1
|
Schamiloglu S, Lewis E, Keeshen CM, Hergarden AC, Bender KJ, Whistler JL. Arrestin-3 Agonism at Dopamine D 3 Receptors Defines a Subclass of Second-Generation Antipsychotics That Promotes Drug Tolerance. Biol Psychiatry 2023; 94:531-542. [PMID: 36931452 PMCID: PMC10914650 DOI: 10.1016/j.biopsych.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are frontline treatments for serious mental illness. Often, individual patients benefit only from some SGAs and not others. The mechanisms underlying this unpredictability in treatment efficacy remain unclear. All SGAs bind the dopamine D3 receptor (D3R) and are traditionally considered antagonists for dopamine receptor signaling. METHODS Here, we used a combination of two-photon calcium imaging, in vitro signaling assays, and mouse behavior to assess signaling by SGAs at D3R. RESULTS We report that some clinically important SGAs function as arrestin-3 agonists at D3R, resulting in modulation of calcium channels localized to the site of action potential initiation in prefrontal cortex pyramidal neurons. We further show that chronic treatment with an arrestin-3 agonist SGA, but not an antagonist SGA, abolishes D3R function through postendocytic receptor degradation by GASP1 (G protein-coupled receptor-associated sorting protein-1). CONCLUSIONS These results implicate D3R-arrestin-3 signaling as a source of SGA variability, highlighting the importance of including arrestin-3 signaling in characterizations of drug action. Furthermore, they suggest that postendocytic receptor trafficking that occurs during chronic SGA treatment may contribute to treatment efficacy.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California
| | - Elinor Lewis
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Caroline M Keeshen
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Anne C Hergarden
- Center for Neuroscience, University of California Davis, Davis, California
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.
| | - Jennifer L Whistler
- Center for Neuroscience, University of California Davis, Davis, California; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California.
| |
Collapse
|
2
|
Baminiwatta A, Correll CU. Historical developments, hotspots, and trends in tardive dyskinesia research: a scientometric analysis of 54 years of publications. Front Psychiatry 2023; 14:1194222. [PMID: 37333928 PMCID: PMC10272363 DOI: 10.3389/fpsyt.2023.1194222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Since being recognized as an important drug-induced clinical entity during the 1960s, tardive dyskinesia (TD) has generated an extensive body of research seeking to understand its clinical characteristics, epidemiology, pathophysiology and management. Modern scientometric approaches allow interactive visualization of large bodies of literature to identify trends and hotspots within knowledge domains. This study thus aimed to provide a comprehensive scientometric review of the TD literature. Methods Web of Science was searched for articles, reviews, editorials and letters with the term "tardive dyskinesia" in the title, abstract, or keywords through 12/31/2021. A total of 5,228 publications and 182,052 citations were included. Annual research output, prominent research areas, authors, affiliations and countries were summarized. VOSViewer and CiteSpace were used for bibliometric mapping and co-citation analysis. Structural and temporal metrics were used to identify key publications in the network. Results TD-related publications peaked in the 1990s, gradually declined after 2004, and showed a further small increase after 2015. The most prolific authors were Kane JM, Lieberman JA, and Jeste DV overall (1968-2021), and Zhang XY, Correll CU and Remington G in the last decade (2012-2021). The most prolific journal was the Journal of Clinical Psychiatry overall, and the Journal of Psychopharmacology in the last decade. Knowledge clusters in the 1960-1970s dealt with clinical and pharmacological characterization of TD. In the 1980s, epidemiology, clinical TD assessment, cognitive dysfunction and animal models predominated. During the 1990s, research diverged into pathophysiological studies, especially oxidative stress, and clinical trials on atypical antipsychotics, with a focus on clozapine and bipolar disorder. In the 1990-2000s, pharmacogenetics emerged. More recent clusters include serotonergic receptors, dopamine-supersensitivity psychosis, primary motor abnormalities of schizophrenia, epidemiology/meta-analyses, and advances in TD treatment, particularly vesicular monoamine transporter-2 inhibitors since 2017. Conclusion This scientometric review visualized the evolution of scientific knowledge on TD over more than five decades. These findings will be useful for researchers to find relevant literature when writing scientific articles, choosing appropriate journals, finding collaborators or mentors for research, and to understand the historical developments and emerging trends in TD research.
Collapse
Affiliation(s)
- Anuradha Baminiwatta
- Department of Psychiatry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Christoph U. Correll
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, NY, United States
- Department of Child and Adolescent Psychiatry Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
3
|
Osacka J, Kiss A, Pirnik Z. Possible involvement of apoptosis in the antipsychotics side effects: A minireview. Clin Exp Pharmacol Physiol 2022; 49:836-847. [PMID: 35575958 DOI: 10.1111/1440-1681.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Antipsychotics are used in the treatment of schizophrenia and other psychiatric disorders. Generally they are divided into typical and atypical ones, according to the fact that atypical antipychotics induce less side effects and are more effective in terms of social and cognitive improvements. Their pharmacological effects are mediated via broad range of receptors that consequently influence different cellular signaling pathways. Antipsychotics produce udesirable side effects that range from relatively minor to life-threatening ones. In vitro and in vivo studies have pointed to neurotoxic effect exerted by some antipsychotics and have shown that apoptosis might play role in some side effects induced by antipsyschotics, including tardive dyskinesia, weight gain, agranulocytosis, osteoporosis, myocarditis, etc. Although cumulative data have suggested safety of atypical antipsychotics use during pregnancy some of them have been shown to induce apoptotic neurodegenerative and structural changes in fetal brains with long-lasting impact on cognitive impairment of offsprings. Typical antipsychotics seem to be more cytotoxic than atypical ones. Recently, epidemiological studies have shown lower incidence of cancer in schizophrenic patients what suggest ability of antipsychotics to suppress risk of cancer development. Some antipsychotics have been reported to inhibit cancer cell proliferation and induce their apoptosis. Thus, antipsychotics apoptotic effect may be used as a tool in the treatmnet of some types of cancer, especially in combinatorial therapies. In this minireview, we focused on pro- and anti-apototic or "Dr. Jekyll and Mr. Hyde" effects of antipsychotics, which can be involved in their side effects, as well as their promising therapeutical indications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jana Osacka
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Alexander Kiss
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Zdenko Pirnik
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine Comenius University in Bratislava, Sasinkova 2, Bratislava, Slovakia.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam., 2Prague, Czech Republic
| |
Collapse
|
4
|
Tsermpini EE, Redenšek S, Dolžan V. Genetic Factors Associated With Tardive Dyskinesia: From Pre-clinical Models to Clinical Studies. Front Pharmacol 2022; 12:834129. [PMID: 35140610 PMCID: PMC8819690 DOI: 10.3389/fphar.2021.834129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Tardive dyskinesia is a severe motor adverse event of antipsychotic medication, characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial areas. It affects two to ten patients under long-term administration of antipsychotics that do not subside for years even after the drug is stopped. Dopamine, serotonin, cannabinoid receptors, oxidative stress, plasticity factors, signaling cascades, as well as CYP isoenzymes and transporters have been associated with tardive dyskinesia (TD) occurrence in terms of genetic variability and metabolic capacity. Besides the factors related to the drug and the dose and patients’ clinical characteristics, a very crucial variable of TD development is individual susceptibility and genetic predisposition. This review summarizes the studies in experimental animal models and clinical studies focusing on the impact of genetic variations on TD occurrence. We identified eight genes emerging from preclinical findings that also reached statistical significance in at least one clinical study. The results of clinical studies are often conflicting and non-conclusive enough to support implementation in clinical practice.
Collapse
|
5
|
Elsheikh SSM, Müller DJ, Pouget JG. Pharmacogenetics of Antipsychotic Treatment in Schizophrenia. Methods Mol Biol 2022; 2547:389-425. [PMID: 36068471 DOI: 10.1007/978-1-0716-2573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.
Collapse
Affiliation(s)
| | - Daniel J Müller
- The Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Jennie G Pouget
- The Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Chen YP, Ou RW, Gu XJ, Zhang LY, Cao B, Hou YB, Liu KC, Lin JY, Wei QQ, Zhao B, Wu Y, Shang HF. Multivariable clinical-genetic model for predicting dyskinesia in early-onset Parkinson's disease. Transl Neurodegener 2021; 10:26. [PMID: 34325746 PMCID: PMC8320054 DOI: 10.1186/s40035-021-00251-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ru-Wei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Jing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling-Yu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan-Bing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun-Cheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun-Yu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021; 9:biomedicines9080879. [PMID: 34440083 PMCID: PMC8389582 DOI: 10.3390/biomedicines9080879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Introduction: Extrapyramidal disorders form the so-called extrapyramidal syndrome (EPS), which is characterized by the occurrence of motor disorders as a result of damage to the basal ganglia and the subcortical-thalamic connections. Often, this syndrome develops while taking medications, in particular antipsychotics (APs). (2) Purpose: To review studies of candidate genes encoding dopamine receptors as genetic predictors of development of AP-induced parkinsonism (AIP) and AP-induced tardive dyskinesia (AITD) in patients with schizophrenia. (3) Materials and Methods: A search was carried out for publications of PubMed, Web of Science, Springer, and e-Library databases by keywords and their combinations over the last 10 years. In addition, the review includes earlier publications of historical interest. Despite extensive searches of these commonly used databases and search terms, it cannot be ruled out that some publications were possibly missed. (4) Results: The review considers candidate genes encoding dopamine receptors involved in pharmacodynamics, including genes DRD1, DRD2, DRD3, and DRD4. We analyzed 18 genome-wide studies examining 37 genetic variations, including single nucleotide variants (SNVs)/polymorphisms of four candidate genes involved in the development of AIP and AITD in patients with schizophrenia. Among such a set of obtained results, only 14 positive associations were revealed: rs1799732 (141CIns/Del), rs1800497 (C/T), rs6275 (C/T), rs6275 (C/T) DRD2; rs167771 (G/A) DRD3 with AIP and rs4532 (A/G) DRD1, rs6277 (C/T), rs6275 (C/T), rs1800497 (C/T), rs1079597 (A/G), rs1799732 (141CIns/Del), rs1045280 (C/G) DRD2, rs6280 (C/T), rs905568 (C/G) DRD3 with AITD. However, at present, it should be recognized that there is no final or unique decision on the leading role of any particular SNVs/polymorphisms in the development of AIP and AITD. (5) Conclusion: Disclosure of genetic predictors of the development of AIP and AITD, as the most common neurological adverse drug reactions (ADRs) in the treatment of patients with psychiatric disorders, may provide a key to the development of a strategy for personalized prevention and treatment of the considered complication of AP therapy for schizophrenia in real clinical practice.
Collapse
|
8
|
Genetic Testing for Antipsychotic Pharmacotherapy: Bench to Bedside. Behav Sci (Basel) 2021; 11:bs11070097. [PMID: 34209185 PMCID: PMC8301006 DOI: 10.3390/bs11070097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
There is growing research interest in learning the genetic basis of response and adverse effects with psychotropic medications, including antipsychotic drugs. However, the clinical utility of information from genetic studies is compromised by their controversial results, primarily due to relatively small effect and sample sizes. Clinical, demographic, and environmental differences in patient cohorts further explain the lack of consistent results from these genetic studies. Furthermore, the availability of psychopharmacological expertise in interpreting clinically meaningful results from genetic assays has been a challenge, one that often results in suboptimal use of genetic testing in clinical practice. These limitations explain the difficulties in the translation of psychopharmacological research in pharmacogenetics and pharmacogenomics from bench to bedside to manage increasingly treatment-refractory psychiatric disorders, especially schizophrenia. Although these shortcomings question the utility of genetic testing in the general population, the commercially available genetic assays are being increasingly utilized to optimize the effectiveness of psychotropic medications in the treatment-refractory patient population, including schizophrenia. In this context, patients with treatment-refractory schizophrenia are among of the most vulnerable patients to be exposed to the debilitating adverse effects from often irrational and high-dose antipsychotic polypharmacy without clinically meaningful benefits. The primary objective of this comprehensive review is to analyze and interpret replicated findings from the genetic studies to identify specific genetic biomarkers that could be utilized to enhance antipsychotic efficacy and tolerability in the treatment-refractory schizophrenia population.
Collapse
|
9
|
Ferré S, Guitart X, Quiroz C, Rea W, García-Malo C, Garcia-Borreguero D, Allen RP, Earley CJ. Akathisia and Restless Legs Syndrome: Solving the Dopaminergic Paradox. Sleep Med Clin 2021; 16:249-267. [PMID: 33985651 DOI: 10.1016/j.jsmc.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Xavier Guitart
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - William Rea
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Celia García-Malo
- Sleep Research Institute, Paseo de la Habana 151, Madrid 28036, Spain
| | | | - Richard P Allen
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Smit IA, Afzal AM, Allen CHG, Svensson F, Hanser T, Bender A. Systematic Analysis of Protein Targets Associated with Adverse Events of Drugs from Clinical Trials and Postmarketing Reports. Chem Res Toxicol 2020; 34:365-384. [PMID: 33351593 DOI: 10.1021/acs.chemrestox.0c00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse drug reactions (ADRs) are undesired effects of medicines that can harm patients and are a significant source of attrition in drug development. ADRs are anticipated by routinely screening drugs against secondary pharmacology protein panels. However, there is still a lack of quantitative information on the links between these off-target proteins and the reporting of ADRs in humans. Here, we present a systematic analysis of associations between measured and predicted in vitro bioactivities of drugs and adverse events (AEs) in humans from two sources of data: the Side Effect Resource, derived from clinical trials, and the Food and Drug Administration Adverse Event Reporting System, derived from postmarketing surveillance. The ratio of a drug's therapeutic unbound plasma concentration over the drug's in vitro potency against a given protein was used to select proteins most likely to be relevant to in vivo effects. In examining individual target bioactivities as predictors of AEs, we found a trade-off between the positive predictive value and the fraction of drugs with AEs that can be detected. However, considering sets of multiple targets for the same AE can help identify a greater fraction of AE-associated drugs. Of the 45 targets with statistically significant associations to AEs, 30 are included on existing safety target panels. The remaining 15 targets include 9 carbonic anhydrases, of which CA5B is significantly associated with cholestatic jaundice. We include the full quantitative data on associations between measured and predicted in vitro bioactivities and AEs in humans in this work, which can be used to make a more informed selection of safety profiling targets.
Collapse
Affiliation(s)
- Ines A Smit
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avid M Afzal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chad H G Allen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Fredrik Svensson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Minimize exposure to antidopaminergic drugs whenever possible to reduce the risk of drug-induced parkinsonism and tardive dyskinesia. DRUGS & THERAPY PERSPECTIVES 2019. [DOI: 10.1007/s40267-019-00642-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Kalinderi K, Papaliagkas V, Fidani L. Pharmacogenetics and levodopa induced motor complications. Int J Neurosci 2018; 129:384-392. [DOI: 10.1080/00207454.2018.1538993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kallirhoe Kalinderi
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papaliagkas
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki, Greece
| | - Liana Fidani
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Estevez-Fraga C, Zeun P, López-Sendón Moreno JL. Current Methods for the Treatment and Prevention of Drug-Induced Parkinsonism and Tardive Dyskinesia in the Elderly. Drugs Aging 2018; 35:959-971. [DOI: 10.1007/s40266-018-0590-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the investigation of genetic factors for antipsychotic response and side effects. RECENT FINDINGS Antipsychotics prescribed to treat psychotic symptoms are variable in efficacy and propensity for causing side effects. The major side effects include tardive dyskinesia, antipsychotic-induced weight gain (AIWG), and clozapine-induced agranulocytosis (CIA). Several promising associations of polymorphisms in genes including HSPG2, CNR1, and DPP6 with tardive dyskinesia have been reported. In particular, a functional genetic polymorphism in SLC18A2, which is a target of recently approved tardive dyskinesia medication valbenazine, was associated with tardive dyskinesia. Similarly, several consistent findings primarily from genes modulating energy homeostasis have also been reported (e.g. MC4R, HTR2C). CIA has been consistently associated with polymorphisms in the HLA genes (HLA-DQB1 and HLA-B). The association findings between glutamate system genes and antipsychotic response require additional replications. SUMMARY The findings to date are promising and provide us a better understanding of the development of side effects and response to antipsychotics. However, more comprehensive investigations in large, well characterized samples will bring us closer to clinically actionable findings.
Collapse
|
15
|
Alabed S, Latifeh Y, Mohammad HA, Bergman H, Cochrane Schizophrenia Group. Gamma-aminobutyric acid agonists for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst Rev 2018; 4:CD000203. [PMID: 29663328 PMCID: PMC6513215 DOI: 10.1002/14651858.cd000203.pub4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Chronic antipsychotic drug treatment may cause tardive dyskinesia (TD), a long-term movement disorder. Gamma-aminobutyric acid (GABA) agonist drugs, which have intense sedative properties and may exacerbate psychotic symptoms, have been used to treat TD. OBJECTIVES 1. Primary objectiveThe primary objective was to determine whether using non-benzodiazepine GABA agonist drugs for at least six weeks was clinically effective for the treatment of antipsychotic-induced TD in people with schizophrenia, schizoaffective disorder or other chronic mental illnesses.2. Secondary objectivesThe secondary objectives were as follows.To examine whether any improvement occurred with short periods of intervention (less than six weeks) and, if this did occur, whether this effect was maintained at longer periods of follow-up.To examine whether there was a differential effect between the various compounds.To test the hypothesis that GABA agonist drugs are most effective for a younger age group (less than 40 years old). SEARCH METHODS We searched the Cochrane Schizophrenia Group Trials Register (last searched April 2017), inspected references of all identified studies for further trials, and, when necessary, contacted authors of trials for additional information. SELECTION CRITERIA We included randomised controlled trials of non-benzodiazepine GABA agonist drugs in people with antipsychotic-induced TD and schizophrenia or other chronic mental illness. DATA COLLECTION AND ANALYSIS Two review authors independently selected and critically appraised studies, extracted and analysed data on an intention-to-treat basis. Where possible and appropriate we calculated risk ratios (RRs) and their 95% confidence intervals (CIs). For continuous data we calculated mean differences (MD). We assumed that people who left early had no improvement. We contacted investigators to obtain missing information. We assessed risk of bias for included studies and created a 'Summary of findings' table using GRADE. MAIN RESULTS We included 11 studies that randomised 343 people. Overall, the risk of bias in the included studies was unclear, mainly due to poor reporting; allocation concealment was not described, generation of the sequence was not explicit, participants and outcome assessors were not clearly blinded. For some studies we were unsure if data were complete, and data were often poorly or selectively reported.Data from six trials showed that there may be a clinically important improvement in TD symptoms after GABA agonist treatment compared with placebo at six to eight weeks follow-up (6 RCTs, n = 258, RR 0.83, CI 0.74 to 0.92; low-quality evidence). Data from five studies showed no difference between GABA agonist treatment and placebo for deterioration of TD symptoms (5 RCTs, n = 136, RR 1.90, CI 0.70 to 5.16; very low-quality evidence). Studies reporting adverse events found a significant effect favouring placebo compared with baclofen, sodium valproate or progabide for dizziness/confusion (3 RCTs, n = 62 RR 4.54, CI 1.14 to 18.11; very low-quality evidence) and sedation/drowsiness (4 RCTS, n = 144, RR 2.29, CI 1.08 to 4.86; very low-quality evidence). Studies reporting on akathisia (RR 1.05, CI 0.32 to 3.49, 2 RCTs, 80 participants), ataxia (RR 3.25, CI 0.36 to 29.73, 2 RCTs, 95 participants), nausea/vomiting (RR 2.61, CI 0.79 to 8.67, 2 RCTs, 64 participants), loss of muscle tone (RR 3.00, CI 0.15 to 59.89, 1 RCT, 10 participants), seizures (RR 3.00, CI 0.24 to 37.67, 1 RCT, 2 participants), hypotension (RR 3.04, CI 0.33 to 28.31, 2 RCTs, 119 participants) found no significant difference between GABA drug and placebo (very low-quality evidence). Evidence on mental state also showed no effect between treatment groups (6 RCTS, n = 121, RR 2.65, CI 0.71 to 9.86; very low-quality evidence) as did data for leaving the study early (around 10% in both groups, 6 RCTS, n = 218, RR 1.47, CI 0.69 to 3.15; very low-quality evidence). No study reported on social confidence, social inclusion, social networks, or personalised quality of life, a group of outcomes selected as being of particular importance to patients. AUTHORS' CONCLUSIONS We are uncertain about the evidence of the effects of baclofen, progabide, sodium valproate or tetrahydroisoxazolopyridinol (THIP) for people with antipsychotic-induced TD. Evidence is inconclusive and unconvincing. The quality of data available for main outcomes ranges from very low to low. Any possible benefits are likely to be outweighed by the adverse effects associated with their use.
Collapse
Affiliation(s)
- Samer Alabed
- University of SheffieldAcademic Unit of RadiologySheffieldUK
| | - Youssef Latifeh
- Al‐Mowasat Hospital, Damascus UniversityDepartment of PsychiatryDamascusSyrian Arab Republic
| | | | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | | |
Collapse
|
16
|
Hirjak D, Meyer-Lindenberg A, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as research domain in the period preceding manifest schizophrenia: A systematic review. Neurosci Biobehav Rev 2018; 87:87-105. [DOI: 10.1016/j.neubiorev.2018.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
|
17
|
Zai CC, Maes MS, Tiwari AK, Zai GC, Remington G, Kennedy JL. Genetics of tardive dyskinesia: Promising leads and ways forward. J Neurol Sci 2018; 389:28-34. [PMID: 29502799 DOI: 10.1016/j.jns.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible and often debilitating movement disorder secondary to chronic use of dopamine receptor blocking medications. Genetic factors have been implicated in the etiology of TD. We therefore have reviewed the most promising genes associated with TD, including DRD2, DRD3, VMAT2, HSPG2, HTR2A, HTR2C, and SOD2. In addition, we present evidence supporting a role for these genes from preclinical models of TD. The current understanding of the etiogenesis of TD is discussed in the light of the recent approvals of valbenazine and deutetrabenazine, VMAT2 inhibitors, for treating TD.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | - Miriam S Maes
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gwyneth C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gary Remington
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - James L Kennedy
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
18
|
Polymorphisms of Dopamine Receptor Genes and Risk of L-Dopa-Induced Dyskinesia in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18020242. [PMID: 28125015 PMCID: PMC5343779 DOI: 10.3390/ijms18020242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
L-dopa–induced dyskinesia (LID) is a frequent motor complication of Parkinson’s disease (PD), associated with a negative prognosis. Previous studies showed an association between dopamine receptor (DR) gene (DR) variants and LID, the results of which have not been confirmed. The present study is aimed to determine whether genetic differences of DR are associated with LID in a small but well-characterized cohort of PD patients. To this end we enrolled 100 PD subjects, 50 with and 50 without LID, matched for age, gender, disease duration and dopaminergic medication in a case-control study. We conducted polymerase chain reaction for single nucleotide polymorphisms (SNP) in both D1-like (DRD1A48G; DRD1C62T and DRD5T798C) and D2-like DR (DRD2G2137A, DRD2C957T, DRD3G25A, DRD3G712C, DRD4C616G and DRD4nR VNTR 48bp) analyzed genomic DNA. Our results showed that PD patients carrying allele A at DRD3G3127A had an increased risk of LID (OR 4.9; 95% CI 1.7–13.9; p = 0.004). The present findings may provide valuable information for personalizing pharmacological therapy in PD patients.
Collapse
|
19
|
Lanning RK, Zai CC, Müller DJ. Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics 2016; 17:1339-51. [DOI: 10.2217/pgs.16.26] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tardive dyskinesia (TD) is a serious and potentially irreversible side effect of long-term exposure to antipsychotic medication characterized by involuntary trunk, limb and orofacial muscle movements. Various mechanisms have been proposed for the etiopathophysiology of antipsychotic-induced TD in schizophrenia patients with genetic factors playing a prominent role. Earlier association studies have focused on polymorphisms in CYP2D6, dopamine-, serotonin-, GABA- and glutamate genes. This review highlights recent advances in the genetic investigation of TD. Recent promising findings were obtained with the HSPG2, DPP6, MTNR1A, SLC18A2, PIP5K2A and CNR1 genes. More research, including collection of well-characterized samples, enhancement of genome-wide strategies, gene–gene interaction and epigenetic analyses, is needed before genetic tests with clinical utility can be made available for TD.
Collapse
Affiliation(s)
- Rachel K Lanning
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada
| | - Clement C Zai
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Daniel J Müller
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77:654-72. [PMID: 24354796 DOI: 10.1111/bcp.12312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/18/2013] [Indexed: 12/15/2022] Open
Abstract
The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
21
|
Chang FC, Fung VS. Clinical significance of pharmacogenomic studies in tardive dyskinesia associated with patients with psychiatric disorders. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:317-28. [PMID: 25378945 PMCID: PMC4207069 DOI: 10.2147/pgpm.s52806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pharmacogenomics is the study of the effects of genetic polymorphisms on medication pharmacokinetics and pharmacodynamics. It offers advantages in predicting drug efficacy and/or toxicity and has already changed clinical practice in many fields of medicine. Tardive dyskinesia (TD) is a movement disorder that rarely remits and poses significant social stigma and physical discomfort for the patient. Pharmacokinetic studies show an association between cytochrome P450 enzyme-determined poor metabolizer status and elevated serum antipsychotic and metabolite levels. However, few prospective studies have shown this to correlate with the occurrence of TD. Many retrospective, case-control and cross-sectional studies have examined the association of cytochrome P450 enzyme, dopamine (receptor, metabolizer and transporter), serotonin (receptor and transporter), and oxidative stress enzyme gene polymorphisms with the occurrence and severity of TD. These studies have produced conflicting and confusing results secondary to heterogeneous inclusion criteria and other patient characteristics that also act as confounding factors. This paper aims to review and summarize the pharmacogenetic findings in antipsychotic-associated TD and assess its clinical significance for psychiatry patients. In addition, we hope to provide insight into areas that need further research.
Collapse
Affiliation(s)
- Florence Cf Chang
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Victor Sc Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Mahmoudi S, Lévesque D, Blanchet PJ. Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model. Mov Disord 2014; 29:1125-33. [PMID: 24838395 DOI: 10.1002/mds.25909] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication arising in patients chronically exposed to centrally active dopamine D2 receptor antagonists, including antipsychotic drugs and metoclopramide. The classical dopamine D2 receptor supersensitivity hypothesis in TD, which stemmed from rodent studies, lacks strong support in humans. To investigate the neurochemical basis of TD, we chronically exposed adult capuchin monkeys to haloperidol (median, 18.5 months; n = 11) or clozapine (median, 6 months; n = 6). Six unmedicated animals were used as controls. Five haloperidol-treated animals developed mild TD movements, and no TD was observed in the clozapine group. Using receptor autoradiography, we measured striatal dopamine D1, D2, and D3 receptor levels. We also examined the D3 receptor/preprotachykinin messenger RNA (mRNA) co-expression, and quantified preproenkephalin mRNA levels, in striatal sections. Unlike clozapine, haloperidol strongly induced dopamine D3 receptor binding sites in the anterior caudate-putamen, particularly in TD animals, and binding levels positively correlated with TD intensity. Interestingly, the D3 receptor upregulation was observed in striatonigral neurons. In contrast, D2 receptor binding was comparable to controls, and dopamine D1 receptor binding was reduced in the anterior putamen. Enkephalin mRNA widely increased in all animals, but to a greater extent in TD-free animals. These results suggest for the first time that upregulated striatal D3 receptors correlate with TD in nonhuman primates, adding new insights to the dopamine receptor supersensitivity hypothesis. The D3 receptor could provide a novel target for drug intervention in human TD.
Collapse
Affiliation(s)
- Souha Mahmoudi
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
23
|
Brandl EJ, Kennedy JL, Müller DJ. Pharmacogenetics of antipsychotics. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:76-88. [PMID: 24881126 PMCID: PMC4079237 DOI: 10.1177/070674371405900203] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE During the past decades, increasing efforts have been invested in studies to unravel the influence of genetic factors on antipsychotic (AP) dosage, treatment response, and occurrence of adverse effects. These studies aimed to improve clinical care by predicting outcome of treatment with APs and thus allowing for individualized treatment strategies. We highlight most important findings obtained through both candidate gene and genome-wide association studies, including pharmacokinetic and pharmacodynamic factors. METHODS We reviewed studies on pharmacogenetics of AP response and adverse effects published on PubMed until early 2012. Owing to the high number of published studies, we focused our review on findings that have been replicated in independent studies or are supported by meta-analyses. RESULTS Most robust findings were reported for associations between polymorphisms of the cytochrome P450 system, the dopamine and the serotonin transmitter systems, and dosage, treatment response, and adverse effects, such as AP-induced weight gain or tardive dyskinesia. These associations were either detected for specific medications or for classes of APs. CONCLUSION First promising and robust results show that pharmacogenetics bear promise for a widespread use in future clinical practice. This will likely be achieved by developing algorithms that will include many genetic variants. However, further investigation is warranted to replicate and validate previous findings, as well as to identify new genetic variants involved in AP response and for replication of existing findings.
Collapse
Affiliation(s)
- Eva J Brandl
- Postdoctoral Research Fellow, Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario
| | - James L Kennedy
- Head, Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario; Director, Neuroscience Research Department, Neuroscience Department, CAMH, Toronto, Ontario; l'Anson Professor of Psychiatry and Medical Science, University of Toronto, Toronto, Ontario
| | - Daniel J Müller
- Head, Pharmacogenetics Research Clinic, Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario; Associate Professor, University of Toronto, Toronto, Ontario
| |
Collapse
|
24
|
Abstract
Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research, and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.
Collapse
|
25
|
Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:207-13. [PMID: 23123399 DOI: 10.1016/j.pnpbp.2012.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Tardive dyskinesia (TD) is a serious adverse effect of long-term antipsychotic use. Because of genetic susceptibility for developing TD and because it is difficult to predict and prevent its development prior to or during the early stages of medication, pharmacogenetic research of TD is important. Additionally, these studies enhance our knowledge of the genetic mechanisms underlying abnormal dyskinetic movements, such as Parkinson's disease. However, the pathophysiology of TD remains unclear. The oxidative stress hypothesis of TD is one of the possible pathophysiologic models for TD. Preclinical and clinical studies of the oxidative stress hypothesis of TD indicate that neurotoxic free radical production is likely a consequence of antipsychotic medication and is related to the occurrence of TD. Several studies on TD have focused on examining the genes involved in oxidative stress. Among them, manganese superoxide dismutase gene Ala-9Val polymorphisms show a relatively consistent association with TD susceptibility, although not all studies support this. Numerous pharmacogenetic studies have found a positive relationship between TD and oxidative stress based on genes involved in the antioxidant defense mechanism, dopamine turnover and metabolism, and other antioxidants such as estrogen and melatonin. However, many of the positive findings have not been replicated. We expect that more research will be needed to address these issues.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
26
|
Kang SG, Lee HJ, Yoon HK, Cho SN, Park YM, Kim L. There is no evidence for an association between the serotonin receptor 3A gene C178T polymorphism and tardive dyskinesia in Korean schizophrenia patients. Nord J Psychiatry 2013; 67:214-8. [PMID: 23126479 DOI: 10.3109/08039488.2012.732114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tardive dyskinesia (TD) is a potential adverse effect of long-term treatment with antipsychotics. Previous studies have suggested a link between brain serotonergic systems and TD vulnerability. A recent report described that a serotonin 3 receptor (5-HTR3) agonist induced rhythmic movements in mice with complete paraplegia. Furthermore, it has been reported that the 5-HTR3 antagonist ondansetron is efficacious in the treatment of Gilles de la Tourette syndrome (GTS). AIM The aim of the present study was to determine whether the 5-HTR3A gene C178T polymorphism is associated with antipsychotic-induced TD in Korean schizophrenia patients. METHODS We investigated 280 Korean schizophrenia patients. Subjects with TD (n = 105) and without TD (n = 175) were matched for antipsychotic drug exposure and other relevant variables. RESULTS The distributions of genotypic (chi-squared = 3.55, p = 0.169) and allelic (chi-squared = 0.40, p = 0.528) frequencies did not differ between patients with and without TD. The total score on the Abnormal Involuntary Movement Scale also did not differ between the two genotype groups (F = 0.94, p = 0.391). CONCLUSIONS The findings of the present study do not support the involvement of the 5-HTR3A gene C178T polymorphism in TD in Korean schizophrenia subjects.
Collapse
Affiliation(s)
- Seung-Gul Kang
- Department of Psychiatry, Gachon University, School of Medicine, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11:132. [PMID: 23680237 PMCID: PMC3668172 DOI: 10.1186/1741-7015-11-132] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/19/2013] [Indexed: 01/29/2023] Open
Abstract
The central theme of personalized medicine is the premise that an individual's unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual's susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging.
Collapse
Affiliation(s)
- Uzoezi Ozomaro
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Charles B Nemeroff
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Ivanova B, Spiteller M. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Abstract
Genetic epidemiology has provided consistent evidence that schizophrenia has a genetic component It is now clear that this genetic component is complex and polygenic, with several genes interacting in epistasis. Although molecular studies have failed to identify any DNA variant that clearly contributes to vulnerability to schizophrenia, several regions have been implicated by linkage studies. To overcome the difficulties in the search for schizophrenia genes, it is necessary (i) to use methods of analysis that are appropriate for complex multifactorial disorders; (ii) to gather large enough clinical samples; and (iii) in the absence of genetic validity of the diagnostic classification currently used, to apply new strategies in order to better define the affected phenotypes. For this purpose, we describe here two strategies: (i) the candidate symptom approach, which concerns affected subjects and uses proband characteristics as the affected phenotype, such as age at onset, severity, and negative/positive symptoms; and (ii) the endophenotypic approach, which concerns unaffected relatives and has already provided positive findings with phenotypes, such as P50 inhibitory gating or eye-movement dysfunctions.
Collapse
Affiliation(s)
- M Leboyer
- Service de psychiatrie adulte, CHU Albert Chenevier et Henri Mondor, Université Paris XII, Créteil, France
| |
Collapse
|
30
|
Blanchet PJ, Parent MT, Rompré PH, Lévesque D. Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 2012; 8:12. [PMID: 22404856 PMCID: PMC3338072 DOI: 10.1186/1744-9081-8-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 11/15/2022] Open
Abstract
Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Faculty of Dental Medicine, University of Montreal, PO Box 6128, Succ, Centre-ville, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
31
|
Utsunomiya K, Shinkai T, Sakata S, Yamada K, Chen HI, De Luca V, Hwang R, Ohmori O, Nakamura J. Genetic association between the dopamine D3 receptor gene polymorphism (Ser9Gly) and tardive dyskinesia in patients with schizophrenia: A reevaluation in East Asian populations. Neurosci Lett 2012; 507:52-6. [DOI: 10.1016/j.neulet.2011.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022]
|
32
|
Güzey C, Allard P, Brännström T, Spigset O. Radioligand Binding to Brain Dopamine and Serotonin Receptors and Transporters in Parkinson's Disease: Relation to Gene Polymorphisms. Int J Neurosci 2011; 122:124-32. [DOI: 10.3109/00207454.2011.631716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Abstract
This review presents the findings of pharmacogenetic studies exploring the influence of gene variants on antipsychotic treatment response, in terms of both symptom improvement and adverse effects, in patients with schizophrenia. Despite numerous studies in the field, replicating findings across different cohorts that include subjects of different ethnic groups has been challenging. It is clear that non-genetic factors have an important contribution to antipsychotic treatment response. Differing clinical, demographic and environmental characteristics of the cohorts studied have added substantial complexity to the interpretation of the positive and negative findings of many studies. Pharmacogenomic genome-wide investigations are beginning to yield interesting data although they have failed to replicate the most robust findings of candidate gene studies, and are limited by the sample size, especially given the need for studying homogeneous cohorts. Most of the studies conducted on cohorts treated with single antipsychotics have investigated clozapine, olanzapine or risperidone response. These studies have provided some of the most replicated associations with treatment efficacy. Serotonergic system gene variants are significantly associated with the efficacy of clozapine and risperidone, but may have less influence on the efficacy of olanzapine. Dopamine D3 receptor polymorphisms have been more strongly associated with the efficacy of clozapine and olanzapine, and D2 genetic variants with the efficacy of risperidone. Serotonin influences the control of feeding behaviour and has been hypothesized to have a role in the development of antipsychotic-induced weight gain. Numerous studies have linked the serotonin receptor 2C (5-HT2C) -759-C/T polymorphism with weight gain. The leptin gene variant, -2548-G/A, has also been associated with weight gain in several studies. Pharmacogenetic studies support the role of cytochrome P450 enzymes and dopamine receptor variants in the development of antipsychotic-induced movement disorders, with a contribution of serotonergic receptors and other gene variants implicated in the mechanism of action of antipsychotics. Clozapine-induced agranulocytosis has been associated with polymorphisms in the major histocompatibility complex gene (HLA).
Collapse
Affiliation(s)
- Maria J Arranz
- Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, UK.
| | | | | |
Collapse
|
34
|
DRD2 Taq1A polymorphism modulates prolactin secretion induced by atypical antipsychotics in healthy volunteers. J Clin Psychopharmacol 2011; 31:555-62. [PMID: 21869700 DOI: 10.1097/jcp.0b013e31822cfff2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperprolactinemia mediated by antagonism of dopaminergic neurotransmission in the pituitary gland is a common adverse effect of antipsychotics. Recent studies have suggested that polymorphisms of dopamine receptors can affect the therapeutic response to antipsychotics. Thus, our aim was to evaluate whether 2 such polymorphisms (DRD2 Taq1A and DRD3 Ser9Gly) modulate prolactin release in healthy volunteers (n = 119) receiving a single dose of quetiapine (25 mg, n = 26), olanzapine (5 mg, n = 57), or risperidone (1 mg, n = 36). The increases in maximum concentration and in area under the curve were calculated from plasma prolactin levels after subtraction of pretreatment levels. Multiple regression analyses revealed that prolactin increases in maximum concentration and in area under the curve depended on drug (quetiapine < olanzapine < risperidone; P < 0.001), sex (women > men; P < 0.001), and Taq1A polymorphism (A1⁺ > A2/A2; P < 0.05). Analysis of the individual drugs revealed that prolactin secretion was modulated by sex and Taq1A polymorphism in olanzapine and risperidone (P < 0.05); however, these factors were not linked to prolactin secretion in quetiapine.
Collapse
|
35
|
Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. THE PHARMACOGENOMICS JOURNAL 2011; 12:513-20. [PMID: 21808285 DOI: 10.1038/tpj.2011.32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tardive dyskinesia (TD) is a severe adverse effect of chronic antipsychotic drug treatment. In addition to clinical risk factors, TD susceptibility is influenced by genetic predisposition. Recently, Syu et al. (2010) reported a genome-wide association screening of TD in Japanese schizophrenia patients. The best result was association of single-nucleotide polymorphism (SNP) rs2445142 in the HSPG2 (heparan sulfate proteoglycan 2) gene with TD. In the present study, we report a replication study of the five top Japanese TD-associated SNPs in two Caucasian TD samples. Applying logistic regression and controlling for relevant clinical risk factors, we were able to replicate the association of HSPG2 SNP rs2445142 with TD in a prospective study sample of 179 Americans of European origin by performing a secondary analysis of the CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) genome-wide association study data set, and using a perfect proxy surrogate marker (rs878949; P = 0.039). An association of the 'G' risk allele of HSPG2 SNP rs2445142 with TD was also shown in a sample of Jewish Israeli schizophrenia patients (retrospective, cross-sectional design; P = 0.03). Although the associations were only nominally significant, the findings provide further support for the possible involvement of HSPG2 in susceptibility to TD.
Collapse
|
36
|
Shamy MC, Zai C, Basile VS, Kennedy JL, Müller DJ, Masellis M. Ethical and Policy Considerations in the Application of Pharmacogenomic Testing for Tardive Dyskinesia: Case Study of the Dopamine D3 Receptor. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:94-101. [PMID: 22282718 PMCID: PMC3265539 DOI: 10.2174/187569211795508448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tardive dyskinesia (TD) is a serious adverse effect often associated with the first generation antipsychotic medications used in the management of mental health disorders such as schizophrenia. Pharmacogenomics is the study of human genomic variation in relation to individual and population variability in medication response and side effects. Neuropsychiatry is one of the clinical domains in which pharmacogenomic approaches have been extensively studied. In the late 1990s, the Glycine9 (Gly9) allele of the Serine-9-Glycine (Ser9Gly) polymorphism in dopamine D3 receptor gene (DRD3) was found to be associated with both a liability to, and worsened severity of, TD in schizophrenic patients treated with typical antipsychotics. This initial discovery has been subsequently replicated and testing for the Ser9Gly polymorphism has now become commercially available. The question that currently presents itself is whether its use should be encouraged for patients who may be prescribed a typical or atypical antipsychotic medication. However, the translation of this new technology to clinical practice presents multiple social, ethical and policy challenges. Though pharmacogenomic testing holds much promise in this scenario, many important questions remain to be answered before its widespread use can be medically and ethically justified. This article highlights the key advances in our understanding of the role of human genetic variation in the D3 receptor in relation to TD. Then, issues of uncertainty, consent, confidentiality, and access are considered with respect to the use of DRD3 polymorphism testing in risk stratification for susceptibility to tardive dyskinesia. We propose three recommendations that may help bring this technology into the clinic: 1) prospective pharmacogenomic studies of DRD3 polymorphism and TD risk should be conducted; 2) the design of such studies should be influenced by scientists, ethicists and policy makers to protect potentially vulnerable patients; and 3) appropriate knowledge transfer to front-line health care workers must take place.
Collapse
Affiliation(s)
- Michel C.F. Shamy
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada
| | - Clement Zai
- Pharmacogenetics Research Clinic, Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Vincenzo S. Basile
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada
- Pharmacogenetics Research Clinic, Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L. Kennedy
- Pharmacogenetics Research Clinic, Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mario Masellis
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada
- Pharmacogenetics Research Clinic, Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
37
|
Alabed S, Latifeh Y, Mohammad HA, Rifai A. Gamma-aminobutyric acid agonists for neuroleptic-induced tardive dyskinesia. Cochrane Database Syst Rev 2011:CD000203. [PMID: 21491376 DOI: 10.1002/14651858.cd000203.pub3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chronic antipsychotic drug treatment may cause tardive dyskinesia (TD), a long-term movement disorder. Gamma-aminobutyric acid (GABA) agonist drugs, which have intense sedative properties and may exacerbate psychotic symptoms, have been used to treat TD. OBJECTIVES To determine the clinical effects of GABA agonist drugs (baclofen, gamma-vinyl-GABA, gamma-acetylenic-GABA, progabide, muscimol, sodium valproate and tetrahydroisoxazolopyridine (THIP) for people with schizophrenia or other chronic mental illnesses who also developed neuroleptic-induced tardive dyskinesia. SEARCH STRATEGY We updated the previous Cochrane review by searching the Cochrane Schizophrenia Group Register (June 2010). SELECTION CRITERIA We included reports if they were controlled trials dealing with people with neuroleptic-induced TD and schizophrenia or other chronic mental illness who had been randomly allocated to either non-benzodiazepine GABA agonist drugs with placebo or no intervention. DATA COLLECTION AND ANALYSIS Working independently, we selected and critically appraised studies, extracted data and analysed on an intention-to-treat basis. Where possible and appropriate we calculated risk ratios (RR) and their 95% confidence intervals (CI) with the number needed to treat (NNT). For continuous data we calculated mean differences (MD). MAIN RESULTS We identified eight small poorly reported studies for inclusion. For the outcome of 'no clinically important improvement in tardive dyskinesia' GABA agonist drugs were not clearly better than placebo (n = 108, 3 RCTs, RR 0.83 CI 0.6 to 1.1). Deterioration in mental state was more likely to occur in people receiving GABA medication (n = 95, 4 RCTs, RR 2.47 CI 1.1 to 5.4), but this effect was influenced by the decision to assign a negative outcome to those who left early before the end of the study. A greater proportion of people allocated GABA medication may fail to complete the trial compared with those allocated placebo (20% versus 9%), but this difference was not statistically significant (n = 136, 5 RCTs, RR 1.99 CI 0.8 to 4.7). There is a suggestion of an increase in ataxia (loss of power of muscular coordination) for both baclofen and sodium valproate (n = 95, 2 RCTs, RR 3.26 CI 0.4 to 30.2), and in sedation (n = 113, 3 RCTs, RR 2.12 CI 0.8 to 5.4) compared with placebo, but this was not significant. Withdrawal of tetrahydroisoxazolopyridine (THIP) may cause seizures. AUTHORS' CONCLUSIONS Evidence of the effects of baclofen, progabide, sodium valproate, or THIP for people with antipsychotic-induced TD is inconclusive and unconvincing. Any possible benefits are likely to be outweighed by the adverse effects associated with their use.
Collapse
Affiliation(s)
- Samer Alabed
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | | | | | | |
Collapse
|
38
|
Güzey C, Lopez-Rodriguez R, Myhre R, Spigset O. Allele and genotype frequencies of serotonin and dopamine transporter and receptor polymorphisms in a Norwegian population. Genet Test Mol Biomarkers 2011; 15:557-63. [PMID: 21453053 DOI: 10.1089/gtmb.2010.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in genes coding for dopaminergic and serotonergic receptors and transporters have been associated with the clinical effects and adverse drug reactions of antipsychotic and antidepressant drugs. The objective of this study was to investigate the frequency and combinations of common polymorphisms in the dopamine transporter (DAT1), dopamine D(2) receptor (DRD2), dopamine D(3) receptor (DRD3), serotonin transporter (5HTT), and serotonin 2A receptor (5HTR2A) genes in a Norwegian population. To determine the background frequency in the population, 250 blood samples were consecutively collected from healthy Norwegian blood donors (125 men and 125 women; mean age: 48±11 years). Samples were tested for DAT1 VNTR, DRD2 Taq1A, DRD3 Ser9Gly, 5HTTLPR, and four polymorphisms (102 T>C, His452Tyr, 516 C>T, and Thr25Asn) in the 5HTR2A, using polymerase chain reaction and real-time polymerase chain reaction. We observed the frequency of the nine-repeat allele of DAT1 VNTR polymorphism as 20% (95% confidence interval [CI]: 0.18-0.23), the A1 allele of DRD2 Taq1A polymorphism as 21% (95% CI: 0.19-0.23), the A1 allele of DRD3 Ser9Gly polymorphism as 68% (95% CI: 0.66-0.70), the short allele of 5HTTLPR as 38% (95% CI: 0.36-0.40), and the T allele of 5HTR2A 102 T>C polymorphism as 41% (95% CI: 0.39-0.41), and the frequencies of 5HTR2A His452Tyr and 5HTR2A Thr25Asn were 93% and 95%, respectively. The tested polymorphisms showed differences compared with other European populations. Further studies are necessary to better understand the effect of these alleles and their combinations on personality, mental disorders, drug response, and adverse reactions of psychotropic drugs.
Collapse
Affiliation(s)
- Cüneyt Güzey
- Division of Psychiatry, Department of Research and Development, St. Olav University Hospital, Trondheim, Norway.
| | | | | | | |
Collapse
|
39
|
Chowdhury NI, Remington G, Kennedy JL. Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep 2011; 13:156-65. [PMID: 21336863 DOI: 10.1007/s11920-011-0185-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antipsychotic medication has been enormously helpful in the treatment of psychotic symptoms during the past several decades. Unfortunately, several important side effects that can cause significant morbidity and mortality. The two most common are abnormal involuntary movements (tardive dyskinesia) and weight gain progressing through diabetes to metabolic syndrome. A more rare and life-threatening adverse effect is clozapine-induced agranulocytosis (CIA), which has been linked to clozapine use. Clozapine itself has a unique position among antipsychotic medications, representing the treatment of choice in refractory schizophrenia. Unfortunately, the potential risk of agranulocytosis, albeit small, prevents the widespread use of clozapine. Very few genetic determinants have been clearly associated with CIA due to small sample sizes and lack of replication in subsequent studies. The HLA system has been the main hypothesized region of interest in the study of CIA, and several gene variants in this region have been implicated, particularly variants of the HLA-DQB1 locus. A preliminary genome-wide association study has been conducted on a small sample for CIA, and a signal from the HLA region was noted. However, efforts to identify key gene mechanisms that will be useful in predicting antipsychotic side effects in the clinical setting have not been fully successful, and further studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Nabilah I Chowdhury
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada
| | | | | |
Collapse
|
40
|
Shiroma PR, Geda YE, Mrazek DA. Pharmacogenomic implications of variants of monoaminergic-related genes in geriatric psychiatry. Pharmacogenomics 2011; 11:1305-30. [PMID: 20860469 DOI: 10.2217/pgs.10.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Response to psychiatric medications in later life is highly heterogeneous and complex. Monoaminergic-related polymorphisms may influence medication response and susceptibility to side effects in elderly individuals. Individuals with the lower function short (S) allele of the serotonin transporter gene (SLC6A4) insertion/deletion (indel) promoter polymorphism (5-HTTLPR) have both increased the likelihood of adverse drug events and increased the need for higher antidepressant concentrations to obtain maximum antidepressant response. By contrast, carriers of the higher expression homozygous long allele (L/L) genotype may respond at lower concentrations. The differential role of these polymorphisms appears at early stages of treatment rather than in the final antidepressant outcome. Research findings suggest that the rs25531 SNP may influence functional expression of the L allele. Similarly, a variable number of tandem repeats in the second intron of the serotonin transporter gene may influence the expression of SLC6A4 and the implications of these variants may be influenced by aging. Two polymorphisms, rs2242466 (-182T/C) and rs5569 (1287G/A), in the norepinephrine transporter gene (SLC6A2 or NET) have been associated with antidepressant response. Studies in dopamine-related polymorphisms have focused on associations with neuroleptic-induced movement disorders. The rs1800497 variant (Taq1A) of the dopamine receptor D2 (DRD2) gene located in a noncoding 3´ region may regulate expression of D2 receptors. The rs6280 variant (Ser9Gly) of the dopamine receptor 3 (DRD3) gene may influence the binding affinity of D3 receptors as a result of serine to glycine substitution of the receptor protein. A multicenter collaborative research effort would be an effective strategy to increase sample sizes to further investigate how gene variants impact the pharmacodynamics and pharmacokinetics of psychotropic drugs in elderly persons.
Collapse
Affiliation(s)
- Paulo R Shiroma
- Geriatric Psychiatry Clinic, Mental Health Service Line, Minneapolis VA Medical Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | |
Collapse
|
41
|
Abstract
Existing psychotropic medications for the treatment of mental illnesses, including antidepressants, mood stabilizers, and antipsychotics, are clinically suboptimal. They are effective in only a subset of patients or produce partial responses, and they are often associated with debilitating side effects that discourage adherence. There is growing enthusiasm in the promise of pharmacogenetics to personalize the use of these treatments to maximize their efficacy and tolerability; however, there is still a long way to go before this promise becomes a reality. This article reviews the progress that has been made in research toward understanding how genetic factors influence psychotropic drug responses and the challenges that lie ahead in translating the research findings into clinical practices that yield tangible benefits for patients with mental illnesses.
Collapse
Affiliation(s)
- Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Hampton House, Room 857, 624 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
42
|
Abstract
The wide interindividual variability in clinical response and tolerability of antipsychotic medications has led investigators to postulate that these variabilities may be under genetic control. Although not always consistent, there are promising indications from emergent pharmacogenetic studies that efficacy of antipsychotic medications for the various symptom domains of psychopathology in schizophrenia may be genetically regulated. This is an encouraging approach. Moreover, there are also suggestive findings that the side-effect profiles of second-generation antipsychotic medications and their propensity to cause weight gain and glucose and lipid abnormalities as well as tardive dyskinesia may be related to pharmacogenetic factors in this patient population. Ultimately, such approaches could drive choices of antipsychotic medication based on the likelihood of clinical response and development of side effects in light of a particular patient's genetic profile. In the future, this targeted approach (personalized medicine) may become informative for clinicians choosing an antipsychotic medication for an individual patient with schizophrenia.
Collapse
Affiliation(s)
- Adriana Foster
- Department of Psychiatry and Health Behavior, Medical College of Georgia, 997 St Sebastian, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
43
|
Abstract
Tardive dyskinesia (TD) is one of the most serious adverse side effects of antipsychotic drugs and is an important topic of pharmacogenetic studies. Since there is a genetic susceptibility for developing this adverse reaction, and given that it is hard to predict its development prior to or during the early period of medication, the genetic study of TD is a promising research topic that has a direct clinical application. Moreover, such studies would improve our understanding of the genetic mechanism(s) underlying abnormal dyskinetic movement. A substantial number of case-control association studies of TD have been performed, with numbers of studies focusing on the genes involved in antipsychotic drug metabolism, such as those for cytochrome P450 (CYP) and oxidative stress related genes as well as various neurotransmitter related genes. These studies have produced relatively consistent though controversial findings for certain polymorphisms such as CYP2D6*10, DRD2 Taq1A, DRD3 Ser9Gly, HTR2A T102C, and MnSOD Ala9Val. Moreover, the application of the genome-wide association study (GWAS) to the susceptibility of TD has revealed certain associated genes that previously were never considered to be associated with TD, such as the rs7669317 on 4q24, GLI2 gene, GABA pathway genes, and HSPG2 gene. Although a substantial number of genetic studies have investigated TD, many of the positive findings have not been replicated or are inconsistent, which could be due to differences in study design, sample size, and/or subject ethnicity. We expect that more refined research will be performed in the future to resolve these issues, which will then enable the genetic prediction of TD and clinical application thereof.
Collapse
|
44
|
Zhang JP, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 2011; 7:9-37. [PMID: 21162693 PMCID: PMC3057913 DOI: 10.1517/17425255.2011.532787] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IMPORTANCE OF THE FIELD Antipsychotic drug is the mainstay of treatment for schizophrenia, and there are large inter-individual differences in clinical response and side effects. Pharmacogenetics provides a valuable tool to fulfill the promise of personalized medicine by tailoring treatment based on one's genetic markers. AREAS COVERED IN THIS REVIEW This article reviews the pharmacogenetic literature from early 1990s to 2010, focusing on two aspects of drug action: pharmacokinetics and pharmacodynamics. Genetic variants in the neurotransmitter receptors including dopamine and 5-HT and metabolic pathways of drugs including CYP2D6 and COMT were discussed in association with clinical drug response and side effects. WHAT THE READER WILL GAIN Readers are expected to learn the up-to-date evidence in pharmacogenetic research and to gain familiarity to the issues and challenges facing the field. TAKE HOME MESSAGE Pharmacogenetic research of antipsychotic drugs is both promising and challenging. There is consistent evidence that some genetic variants can affect clinical response and side effects. However, more studies that are designed specifically to test pharmacogenetic hypotheses are clearly needed to advance the field.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- The Zucker Hillside Hospital, Feinstein Institute of Medical Research, North Shore-Long Island Jewish Health System, Division of Psychiatry Research, Department of Psychiatry, Glen Oaks, NY 11004, USA.
| | | |
Collapse
|
45
|
Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson's disease. Mov Disord 2010; 26:73-9. [PMID: 20945430 DOI: 10.1002/mds.23400] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/19/2010] [Accepted: 07/20/2010] [Indexed: 11/10/2022] Open
Abstract
To examine whether there is a differential genetic susceptibility in the diphasic and peak-dose forms of levodopa-induced dyskinesias (LID) in patients with Parkinson's disease (PD). The study cohort comprised 503 unrelated Korean PD patients who were treated with levodopa and had a disease duration of at least 5 years. The presence of LID was identified during a routine follow-up and special care was taken to separate the two distinct forms of LID into diphasic and peak-dose dyskinesias (PDSK). Genotyping was performed in the 503 patients and in 559 healthy controls to search for polymorphisms of DRD3 p.S9G, DRD2 Taq1A, GRIN2B c.2664C>T, c.366C>G, c.-200T>G, and the promoter region of SLC6A4. A total of 229 patients expressed LID (peak-dose in 205, diphasic in 57, and both in 33). The presence of diphasic dyskinesia (DDSK) was exclusively associated with the DRD3 p.S9G variant after adjusting for gender, age at PD onset, Hoehn & Yahr stage, and duration of levodopa treatment. Carrying the AA genotype was likely to shorten the onset of DDSK according to the duration of levodopa therapy (P = 0.02). The presence of PDSK was not significantly associated with any of the six genetic variants studied. There may be a genetic susceptibility in the development of DDSK in PD patients on chronic levodopa therapy, and its underlying pathophysiological mechanism might be distinct from that of PDSK.
Collapse
Affiliation(s)
- Jee-Young Lee
- Department of Neurology, Seoul National University Boramae Hospital, Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B. Evidence for association of the GLI2
gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 2010; 25:2809-17. [DOI: 10.1002/mds.23377] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
47
|
Abstract
Existing psychotropic medications for the treatment of mental illnesses, including antidepressants, mood stabilizers, and antipsychotics, are clinically suboptimal. They are effective in only a subset of patients or produce partial responses, and they are often associated with debilitating side effects that discourage adherence. There is growing enthusiasm in the promise of pharmacogenetics to personalize the use of these treatments to maximize their efficacy and tolerability; however, there is still a long way to go before this promise becomes a reality. This article reviews the progress that has been made in research toward understanding how genetic factors influence psychotropic drug responses and the challenges that lie ahead in translating the research findings into clinical practices that yield tangible benefits for patients with mental illnesses.
Collapse
Affiliation(s)
- Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Hampton House, Baltimore, MD 21205, USA.
| | | |
Collapse
|
48
|
|
49
|
Lohoff FW, Ferraro TN. Pharmacogenetic considerations in the treatment of psychiatric disorders. Expert Opin Pharmacother 2010; 11:423-39. [DOI: 10.1517/14656560903508762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Tsai HT, North KE, West SL, Poole C. The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:57-66. [PMID: 19358223 DOI: 10.1002/ajmg.b.30946] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To elucidate a widely suspected but inconclusive association between rs6280 in the dopamine receptor 3 gene (DRD3) and prevalence of tardive dyskinesia (TD), we conducted a meta-analysis of studies obtained in a systematic search of several bibliographic systems. We conducted several analyses of funnel plot asymmetry, overall heterogeneity, and study characteristics in analyses analogous to general, dominant and recessive inheritance models with the prevalence odds ratio (POR) as the measure of association. Thirteen eligible studies were identified with publication dates between 1997 and 2008. Evidence of funnel plot asymmetry was discerned in the dominant and general model analyses, but not in the recessive model analysis. Stratified analyses indicated that publication year, TD assessment method (Schooler-Kane criteria or other) and TD assessment frequency (single or repeated) were important study characteristics associated with heterogeneous PORs across studies. Studies conducted among patients with older age, fewer women or European (compared with Asian) ancestry reported stronger average PORs. Summary POR estimates under the dominant and general inheritance models were not warranted due to funnel plot asymmetry and heterogeneity. Under the recessive model, the summary estimate was POR = 0.93 (95% confidence interval: 0.70-1.23). We conclude that there is no or little association between DRD3 rs6280 polymorphisms and prevalence of TD.
Collapse
Affiliation(s)
- Huei-Ting Tsai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|