krebsforschungszentrum, Abteilung Virale Transformationsmechanismen, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Ellis L, Pili R. Histone Deacetylase Inhibitors: Advancing Therapeutic Strategies in Hematological and Solid Malignancies. Pharmaceuticals (Basel) 2010; 3:2411-2469. [PMID: 21151768 PMCID: PMC3000686 DOI: 10.3390/ph3082441] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 12/13/2022] Open
Abstract
Advancement in the understanding of cancer development in recent years has identified epigenetic abnormalities as a common factor in both tumorigenesis and refractory disease. One such event is the dysregulation of histone deacetylases (HDACs) in both hematological and solid tumors, and has consequently resulted in the development of HDAC inhibitors (HDACI) to overcome this. HDACI exhibit pleiotropic biological effects including inhibition of angiogenesis and the induction of autophagy and apoptosis. Although HDACI exhibit modest results as single agents in preclinical and clinical data, they often fall short, and therefore HDACI are most promising in combinational strategies with either standard treatments or with other experimental chemotherapies and targeted therapies. This review will discuss the induction of autophagy and apoptosis and the inhibition of angiogenesis by HDACI, and also pre-clinical and clinical combination strategies using these agents.
Collapse
Affiliation(s)
- Leigh Ellis
- Roswell Park Cancer Institute, Genitourinary Program, Grace Cancer Drug Center, Buffalo, NY 14263, USA;
| | | |
Collapse
|
25
|
Kauh J, Fan S, Xia M, Yue P, Yang L, Khuri FR, Sun SY. c-FLIP degradation mediates sensitization of pancreatic cancer cells to TRAIL-induced apoptosis by the histone deacetylase inhibitor LBH589. PLoS One 2010; 5:e10376. [PMID: 20442774 PMCID: PMC2860986 DOI: 10.1371/journal.pone.0010376] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022] Open
Abstract
Great efforts have been made to develop novel and efficacious therapeutics against pancreatic cancer to improve the treatment outcomes. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) is such a therapeutic cytokine with selective killing effect toward malignant cells. However, some human pancreatic cancers are intrinsically resistant to TRAIL-mediated apoptosis or therapy. In this study, we have shown that the histone deacetylase inhibitor LBH589 can synergize with TRAIL to augment apoptosis even in TRAIL-resistant cells. LBH589 decreased c-FLIP levels in every tested cell line and survivin levels in some of the tested cell lines. Enforced expression of ectopic c-FLIP, but not survivin, abolished the cooperative induction of apoptosis by the combination of LBH589 and TRAIL, indicating that c-FLIP downregulation plays a critical role in LBH589 sensitization of pancreatic cancer cells to TRAIL. Moreover, LBH589 decreased c-FLIP stability and the presence of the proteasome inhibitor MG132 prevented c-FLIP from reduction by LBH589. Correspondingly, we detected increased levels of ubiqutinated c-FLIP in LBH589-treated cells. These data thus indicate that LBH589 promotes ubiqutin/proteasome-mediated degradation of c-FLIP, leading to downregulation of c-FLIP. Collectively, LBH589 induces c-FLIP degradation and accordingly sensitizes pancreatic cancer cells to TRAIL-induced apoptosis, highlighting a novel therapeutic regimen against pancreatic cancer.
Collapse
Affiliation(s)
- John Kauh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Songqing Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Mingjing Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Fadlo R. Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| |
Collapse
|
26
|
Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S, Neuberg D, Protopopov A, Winter SS, Larson RS, Borowitz MJ, Silverman LB, Chin L, Hunger SP, Jamieson C, Sallan SE, Look AT. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 2010; 115:2845-2851. [PMID: 20124220 PMCID: PMC2854430 DOI: 10.1182/blood-2009-07-234377] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/03/2010] [Indexed: 12/16/2022] Open
Abstract
To further unravel the molecular pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL), we performed high-resolution array comparative genomic hybridization on diagnostic specimens from 47 children with T-ALL and identified monoallelic or biallelic LEF1 microdeletions in 11% (5 of 47) of these primary samples. An additional 7% (3 of 44) of the cases harbored nonsynonymous sequence alterations of LEF1, 2 of which produced premature stop codons. Gene expression microarrays showed increased expression of MYC and MYC targets in cases with LEF1 inactivation, as well as differentiation arrest at an early cortical stage of thymocyte development characterized by expression of CD1B, CD1E, and CD8, with absent CD34 expression. LEF1 inactivation was associated with a younger age at the time of T-ALL diagnosis, as well as activating NOTCH1 mutations, biallelic INK4a/ARF deletions, and PTEN loss-of-function mutations or activating mutations of PI3K or AKT genes. These cases generally lacked overexpression of the TAL1, HOX11, HOX11L2, or the HOXA cluster genes, which have been used to define separate molecular pathways leading to T-ALL. Our findings suggest that LEF1 inactivation is an important step in the molecular pathogenesis of T-ALL in a subset of young children.
Collapse
Affiliation(s)
- Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
He R, Chen Y, Chen Y, Ougolkov AV, Zhang JS, Savoy DN, Billadeau DD, Kozikowski AP. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem 2010; 53:1347-56. [PMID: 20055418 PMCID: PMC2919064 DOI: 10.1021/jm901667k] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our triazole-based histone deacetylase inhibitor (HDACI), octanedioic acid hydroxyamide[3-(1-phenyl-1H-[1,2,3]triazol-4-yl)phenyl]amide (4a), suppresses pancreatic cancer cell growth in vitro with the lowest IC(50) value of 20 nM against MiaPaca-2 cell. In this study, we continued our efforts to develop triazol-4-ylphenyl bearing hydroxamate analogues by embellishing the terminal phenyl ring of 4a with different substituents. The isoform inhibitory profile of these hydroxamate analogues was similar to those of 4a. All of these triazol-4-ylphenyl bearing hydroxamates are pan-HDACIs like SAHA. Moreover, compounds 4h and 11a were found to be very effective inhibitors of cancer cell growth in the HupT3 (IC(50) = 50 nM) and MiaPaca-2 (IC(50) = 40 nM) cancer cell lines, respectively. Compound 4a was found to reactivate the expression of CDK inhibitor proteins and to suppress pancreatic cancer cell growth in vivo. Taken together, these data further support the value of the triazol-4-ylphenyl bearing hydroxamates in identifying potential pancreatic cancer therapies.
Collapse
Affiliation(s)
- Rong He
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yufeng Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yihua Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Andrei V. Ougolkov
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Jin-San Zhang
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Doris N. Savoy
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| |
Collapse
|
28
|
Wood TE, Dalili S, Simpson CD, Sukhai MA, Hurren R, Anyiwe K, Mao X, Suarez Saiz F, Gronda M, Eberhard Y, MacLean N, Ketela T, Reed JC, Moffat J, Minden MD, Batey RA, Schimmer AD. Selective Inhibition of Histone Deacetylases Sensitizes Malignant Cells to Death Receptor Ligands. Mol Cancer Ther 2010; 9:246-56. [DOI: 10.1158/1535-7163.mct-09-0495] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2009; 115:1735-45. [PMID: 20007543 DOI: 10.1182/blood-2009-07-235143] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify dysregulated pathways in distinct phases of NOTCH1-mediated T-cell leukemogenesis, as well as small-molecule inhibitors that could synergize with or substitute for gamma-secretase inhibitors (GSIs) in T-cell acute lymphoblastic leukemia (T-ALL) therapy, we compared gene expression profiles in a Notch1-induced mouse model of T-ALL with those in human T-ALL. The overall patterns of NOTCH1-mediated gene expression in human and mouse T-ALLs were remarkably similar, as defined early in transformation in the mouse by the regulation of MYC and its target genes and activation of nuclear factor-kappaB and PI3K/AKT pathways. Later events in murine Notch1-mediated leukemogenesis included down-regulation of genes encoding tumor suppressors and negative cell cycle regulators. Gene set enrichment analysis and connectivity map algorithm predicted that small-molecule inhibitors, including heat-shock protein 90, histone deacetylase, PI3K/AKT, and proteasome inhibitors, could reverse the gene expression changes induced by NOTCH1. When tested in vitro, histone deacetylase, PI3K and proteasome inhibitors synergized with GSI in suppressing T-ALL cell growth in GSI-sensitive cells. Interestingly, alvespimycin, a potent inhibitor of the heat-shock protein 90 molecular chaperone, markedly inhibited the growth of both GSI-sensitive and -resistant T-ALL cells, suggesting that its loss disrupts signal transduction pathways crucial for the growth and survival of T-ALL cells.
Collapse
|
30
|
Chen Y, He R, Chen Y, D'Annibale M, Langley B, Kozikowski A. Studies of Benzamide- and Thiol-Based Histone Deacetylase Inhibitors in Models of Oxidative-Stress-Induced Neuronal Death: Identification of Some HDAC3-Selective Inhibitors. ChemMedChem 2009; 4:842-52. [DOI: 10.1002/cmdc.200800461] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A, Ding J, Kusumoto S, Komatsu H, Utsunomiya A, Ueda R. Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci 2009; 100:341-8. [PMID: 19068089 PMCID: PMC11158742 DOI: 10.1111/j.1349-7006.2008.01038.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bortezomib, a proteasome inhibitor that was originally developed as an inhibitor of nuclear factor-κB pathways, is currently used for the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL). The mechanisms of action of this antitumor agent have been studied by several investigators. Here, we explore the underlying mechanisms of bortezomib-induced apoptosis in cutaneous T-cell lymphoma (CTCL) and adult T-cell leukemia/lymphoma (ATLL) at the level of mitochondrial membrane injury. In all cell lines including (KMS-12-PE [MM], HUT78 [CTCL], ATN1 [ATLL], and MT4 [ATLL]), antiapoptotic factors such as c-Flip and XIAP were downregulated after exposure to bortezomib, probably via inhibition of nuclear factor-κB signaling. In addition, among the members of the BH3-only family, upregulation of Noxa was consistently seen at both the transcriptional and protein levels in a p53-independent manner after exposure to bortezomib. Repression of Noxa by small interfering RNA partially rescued CTCL and ATLL cells from bortezomib-induced apoptosis. Immunoprecipitation assays indicated time-dependent binding of Noxa and Mcl-1 in all cell types, suggesting that functional repression of Mcl-1 led to the loss of mitochondrial outer membrane potential. Similar results were also obtained in primary tumor cells from patients with ATLL. Taken together, we conclude that bortezomib-induced apoptosis in ATLL and CTCL cells at least partly depends on the upregulation of Noxa and functional repression of Mcl-1, as is also the case in MM and malignant melanoma.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Boronic Acids/pharmacology
- Bortezomib
- Cell Proliferation/drug effects
- Humans
- Immunoprecipitation
- Leukemia-Lymphoma, Adult T-Cell
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Membrane Potential, Mitochondrial/drug effects
- Myeloid Cell Leukemia Sequence 1 Protein
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Masaki Ri
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suzuki T. Explorative Study on Isoform-Selective Histone Deacetylase Inhibitors. Chem Pharm Bull (Tokyo) 2009; 57:897-906. [DOI: 10.1248/cpb.57.897] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
33
|
Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TVT, Hong HHL, Belinsky S, Devereux TR, Sills RC, Lahousse SA. Gene Expression Studies Demonstrate that the K-ras/Erk MAP Kinase Signal Transduction Pathway and Other Novel Pathways Contribute to the Pathogenesis of Cumene-induced Lung Tumors. Toxicol Pathol 2008; 36:743-52. [DOI: 10.1177/0192623308320801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K- ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K- ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K- ras mutations compared to tumors without K- ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K- ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K- ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K- ras, which results in increased Erk MAP kinase signaling and modification of histones.
Collapse
Affiliation(s)
- Nobuko Wakamatsu
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Mathewos Tessema
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Natasha P. Clayton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Thai-Vu T. Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hue-Hua L. Hong
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Steven Belinsky
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Theodora R. Devereux
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie A. Lahousse
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
34
|
Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C. Histone deacetylase inhibitors and genomic instability. Cancer Lett 2008; 274:169-76. [PMID: 18635312 DOI: 10.1016/j.canlet.2008.06.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/15/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are a promising new class of anticancer drugs. However, their mechanism of action has not been fully elucidated. Most studies have investigated the effect of HDACIs on the regulation of gene transcription. HDAC inhibition also leads to genomic instability by a variety of mechanisms. This phenomenon, which has been largely overlooked, may contribute to the cytotoxic effects of these drugs. Indeed, HDACIs sensitize DNA to exogenous genotoxic damage and induce the generation of reactive oxygen species. Moreover, HDACIs target mitosis resulting in chromosome segregation defects. Here, we review the effects of HDACI treatment on DNA damage and repair, and chromosome segregation control.
Collapse
Affiliation(s)
- Grégory Eot-Houllier
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, rue de la cardonille, 34396 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
35
|
Heider U, Metzler IV, Kaiser M, Rosche M, Sterz J, Rötzer S, Rademacher J, Jakob C, Fleissner C, Kuckelkorn U, Kloetzel PM, Sezer O. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 2007; 80:133-42. [DOI: 10.1111/j.1600-0609.2007.00995.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|