1
|
In Utero Development and Immunosurveillance of B Cell Acute Lymphoblastic Leukemia. Curr Treat Options Oncol 2022; 23:543-561. [PMID: 35294722 PMCID: PMC8924576 DOI: 10.1007/s11864-022-00963-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent type of pediatric cancer with a peak incidence at 2–5 years of age. ALL frequently begins in utero with the emergence of clinically silent, preleukemic cells. Underlying leukemia-predisposing germline and acquired somatic mutations define distinct ALL subtypes that vary dramatically in treatment outcomes. In addition to genetic predisposition, a second hit, which usually occurs postnatally, is required for development of overt leukemia in most ALL subtypes. An untrained, dysregulated immune response, possibly due to an abnormal response to infection, may be an important co-factor triggering the onset of leukemia. Furthermore, the involvement of natural killer (NK) cells and T helper (Th) cells in controlling the preleukemic cells has been discussed. Identifying the cell of origin of the preleukemia-initiating event might give additional insights into potential options for prevention. Modulation of the immune system to achieve prolonged immunosurveillance of the preleukemic clone that eventually dies out in later years might present a future directive. Herein, we review the concepts of prenatal origin as well as potential preventive approaches to pediatric B cell precursor (BCP) ALL.
Collapse
|
2
|
Natural history and cell of origin of TC F3- ZN F384 and PTPN11 mutations in monozygotic twins with concordant BCP-ALL. Blood 2019; 134:900-905. [PMID: 31221673 DOI: 10.1182/blood.2019000893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
3
|
Ford AM, Greaves M. ETV6-RUNX1 + Acute Lymphoblastic Leukaemia in Identical Twins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:217-228. [PMID: 28299660 DOI: 10.1007/978-981-10-3233-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute leukaemia is the major subtype of paediatric cancer with a cumulative risk of 1 in 2000 for children up to the age of 15 years. Childhood acute lymphoblastic leukaemia (ALL) is a biologically and clinically diverse disease with distinctive subtypes; multiple chromosomal translocations exist within the subtypes and each carries its own prognostic relevance. The most common chromosome translocation observed is the t(12;21) that results in an in-frame fusion between the first five exons of ETV6 (TEL) and almost the entire coding region of RUNX1 (AML1).The natural history of childhood ALL is almost entirely clinically silent and is well advanced at the point of diagnosis. It has, however, been possible to backtrack this process through molecular analysis of appropriate clinical samples: (i) leukaemic clones in monozygotic twins that are either concordant or discordant for ALL; (ii) archived neonatal blood spots or Guthrie cards from individuals who later developed leukaemia; and (iii) stored, viable cord blood cells.Here, we outline our studies on the aetiology and pathology of childhood ALL that provide molecular evidence for a monoclonal, prenatal origin of ETV6-RUNX1+ leukaemia in monozygotic identical twins. We provide mechanistic support for the concept that altered patterns of infection during early childhood can deliver the necessary promotional drive for the progression of ETV6-RUNX1+ pre-leukaemic cells into a postnatal overt leukaemia.
Collapse
Affiliation(s)
- Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
4
|
Alpar D, Wren D, Ermini L, Mansur MB, van Delft FW, Bateman CM, Titley I, Kearney L, Szczepanski T, Gonzalez D, Ford AM, Potter NE, Greaves M. Clonal origins of ETV6-RUNX1⁺ acute lymphoblastic leukemia: studies in monozygotic twins. Leukemia 2014; 29:839-46. [PMID: 25388957 DOI: 10.1038/leu.2014.322] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 01/20/2023]
Abstract
Studies on twins with concordant acute lymphoblastic leukemia (ALL) have revealed that ETV6-RUNX1 gene fusion is a common, prenatal genetic event with other driver aberrations occurring subclonally and probably postnatally. The fetal cell type that is transformed by ETV6-RUNX1 is not identified by such studies or by the analysis of early B-cell lineage phenotype of derived progeny. Ongoing, clonal immunoglobulin (IG) and cross-lineage T-cell receptor (TCR) gene rearrangements are features of B-cell precursor leukemia and commence at the pro-B-cell stage of normal B-cell lineage development. We reasoned that shared clonal rearrangements of IG or TCR genes by concordant ALL in twins would be informative about the fetal cell type in which clonal advantage is elicited by ETV6-RUNX1. Five pairs of twins were analyzed for all varieties of IG and TCR gene rearrangements. All pairs showed identical incomplete or complete variable-diversity-joining junctions coupled with substantial, subclonal and divergent rearrangements. This pattern was endorsed by single-cell genetic scrutiny in one twin pair. Our data suggest that the pre-leukemic initiating function of ETV6-RUNX1 fusion is associated with clonal expansion early in the fetal B-cell lineage.
Collapse
Affiliation(s)
- D Alpar
- 1] Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK [2] Department of Pathology, University of Pecs, Pecs, Hungary
| | - D Wren
- Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research-London, London, UK
| | - L Ermini
- Centre for Geogenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - M B Mansur
- 1] Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK [2] Pediatric Hematology-Oncology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - F W van Delft
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - C M Bateman
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - I Titley
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - L Kearney
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - T Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - D Gonzalez
- Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research-London, London, UK
| | - A M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - N E Potter
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| | - M Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research-London, London, UK
| |
Collapse
|
5
|
Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 2010; 115:3553-8. [DOI: 10.1182/blood-2009-10-251413] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
Chimeric fusion genes are highly prevalent in childhood acute lymphoblastic leukemia (ALL) and are mostly prenatal, early genetic events in the evolutionary trajectory of this cancer. ETV6-RUNX1–positive ALL also has multiple (∼ 6 per case) copy number alterations (CNAs) as revealed by genome-wide single-nucleotide polymorphism arrays. Recurrent CNAs are probably “driver” events contributing critically to clonal diversification and selection, but at diagnosis, their developmental timing is “buried” in the leukemia's covert natural history. This conundrum can be resolved with twin pairs. We identified and compared CNAs in 5 pairs of monozygotic twins with concordant ETV6-RUNX1–positive ALL and 1 pair discordant for ETV6-RUNX1 positive ALL. We compared, within each pair, CNAs classified as potential “driver” or “passenger” mutations based upon recurrency and, where known, gene function. An average of 5.1 (range 3-11) CNAs (excluding immunoglobulin/T-cell receptor alterations) were identified per case. All “driver” CNAs (total of 32) were distinct within each of the 5 twin pairs with concordant ALL. “Driver” CNAs in another twin with ALL were all absent in the shared ETV6-RUNX1–positive preleukemic clone of her healthy co-twin. These data place all “driver” CNAs secondary to the prenatal gene fusion event and most probably postnatal in the sequential, molecular pathogenesis of ALL.
Collapse
|