1
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Repeated stress triggers seeking of a starvation-like state in anxiety-prone female mice. Neuron 2024; 112:2130-2141.e7. [PMID: 38642553 PMCID: PMC11287784 DOI: 10.1016/j.neuron.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
Affiliation(s)
- Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Trent Pottala
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leilani Potgieter
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Hasbrouck
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Chronic stress triggers seeking of a starvation-like state in anxiety-prone female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541013. [PMID: 37292650 PMCID: PMC10245771 DOI: 10.1101/2023.05.16.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe hunger as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether chronic stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress induction, male but not female mice showed mild aversion to AgRP stimulation. Strikingly, following chronic stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state, and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
|
3
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
4
|
Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep 2022; 12:12604. [PMID: 35871167 PMCID: PMC9308795 DOI: 10.1038/s41598-022-16944-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.
Collapse
|
5
|
Morgan GSK, Mata Y, Urbano BC, Suárez de Puga RP, Guirao PC, Gotti S, Sànchez HP. Influence of early maternal separation on susceptibility to the activity-based anorexia model in male and female Sprague Dawley rats. Neurosci Res 2022; 184:54-61. [PMID: 35948154 DOI: 10.1016/j.neures.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
Abstract
A principal animal paradigm employed in Anorexia Nervosa (AN) study is the activity-based anorexia (ABA) model. The model's efficacy in recapitulating the core features of AN in humans allows for the study of the parameters involved in the disorder. The current study examined the susceptibility to the ABA protocol in the presence of a significant stressor (maternal separation) in male and female Sprague Dawley rats. More importantly, we analysed the sex-differences on activity levels during different periods of the ABA protocol to determine the period(s) influencing the most pathological weight loss. Both components of the ABA protocol contributed to the subjects' bodyweight loss. Stress in the first two weeks of development conferred a protective effect in males. Time spent and activity levels on the running wheel were higher in females compared to males. Hyperactivity in ABA subjects was observed during the food-anticipatory activity (FAA) and postprandial activity in males and during the FAA and nocturnal activity periods in females. This study aids in understanding the effect of intensity of activity during specific periods on the pathological weight loss in ABA rats. These observations are informative for therapies aimed at ameliorating body mass index in AN patients.
Collapse
Affiliation(s)
- Godstime Stephen Kojo Morgan
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10125 Torino, Italy; Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Yolanda Mata
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Beatriz Carrillo Urbano
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Ricardo Pellón Suárez de Puga
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Paloma Collado Guirao
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10125 Torino, Italy.
| | - Helena Pinos Sànchez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Covaceuszach S, Peche LY, Konarev PV, Grdadolnik J, Cattaneo A, Lamba D. Untangling the Conformational Plasticity of V66M Human proBDNF Polymorphism as a Modifier of Psychiatric Disorder Susceptibility. Int J Mol Sci 2022; 23:ijms23126596. [PMID: 35743044 PMCID: PMC9224406 DOI: 10.3390/ijms23126596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/27/2023] Open
Abstract
The human genetic variant BDNF (V66M) represents the first example of neurotrophin family member that has been linked to psychiatric disorders. In order to elucidate structural differences that account for the effects in cognitive function, this hproBDNF polymorph was expressed, refolded, purified, and compared directly to the WT variant for the first time for differences in their 3D structures by DSF, limited proteolysis, FT-IR, and SAXS measurements in solution. Our complementary studies revealed a deep impact of V66M polymorphism on hproBDNF conformations in solution. Although the mean conformation in solution appears to be more compact in the V66M variant, overall, we demonstrated a large increase in flexibility in solution upon V66M mutation. Thus, considering that plasticity in IDR is crucial for protein function, the observed alterations may be related to the functional alterations in hproBDNF binding to its receptors p75NTR, sortilin, HAP1, and SorCS2. These effects can provoke altered intracellular neuronal trafficking and/or affect proBDNF physiological functions, leading to many brain-associated diseases and conditions such as cognitive impairment and anxiety. The structural alterations highlighted in the present study may pave the way to the development of drug discovery strategies to provide greater therapeutic responses and of novel pharmacologic strategy in human populations with this common polymorphism, ultimately guiding personalized medicine for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy;
- Correspondence: (S.C.); (D.L.)
| | - Leticia Yamila Peche
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy;
| | - Petr Valeryevich Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Joze Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
| | - Antonino Cattaneo
- European Brain Research Institute, 00161 Roma, Italy;
- Scuola Normale Superiore, 56126 Pisa, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy;
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, 00136 Roma, Italy
- Correspondence: (S.C.); (D.L.)
| |
Collapse
|
7
|
Keeler JL, Patsalos O, Chung R, Schmidt U, Breen G, Treasure J, Hubertus H, Dalton B. Short communication: Serum levels of brain-derived neurotrophic factor and association with pro-inflammatory cytokines in acute and recovered anorexia nervosa. J Psychiatr Res 2022; 150:34-39. [PMID: 35349796 DOI: 10.1016/j.jpsychires.2022.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neuroprotective molecule known to be involved in neuroplasticity, learning and memory. Additionally, it may mitigate the effects of inflammation on the brain. There is inconclusive evidence as to whether reductions in BDNF found in AN are related to features associated with the illness such as changes in inflammatory markers and comorbidities, and whether they persist after recovery. This cross-sectional study measured BDNF and 36 inflammatory markers in the serum of individuals recovered from AN (rec-AN; n = 24), with acute AN (n = 56), and healthy controls (n = 51). We (a) compared BDNF concentrations between AN, rec-AN and controls including four pre-determined covariates; (b) assessed the relationship between BDNF and body mass index, eating disorder (ED) psychopathology and depression; and (c) correlated BDNF with inflammatory markers, stratified by group. The AN group showed reductions in BDNF compared to controls and rec-AN. BDNF was negatively associated with depression and ED psychopathology in the whole sample, but not the AN sample. BDNF was positively correlated with three inflammatory markers in the control group (interleukin (IL)-8, Eotaxin-3, tumor necrosis factor (TNF)-α) and negatively correlated with one (IL-16). The only pro-inflammatory marker associated with BDNF in the AN group was TNF-α, and no pro-inflammatory markers were associated with BDNF in the rec-AN group. These results indicate that BDNF serum concentrations may be a state marker of AN. In people with acute AN, BDNF levels seem to be linked to TNF-α signalling. However, BDNF concentrations do not appear to reflect AN symptom severity.
Collapse
Affiliation(s)
- Johanna L Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Olivia Patsalos
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Raymond Chung
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, UK
| | - Gerome Breen
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, UK
| | - Himmerich Hubertus
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, UK
| | - Bethan Dalton
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| |
Collapse
|
8
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|
9
|
Curtis D. Weighted burden analysis in 200,000 exome-sequenced subjects characterises rare variant effects on BMI. Int J Obes (Lond) 2022; 46:782-792. [PMID: 35067685 DOI: 10.1038/s41366-021-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION A number of genes have been identified in which rare variants can cause obesity. Here we analyse a sample of exome sequenced subjects from UK Biobank using BMI as a phenotype with the aims of identifying genes in which rare, functional variants influence BMI and characterising the effects of different categories of variant. METHODS There were 199,807 exome sequenced subjects for whom BMI was recorded. Weighted burden analysis of rare, functional variants was carried out, incorporating population principal components and sex as covariates. For selected genes, additional analyses were carried out to clarify the contribution of different categories of variant. Statistical significance was summarised as the signed log 10 of the p value (SLP), given a positive sign if the weighted burden score was positively correlated with BMI. RESULTS Two genes were exome-wide significant, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61). In MC4R, disruptive variants were associated with an increase in BMI of 2.72 units and probably damaging nonsynonymous variants with an increase of 2.02 units. In PCSK1, disruptive variants were associated with a BMI increase of 2.29 and protein-altering variants with an increase of 0.34. Results for other genes were not formally significant after correction for multiple testing, although SIRT1, ZBED6 and NPC2 were noted to be of potential interest. CONCLUSION Because the UK Biobank consists of a self-selected sample of relatively healthy volunteers, the effect sizes noted may be underestimates. The results demonstrate the effects of very rare variants on BMI and suggest that other genes and variants will be definitively implicated when the sequence data for additional subjects becomes available.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
- Centre for Psychiatry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
10
|
Brain Volume Loss, Astrocyte Reduction, and Inflammation in Anorexia Nervosa. ADVANCES IN NEUROBIOLOGY 2021; 26:283-313. [PMID: 34888839 DOI: 10.1007/978-3-030-77375-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anorexia nervosa is the third most common chronic disease in adolescence and is characterized by low body weight, body image distortion, weight phobia, and severe somatic consequences. Among the latter, marked brain volume reduction has been linked to astrocyte cell count reduction of about 50% in gray and white matter, while neuronal and other glial cell counts remain normal. Exact underlying mechanisms remain elusive; however, first results point to important roles of the catabolic state and the very low gonadal steroid hormones in these patients. They also appear to involve inflammatory states of "hungry astrocytes" and interactions with the gut microbiota. Functional impairments could affect the role of astrocytes in supporting neurons metabolically, neurotransmitter reuptake, and synapse formation, among others. These could be implicated in reduced learning, mood alterations, and sleep disturbances often seen in patients with AN and help explain their rigidity and difficulties in relearning processes in psychotherapy during starvation.
Collapse
|
11
|
Ahamed SK, Barek MA, Roy UK, Kouser M, Reza MS, Mannan AB, Alam MA, Uddin SMN. A review on association and correlation of genetic variants with eating disorders and obesity. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Now, eating disorders and obesity and their correlations are danger signal in worldwide which is caused by multifactor and associated with significant mortality and morbidity.
Main body
Every aspect of a patient’s life is influenced by eating disorders and obesity and their correlations. Due to frequent seeing of obese patients, eating disorders have been included in the review as they can sometimes be associated with obesity. However, it should be noted that most patients having eating disorder are at risk to be obese or overweight. This research explores the risk factors for the two disorders, as well as the assessment of medical complications and treatment recommendations for the disorders. In these two disorders, there is also a correlation. The essential consideration is that eating disorders are impulse-control disorders which are similar to addictive behaviors in some aspects. So it is a crying need to treat a patient with obesity and eating disorders simultaneously to ensure success. Genome-wide association studies (GWASs) have increased our knowledge of the pathophysiology of eating disorders (EDs) and obesity and their correlation.
Conclusion
This review enlightens on the summary of eating disorder, obesity, genotypic traits, molecular relations, interaction, correlation, and effect of eating disorder and obesity which outline potential future directions and clinical implications for patients with EDs and obesity.
Collapse
|
12
|
Islam T, Madhubala D, Mukhopadhyay R, Mukherjee AK. Transcriptomic and functional proteomics analyses to unveil the common and unique pathway(s) of neuritogenesis induced by Russell's viper venom nerve growth factor in rat pheochromocytoma neuronal cells. Expert Rev Proteomics 2021; 18:463-481. [PMID: 34110968 DOI: 10.1080/14789450.2021.1941892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Background: The snake venom nerve growth factor (NGF)-induced signal transduction mechanism has never been explored.Research design and methods: Homology modeling and molecular dynamic studies of the interaction between Russell's viper venom NGF (RVV-NGFa) and mammalian tropomyosin-receptor kinase A (TrkA) was done by computational analysis. Transcriptomic and quantitative tandem mass spectrometry analyses determined the expression of intracellular genes and proteins, respectively, in RVV-NGFa-treated PC-12 neuronal cells. Small synthetic inhibitors of the signal transduction pathways were used to validate the major signaling cascades of neuritogenesis by RVV-NGFa.Results: A comparative computational analysis predicted the binding of RVV-NGFa, mouse 2.5S-NGF (conventional neurotrophin), and Nn-α-elapitoxin-1 (non-conventional neurotrophin) to different domains of the TrkA receptor in PC-12 cells. The transcriptomic and quantitative proteomic analyses in unison showed differential expressions of common and unique genes and intracellular proteins, respectively, in RVV-NGFa-treated cells compared to control (untreated) mouse 2.5S-NGF and Nn-α-elapitoxin-1-treated PC-12 cells. The RVV-NGFa primarily triggered the mitogen-activated protein kinase-1 (MAPK1) signaling pathway for inducing neuritogenesis; however, 36 pathways of neuritogenesis were uniquely expressed in RVV-NGFa-treated PC-12 cells compared to mouse 2.5S NGF or Nn-α-elapitoxin-1 treated cells.Conclusion: The common and unique intracellular signaling pathways of neuritogenesis by classical and non-classical neurotrophins were identified.
Collapse
Affiliation(s)
- Taufikul Islam
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
13
|
Abou Al Hassan S, Cutinha D, Mattar L. The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: a systematic review. Eat Weight Disord 2021; 26:1323-1344. [PMID: 32783113 DOI: 10.1007/s40519-020-00978-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The genetic aspect of anorexia nervosa (AN) involving specific genes of the central-nervous-system has not yet been clearly understood. The aim of this systematic review is to assess the impact of three candidate genes of the brain: catechol-O-methyltransferase, brain-derived neurotrophic factor (BDNF) and serotonin transporter protein, on the susceptibility to AN and identify whether a clear connection persists between each of the gene-polymorphisms and AN. METHODS A total of 21 articles were selected for this review conforming to the PRISMA guidelines. Detailed keyword combinations were implemented within specific databases such as MEDLINE, SCIENCEDIRECT and PUBMED. RESULTS The catechol-O-methyltransferase gene-polymorphism did not show any change in phenotypic variation between AN and control subjects; but the familial association was rather strong with an over-transmission of the H allele. The latter also correlated with several dimensions of the Temperament and Character Inventory (TCI) scale. A notable relation was indicated between BDNF gene-polymorphism and anorexia-restrictive in terms of phenotypic distribution; the Met66-allele also depicted high association with anorexic behavioral traits. The 5-HTTLPR gene-polymorphism was found to be significantly associated with AN susceptibility with an over-transmission of the S-allele from parents to offspring. CONCLUSION The systematic review distinctively emphasized the genetic contribution of the brain-genes on the development of AN. Despite significant study findings, no clear and standardized genetic route was determined to be the cause of AN development. Future research is needed on these specific genes to closely monitor the genetic polymorphisms and their mechanism on AN susceptibility. LEVEL OF EVIDENCE I, systematic review.
Collapse
Affiliation(s)
- Sirine Abou Al Hassan
- Dietetic Department, Saint George Hospital University Medical Center, Beirut, Lebanon.,Division of Medicine, Eating Disorders and Clinical Nutrition, University College London, London, UK
| | - Darren Cutinha
- Division of Medicine, Eating Disorders and Clinical Nutrition, University College London, London, UK
| | - Lama Mattar
- Nutrition Division, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
14
|
Ryu JS, Lee YM, Kim YS, Kang S, Park JS, Ahn CW, Nam JS, Seok JH. Association between BDNF Polymorphism and Depressive Symptoms in Patients Newly Diagnosed with Type 2 Diabetes Mellitus. Yonsei Med J 2021; 62:359-365. [PMID: 33779090 PMCID: PMC8007434 DOI: 10.3349/ymj.2021.62.4.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Little is known about the relationship between brain-derived neurotrophic factor (BDNF) gene polymorphisms and psychiatric symptoms in diabetes patients. We investigated the effects of BDNF Val/66/Met polymorphism, glucose status, psychological susceptibility, and resilience on anxiety and depression symptoms in patients newly diagnosed with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS We examined biochemical factors and BDNF polymorphism in 89 patients who were newly diagnosed with T2DM. Psychiatric symptoms were investigated with the Hospital Anxiety and Depression Scale (HADS), and the Connor-Davidson Resilience Scale (CD-RISC) and Impact of Event Scale (IES) were used to assess psychological resilience and susceptibility to psychological distress, respectively. Logistic regression analyses were conducted to investigate factors associated with psychiatric symptoms. RESULTS We determined that 62 patients (70%) were Met-carriers. No significant differences were found between the Val/Val homozygous and Met-carrier groups regarding age, sex, body mass index, and clinical factors related to glycemic control and lipid profiles. HADS-anxiety and HADS-depression scores and IES factor scores were higher in the Met-carrier than the Val/Val homozygous group. Hemoglobin A1c (HbA1c) level was significantly inversely correlated with the severity of depressive symptoms. Resilience factors showed significant inverse correlations, and IES factors showed positive correlations with depressive symptom severity. In the logistic regression analysis model, depressive symptoms were significantly associated with HbA1c and BDNF polymorphism, whereas only the hyperarousal factor of the IES scale was associated with anxiety. CONCLUSION Depressive symptoms are associated with the presence of the Met-carriers and lower HbA1c in patients newly diagnosed with T2DM.
Collapse
Affiliation(s)
- Jin Sun Ryu
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mi Lee
- Department of Internal Medicine, Dongtan Jeil Women's Hospital & Sangwoon Medical Institute, Hwasung, Korea
| | - Yu Sik Kim
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| | - Shinae Kang
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Suk Park
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Woo Ahn
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Sun Nam
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jeong Ho Seok
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Is Serum BDNF Altered in Acute, Short- and Long-Term Recovered Restrictive Type Anorexia Nervosa? Nutrients 2021; 13:nu13020432. [PMID: 33572701 PMCID: PMC7910942 DOI: 10.3390/nu13020432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin involved in the regulation of food intake and body weight, has been implicated in the development and maintenance of Anorexia nervosa (AN). The majority of previous studies reported lower BDNF levels in acutely underweight AN patients (acAN) and increasing levels after weight rehabilitation. Here, we investigated serum BDNF concentrations in the largest known AN sample to date, both before and after weight restoration therapy. Serum BDNF was measured in 259 female volunteers: 77 in-patient acAN participants of the restrictive type (47 reassessed after short-term weight rehabilitation), 62 individuals long-term recovered from AN, and 120 healthy controls. We validated our findings in a post-hoc mega-analysis in which we reanalyzed combined data from the current sample and those from our previous study on BDNF in AN (combined sample: 389 participants). All analyses carefully accounted for known determinants of BDNF (age, sex, storage time of blood samples). We further assessed relationships with relevant clinical variables (body-mass-index, physical activity, symptoms). Contrary to our hypotheses, we found zero significant differences in either cross-sectional or longitudinal comparisons and no significant relationships with clinical variables. Together, our study suggests that BDNF may not be a reliable state- or trait-marker in AN after all.
Collapse
|
16
|
Marcos-Pasero H, Aguilar-Aguilar E, Ikonomopoulou MP, Loria-Kohen V. BDNF Gene as a Precision Skill of Obesity Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:233-248. [PMID: 34453302 DOI: 10.1007/978-3-030-74046-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scarcity of the results obtained for the treatment of obesity leads us to consider new strategies, contemplating all the factors involved in the development of the disease. One of the key molecules for controlling body weight and energy homeostasis is the brain-derived neurotrophic factor (BDNF). This work summarizes the mechanisms in which BDNF gene regulates this multifactorial disease. In addition, we discuss the role of other BDNF polymorphisms as genetic determinants of obesity. In this context, a total of 14 SNPs near or inside BDNF/BDNF-AS related to BMI were identified in various GWASs. Finally, we assess gene-diet interaction as a novel tool to prevent obesity and formulate solid and personalized nutritional management. Our research group has performed the first study on the association of BDNF-AS rs925946 polymorphism and calcium intake as potential modulators of the nutritional status. Although these results should be confirmed in future studies, they open the path for new prevention opportunities.
Collapse
Affiliation(s)
- Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Maria P Ikonomopoulou
- Translational Venomics Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain. .,Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
17
|
McGregor CE, Irwin AM, English AW. The Val66Met BDNF Polymorphism and Peripheral Nerve Injury: Enhanced Regeneration in Mouse Met-Carriers Is Not Further Improved With Activity-Dependent Treatment. Neurorehabil Neural Repair 2019; 33:407-418. [PMID: 31068076 DOI: 10.1177/1545968319846131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activity-dependent treatments to enhance peripheral nerve regeneration after injury have shown great promise, and clinical trials implementing them have begun. Success of these treatments requires activity-dependent release of brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP) in the bdnf gene known as Val66Met, which is found in nearly one third of the human population, results in defective activity-dependent BDNF secretion and could impact the effectiveness of these therapies. Here, we used a mouse model of this SNP to test the efficacy of treadmill exercise in enhancing axon regeneration in animals both heterozygous (V/M) and homozygous (M/M) for the SNP. Axon regeneration was studied 4 weeks after complete transection and repair of the sciatic nerve in both male and female animals, using both electrophysiological and histological outcome measures. Regeneration was enhanced significantly without treatment in V/M mice, compared with wild type (V/V) controls. Unlike V/V mice, treatment of both V/M and M/M mice with treadmill exercise did not result in enhanced regeneration. These results were recapitulated in vitro using dissociated neurons containing the light-sensitive cation channel, channelrhodopsin. Three days after plating, neurites of neurons from V/M and M/M mice were longer than those of V/V neurons. In neurons from V/V mice, but not those from V/M or M/M animals, longer neurites were found after optogenetic stimulation. Taken together, Met-carriers possess an intrinsically greater capacity to regenerate axons in peripheral nerves, but this cannot be enhanced further by activity-dependent treatments.
Collapse
|
18
|
Nilsson IAK. The anx/anx Mouse - A Valuable Resource in Anorexia Nervosa Research. Front Neurosci 2019; 13:59. [PMID: 30804742 PMCID: PMC6370726 DOI: 10.3389/fnins.2019.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Animal models are invaluable resources in research concerning the neurobiology of anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None of the existing models can capture all aspects of AN but they are able to mirror the core features of the disorder e.g., elective starvation, emaciation and premature death. The anorectic anx/anx mouse is of particular value for the understanding of the abnormal response to negative energy balance seen in AN. These mice appear normal at birth but gradually develops starvation and emaciation despite full access to food, and die prematurely around three weeks of age. Several changes in hypothalamic neuropeptidergic and -transmitter systems involved in regulating food intake and metabolism have been documented in the anx/anx mouse. These changes are accompanied by signs of inflammation and degeneration in the same hypothalamic regions; including activation of microglia cells and expression of major histocompatibility complex I by microglia and selective neuronal populations. These aberrances are likely related to the dysfunction of complex I (CI) in the oxidative phosphorylation system of the mitochondria, and subsequent increased oxidative stress, which also has been revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has been shown in leukocytes from patients with AN. In addition, a higher expression of the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx hypothalamus. This agrees with AN being associated with specific variants of the genes for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An increased incidence of eating disorders has been reported for young diabetic women, and as well has increased levels of circulating FFAs in AN. Also similar to individuals with AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum. Thus, the anx/anx mouse shares several characteristics with patients with AN, including emaciation, starvation, premature death, diabetic features, increased FFA and low leptin, and is therefore a unique resource in research on the (neuro)biology of AN.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2019; 12:522. [PMID: 30687012 PMCID: PMC6336700 DOI: 10.3389/fncel.2018.00522] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery is generally very poor. The neurotrophins have emerged as an important modulator of axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation and signaling, as well as its role in activity-dependent treatments including electrical stimulation, exercise, and optogenetic stimulation are discussed here. The importance of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present in 30% of the human population and may hinder the efficacy of these treatments in enhancing regeneration after injury is considered. Preliminary data are presented on the effectiveness of one such activity-dependent treatment, electrical stimulation, in enhancing axon regeneration in mice expressing the met allele of the Val66Met polymorphism.
Collapse
Affiliation(s)
- Claire Emma McGregor
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Gattere G, Stojanovic-Pérez A, Monseny R, Martorell L, Ortega L, Montalvo I, Solé M, Algora MJ, Cabezas Á, Reynolds RM, Vilella E, Labad J. Gene-environment interaction between the brain-derived neurotrophic factor Val66Met polymorphism, psychosocial stress and dietary intake in early psychosis. Early Interv Psychiatry 2018; 12:811-820. [PMID: 27629407 DOI: 10.1111/eip.12371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/09/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
AIM The brain-derived neurotrophic factor (BDNF) is a major participant in the regulation of food intake and may play a role in the regulation of the stress response. We aimed to investigate whether there is a gene-environment interaction in the relationship between stress and BDNF Val66Met polymorphism in relation to dietary patterns in a sample of subjects with early psychosis. METHODS We studied 124 early psychotic disorder (PD) patients, 36 At-Risk Mental States (ARMS) and 62 healthy subjects (HS). Dietary patterns were examined by a dietician. Physical activity, life stress and perceived stress were assessed by validated questionnaires. BDNF Val66Met polymorphism (rs6265) was genotyped. A gene-environment interaction was tested with multiple linear regression analysis while adjusting for covariates. RESULTS Perceived stress was not associated with calorie intake in HS. In ARMS subjects, Met-carriers who presented low-perceived stress were associated with increased caloric intake. Conversely, those who presented high-perceived stress were associated with reduced caloric intake. In PD, perceived stress was neither associated with increased calorie intake without an effect by BDNF genotype nor a gene-environment interaction. Perceived stress was associated with food craving in PD patients, independent of genotype, and in ARMS or HS who were Val homozygous. CONCLUSIONS This study suggests that the common Val66Met polymorphism of the BDNF gene may modulate the relationship between life stress and calorie intake in subjects at risk for psychosis.
Collapse
Affiliation(s)
- Giulia Gattere
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Alexander Stojanovic-Pérez
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Rosa Monseny
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Laura Ortega
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Itziar Montalvo
- Department of Psychiatry, Corporació Sanitària Universitaria Parc Taulí, I3PT, UAB, CIBERSAM, Sabadell, Spain
| | - Montse Solé
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - María José Algora
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Ángel Cabezas
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Rebecca M Reynolds
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Elisabet Vilella
- Early Intervention Service and Research Department, Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Javier Labad
- Department of Psychiatry, Corporació Sanitària Universitaria Parc Taulí, I3PT, UAB, CIBERSAM, Sabadell, Spain
| |
Collapse
|
22
|
Herrfurth N, Volckmar AL, Peters T, Kleinau G, Müller A, Cetindag C, Schonnop L, Föcker M, Dempfle A, Wudy SA, Grant SFA, Reinehr T, Cousminer DL, Hebebrand J, Biebermann H, Hinney A. Relevance of polymorphisms in MC4R and BDNF in short normal stature. BMC Pediatr 2018; 18:278. [PMID: 30134862 PMCID: PMC6106737 DOI: 10.1186/s12887-018-1245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Variation in genes of the leptinergic-melanocortinergic system influence both body weight and height. Because short normal stature (SNS) is characterized by reduced body height, delayed maturation and leanness, allelic variation of genes in this pathway are hypothesized to affect this common condition. Methods We analyzed the coding regions of LEP, MC4R, MRAP2 and BDNF in 185 children with SNS (height < 5th percentile) to search for non-synonymous and frameshift variants. For association studies (two-sided χ2-tests) population-based data sets (ExAC, EVS and KORA) were used. Cyclic AMP accumulation, cell surface expression, central expression and MAP kinase activation were assayed in vitro to determine the functional implications of identified variants. Results We detected eleven variants predicted to be protein-altering, four in MC4R, four in BDNF, and three in MRAP2. No variants were found in LEP. In vitro analysis implied reduced function for the MC4R variant p.Met215Ile. Loss-of-function is contrary to expectations based on obesity studies, and thus does not support that this variant is relevant for SNS. The minor SNP alleles at MC4R p.Val103Ile and BDNF p.Val66Met were nominally associated with SNS. Conclusion Taken together, although genes of the leptinergic-melanocortinergic system are important for normal growth, our data do not support the involvement of rare mutations in LEP, MC4R, MRAP2 or BDNF in short normal stature. Electronic supplementary material The online version of this article (10.1186/s12887-018-1245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Herrfurth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Present Address: Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cigdem Cetindag
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Schonnop
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Christian-Albrechts University Kiel, Kiel, Germany
| | - Stefan A Wudy
- Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Giessen, Germany
| | - Struan F A Grant
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia Research Institute, Philadelphia, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, USA
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Diana L Cousminer
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia Research Institute, Philadelphia, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, USA
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
de Luis DA, Fernández Ovalle H, Izaola O, Primo D, Aller R. RS 10767664 gene variant in Brain Derived Neurotrophic Factor (BDNF) affect metabolic changes and insulin resistance after a standard hypocaloric diet. J Diabetes Complications 2018; 32:216-220. [PMID: 29174117 DOI: 10.1016/j.jdiacomp.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Role of BDNF variants on change in body weight and cardiovascular risk factors after weight loss remains unclear in obese patients. OBJECTIVE Our aim was to analyze the effects of rs10767664 BDNF gene polymorphism on body weight, cardiovascular risk factors and serum adipokine levels after a standard hypocaloric diet in obese subjects. DESIGN A Caucasian population of 80 obese patients was analyzed before and after 3months on a standard hypocaloric diet. RESULTS Fifty patients (62.5%) had the genotype AA and 30 (37.5%) subjects had the next genotypes; AT (25 patients, 31.3%) or TT (5 study subjects, 6.3%) (second group). In non T allele carriers, the decreases in weight-3.4±2.9kg (T allele group -1.7±2.0kg:p=0.01), BMI -1.5±0.2kg (T allele group -1.2±0.5kg:p=0.02), fat mass-2.3±1.1kg (T allele group -1.7±0.9kg:p=0.009), waist circumference-3.8±2.4cm (T allele group -2.1±3.1cm:p=0.008), triglycerides -13.2±7.5mg/dl (T allele group +2.8±1.2mg/dl:p=0.02), insulin -2.1±1.9mUI/L (T allele group -0.3±1.0mUI/L:p=0.01), HOMA-IR -0.9±0.4 (T allele group -0.1±0.8:p=0.01) and leptin -10.1±9.5ng/dl (T allele group -3.1±0.2ng/dl:p=0.01) were higher than T allele carriers. CONCLUSION rs10767664 variant of BDNF gene modify anthropometric and biochemical changes after weight loss with a hypocaloric diet.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| | - H Fernández Ovalle
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - O Izaola
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - D Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Rocío Aller
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| |
Collapse
|
24
|
de Luis DA, Romero E, Izaola O, Primo D, Aller R. Cardiovascular Risk Factors and Insulin Resistance after Two Hypocaloric Diets with Different Fat Distribution in Obese Subjects: Effect of the rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2018; 10:163-171. [PMID: 29339649 DOI: 10.1159/000485248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The role of brain-derived neurotrophic factor (BDNF) variants on change in body weight and cardiovascular risk factors after weight loss remains unclear in obese patients. OBJECTIVE Our aim was to analyze the effects of the rs10767664 BDNF gene polymorphism on body weight, cardiovascular risk factors, and serum adipokine levels after a high monounsaturated fatty acids (MUFAs) hypocaloric diet (diet M) versus a high polyunsaturated fatty acids (PUFAs) hypocaloric diet (diet P). METHODS A Caucasian population of 361 obese patients was enrolled. Subjects who met the inclusion criteria were randomly allocated to one of two diets for a period of 3 months. RESULTS Two hundred and sixteen subjects (59.8%) had the genotype AA (wild-type group), and 145 (40.2%) patients had the genotypes AT (122 patients, 33.8%) or TT (23 patients, 6.4%) (mutant-type group). After weight loss with diet P and diet M and in both genotype groups, body mass index, weight, fat mass, waist circumference, systolic blood pressure, serum leptin levels, low-density lipoprotein cholesterol, and total cholesterol decreased in a significant way. Secondary to weight loss with diet M and only in the wild-type group, insulin levels (-2.1 ± 2.0 vs. -0.7 ± 2.9 IU/L, p < 0.05) and homeostatic model assessment of insulin resistance (-0.7 ± 0.9 vs. -0.3 ± 1.0 U, p < 0.05) decreased. CONCLUSION Our data show that the rs10767664 variant of the BDNF gene modifies insulin resistance and insulin levels after weight loss with a hypocaloric diet enriched with MUFAs.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation of Endocrinology and Nutrition, Medical School and Department of Endocrinology and Nutrition, Hospital Clínico Universitario, University of Valladolid, Simancas, Spain
| | | | | | | | | |
Collapse
|
25
|
Mishra A, Anand M, Umesh S. Neurobiology of eating disorders - an overview. Asian J Psychiatr 2017; 25:91-100. [PMID: 28262179 DOI: 10.1016/j.ajp.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/03/2016] [Accepted: 10/09/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Anand Mishra
- Central Institute of Psychiatry, Ranchi, Jharkhand, India.
| | - Manu Anand
- Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Shreekantiah Umesh
- K.S. Mani Centre for Cognitive Neurosciences, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
26
|
Hinney A, Kesselmeier M, Jall S, Volckmar AL, Föcker M, Antel J, Heid IM, Winkler TW, Grant SFA, Guo Y, Bergen AW, Kaye W, Berrettini W, Hakonarson H, Herpertz-Dahlmann B, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Egberts KM, Adan R, Brandys M, van Elburg A, Boraska Perica V, Franklin CS, Tschöp MH, Zeggini E, Bulik CM, Collier D, Scherag A, Müller TD, Hebebrand J. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol Psychiatry 2017; 22:192-201. [PMID: 27184124 PMCID: PMC5114162 DOI: 10.1038/mp.2016.71] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.
Collapse
Affiliation(s)
- A Hinney
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Kesselmeier
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - S Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - A-L Volckmar
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Föcker
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - J Antel
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - I M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - T W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - S F A Grant
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - W Kaye
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - W Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - H Hakonarson
- The Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - M de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - W Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - S Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU-Dresden, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - S Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
| | - K M Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - R Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - M Brandys
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - A van Elburg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V Boraska Perica
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- University of Split School of Medicine, Split, Croatia
| | - C S Franklin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - E Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - C M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- Eli Lilly and Company Ltd, Surrey, UK
| | - A Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - J Hebebrand
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Ho EV, Klenotich SJ, McMurray MS, Dulawa SC. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit. PLoS One 2016; 11:e0166756. [PMID: 27861553 PMCID: PMC5115804 DOI: 10.1371/journal.pone.0166756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.
Collapse
Affiliation(s)
- Emily V. Ho
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Stephanie J. Klenotich
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew S. McMurray
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ozturk O, Basay BK, Buber A, Basay O, Alacam H, Bacanlı A, Yılmaz ŞG, Erdal ME, Herken H, Ercan ES. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism Is a Risk Factor for Attention-Deficit Hyperactivity Disorder in a Turkish Sample. Psychiatry Investig 2016; 13:518-525. [PMID: 27757130 PMCID: PMC5067346 DOI: 10.4306/pi.2016.13.5.518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/22/2015] [Accepted: 12/30/2015] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that negatively affects different areas of life. We aimed to evaluate the associations between the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) and ADHD and to assess the effect of the BDNF polymorphism on the neurocognitive profile and clinical symptomatology in ADHD. METHODS Two hundred one ADHD cases and 99 typically developing subjects (TD) between the ages of 8 and 15 years were involved in the study. All subjects were evaluated using a complete neuropsychological battery, Child Behavior Checklist, the Teacher's Report Form (TRF) and the DSM-IV Disruptive Behavior Disorders Rating Scale-teacher and parent forms. RESULTS The GG genotype was significantly more frequent in the patients with ADHD than in the TD controls, and the GG genotype was also significantly more frequent in the ADHD-combined (ADHD-C) subtype patients than in the TDs. However, there were no significant associations of the BDNF polymorphism with the ADHD subtypes or neurocognitive profiles of the patients. The teacher-assessed hyperactivity and inattention symptom count and the total score were higher, and the appropriately behaving subtest score of the TRF was lower in the GG genotypes than in the GA and AA (i.e., the A-containing) genotypes. CONCLUSION We found a positive association between the BDNF gene Val66Met polymorphism and ADHD, and this association was observed specifically in the ADHD-C subtype and not the ADHD-predominantly inattentive subtype. Our findings support that the Val66Met polymorphism of BDNF gene might be involved in the pathogenesis of ADHD. Furthermore Val66Met polymorphism of BDNF gene may be more closely associated with hyperactivity rather than inattention.
Collapse
Affiliation(s)
- Onder Ozturk
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Burge Kabukcu Basay
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ahmet Buber
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Omer Basay
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Huseyin Alacam
- Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ali Bacanlı
- Child and Adolescent Psychiatry Polyclinic, Children Hospital, Gaziantep, Turkey
| | - Şenay Görücü Yılmaz
- Department of Nutritions and Dietetics, Faculty of Healthy Science, University of Gaziantep, Gaziantep, Turkey
| | - Mehmet Emin Erdal
- Medical Biology and Genetics Department, Mersin University Medical Faculty, Mersin, Turkey
| | - Hasan Herken
- Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Eyup Sabri Ercan
- Child and Adolescent Psychiatry Department, Ege University Medical Faculty, Izmir Turkey
| |
Collapse
|
29
|
de Luis DA, Izaola O, Primo D, Pacheco D. Effect of the rs10767664 Variant of the Brain-Derived Neurotrophic Factor Gene on Weight Change and Cardiovascular Risk Factors in Morbidly Obese Patients after Biliopancreatic Diversion Surgery. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:116-122. [DOI: 10.1159/000448102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
|
30
|
Madra M, Zeltser LM. BDNF-Val66Met variant and adolescent stress interact to promote susceptibility to anorexic behavior in mice. Transl Psychiatry 2016; 6:e776. [PMID: 27045846 PMCID: PMC4872394 DOI: 10.1038/tp.2016.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
There is an urgent need to identify therapeutic targets for anorexia nervosa (AN) because current medications do not impact eating behaviors that drive AN's high mortality rate. A major obstacle to developing new treatments is the lack of animal models that recapitulate the pattern of disease onset typically observed in human populations. Here we describe a translational mouse model to study interactions between genetic, psychological and biological risk factors that promote anorexic behavior. We combined several factors that are consistently associated with increased risk of AN-adolescent females, genetic predisposition to anxiety imposed by the BDNF-Val66Met gene variant, social isolation stress and caloric restriction (CR). Approximately 40% of the mice with all of these risk factors will exhibit severe self-imposed dietary restriction, sometimes to the point of death. We systematically varied the risk factors outlined above to explore how they interact to influence anorexic behavior. We found that the Val66Met genotype markedly increases the likelihood and severity of abnormal feeding behavior triggered by CR, but only when CR is imposed in the peri-pubertal period. Incidence of anorexic behavior in our model is dependent on juvenile exposure to social stress and can be extinguished by adolescent handling, but is discordant from anxiety-like behavior. Thus, this study characterized gene × environment interactions during adolescence that could be the underlying driver of abnormal eating behavior in certain AN patients, and represents a promising system to identify possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- M Madra
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - L M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA. E-mail:
| |
Collapse
|
31
|
Klimov E. The Role of BDNF Gene Polymorphism in Formation of Clinical Characteristics of Migraine. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/jnsk.2016.04.00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Gervasini G, Gamero-Villarroel C. Discussing the putative role of obesity-associated genes in the etiopathogenesis of eating disorders. Pharmacogenomics 2015; 16:1287-1305. [DOI: 10.2217/pgs.15.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In addition to the identification of mutations clearly related to Mendelian forms of obesity; genome-wide association studies and follow-up studies have in the last years pinpointed several loci associated with BMI. These genetic alterations are located in or near genes expressed in the hypothalamus that are involved in the regulation of eating behavior. Accordingly, it seems plausible that these SNPs, or others located in related genes, could also help develop aberrant conduct patterns that favor the establishment of eating disorders should other susceptibility factors or personality dimensions be present. However, and somewhat surprisingly, with few exceptions such as BDNF, the great majority of the genes governing these pathways remain untested in patients with anorexia nervosa, bulimia nervosa or binge-eating disorder. In the present work, we review the few existing studies, but also indications and biological concepts that point to these genes in the CNS as good candidates for association studies with eating disorder patients.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| | - Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| |
Collapse
|
34
|
Association of BDNF Polymorphisms with the Risk of Epilepsy: a Multicenter Study. Mol Neurobiol 2015; 53:2869-2877. [PMID: 25876511 DOI: 10.1007/s12035-015-9150-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/19/2015] [Indexed: 12/23/2022]
Abstract
Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures. Evidence suggested that abnormal activity of brain-derived neurotrophic factor (BDNF) contributes to the pathogenesis of epilepsy. Some previous studies identified association between genetic variants of BDNF and risk of epilepsy. In this study, this association has been examined in the Hong Kong and Malaysian epilepsy cohorts. Genomic DNA of 6047 subjects (1640 patients with epilepsy and 4407 healthy individuals) was genotyped for rs6265, rs11030104, rs7103411, and rs7127507 polymorphisms by using Sequenom MassArray and Illumina HumanHap 610-Quad or 550-Duo BeadChip arrays techniques. Results showed significant association between rs6265 T, rs7103411 C, and rs7127507 T and cryptgenic epilepsy risk (p = 0.00003, p = 0.0002, and p = 0.002, respectively) or between rs6265 and rs7103411 and symptomatic epilepsy risk in Malaysian Indians (TT vs. CC, p = 0.004 and T vs. C, p = 0.0002, respectively) as well as between rs6265 T and risk of cryptogenic epilepsy in Malaysian Chinese (p = 0.005). The Trs6265-Crs7103411-Trs7127507 was significantly associated with cryptogenic epilepsy in Malaysian Indians (p = 0.00005). In conclusion, our results suggest that BDNF polymorphisms might contribute to the risk of epilepsy in Malaysian Indians and Chinese.
Collapse
|
35
|
Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res 2015; 226:1-13. [PMID: 25681004 DOI: 10.1016/j.psychres.2014.12.069] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023]
Abstract
Studies suggest that the BDNF Val66Met (rs6265) polymorphism is associated with the incidence of schizophrenia and neurocognitive functioning. These associations appear to be however somewhat mixed. We conducted two separate meta-analyses to investigate (1) the association between the Val66Met polymorphism and neurocognition in people with schizophrenia and (2) the association between peripheral expression of BDNF and neurocognitive phenotypes. For the first aim, we identified 12 studies and 67 comparisons of Met allele carriers and Val homozygotes. These comparisons included 1890 people with schizophrenia (men=1465, women=553), of whom 972 were Met allele carriers and 918 were Val homozygotes. For the second aim, we identified five studies and 25 correlations of peripheral BDNF and neurocognitive scores. The meta-analysis for the second aim included 414 people with schizophrenia (men=292, women=170). First, we found non-significant difference between the genotype groups on most neurocognitive domains. Second, correlations between peripheral BDNF and neurocognitive phenotypes were minimal but we obtained significant effects for the reasoning and problem-solving domains; thus, higher levels of BDNF expression corresponded to better performance on reasoning/problem-solving tasks. The meta-analyses did not robustly establish an association between BDNF Val66Met polymorphism and neurocognition in schizophrenia.
Collapse
Affiliation(s)
- Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA; Department of Psychiatry and Health Behavior, Georgia Regents University, 997 Saint Sebastian Way, Augusta, GA 30912, USA.
| | - Andrew M Mantini
- Department of Psychiatry and Health Behavior, Georgia Regents University, 997 Saint Sebastian Way, Augusta, GA 30912, USA
| | - Daniel J Fridberg
- Department of Psychiatry, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Peter F Buckley
- Department of Psychiatry and Health Behavior, Georgia Regents University, 997 Saint Sebastian Way, Augusta, GA 30912, USA
| |
Collapse
|
36
|
Abstract
Eating disorders (EDs) are serious psychiatric conditions influenced by biological, psychological, and sociocultural factors. A better understanding of the genetics of these complex traits and the development of more sophisticated molecular biology tools have advanced our understanding of the etiology of EDs. The aim of this review is to critically evaluate the literature on the genetic research conducted on three major EDs: anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). We will first review the diagnostic criteria, clinical features, prevalence, and prognosis of AN, BN, and BED, followed by a review of family, twin, and adoption studies. We then review the history of genetic studies of EDs covering linkage analysis, candidate gene association studies, genome-wide association studies, and the study of rare variants in EDs. Our review also incorporates a translational perspective by covering animal models of ED-related phenotypes. Finally, we review the nascent field of epigenetics of EDs and a look forward to future directions for ED genetic research.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Andrew Hardaway
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Fonseka TM, Tiwari AK, Gonçalves VF, Lieberman JA, Meltzer HY, Goldstein BI, Kennedy JL, Kennedy SH, Müller DJ. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain. World J Biol Psychiatry 2015; 16:45-56. [PMID: 25560300 DOI: 10.3109/15622975.2014.984631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). METHODS Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. RESULTS In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. CONCLUSIONS SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto , Toronto, ON , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
BDNF genetic variability modulates psychopathological symptoms in patients with eating disorders. Eur Child Adolesc Psychiatry 2014; 23:669-79. [PMID: 24292283 DOI: 10.1007/s00787-013-0495-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) gene may influence eating behavior, body weight and cognitive impairments. We aimed to investigate whether BDNF genetic variability may affect anthropometric and psychological parameters in patients with anorexia or bulimia nervosa (AN, BN) and/or modulate the risk for the disorder. A total of 169 unrelated female patients and 312 healthy controls were genotyped for two common BDNF single-nucleotide polymorphisms (SNPs), Val66Met and C-270T, and several selected tag-SNPs. Associated personality characteristics and psychopathological symptoms were assessed by the EDI-2 and SCL-90R inventories, respectively. No single SNP or haplotype played a relevant role in the risk for AN or BN. The rs16917237 TT genotype was significantly associated with increased weight (74.63 ± 16.58 vs. 57.93 ± 13.02) and body mass index (28.94 ± 6.22 vs. 22.23 ± 4.77) in the BN group after correcting for multiple testing. Haplotype analyses using a sliding window approach with three adjacent SNPs produced four loci of interest. Locus 3 (rs10835210/rs16917237/C-270T) showed a broad impact on the measured psychopathological symptoms. Haplotypes CGC and CGT in this locus correlated with scores in all three scales of the SCL-90R inventory, both in AN and BN patients. In contrast, the results of the EDI-2 inventory were largely unaffected. These preliminary results suggest that variability in the BDNF gene locus may contribute to anthropometric characteristics and also psychopathological symptoms that are common but not exclusive of ED patients.
Collapse
|
39
|
Yilmaz Z, Kaplan AS, Tiwari AK, Levitan RD, Piran S, Bergen AW, Kaye WH, Hakonarson H, Wang K, Berrettini WH, Brandt HA, Bulik CM, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson CL, Keel PK, Klump KL, Magistretti P, Mitchell JE, Strober M, Thornton LM, Treasure J, Woodside DB, Knight J, Kennedy JL. The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa. J Psychiatr Res 2014; 55:77-86. [PMID: 24831852 PMCID: PMC4191922 DOI: 10.1016/j.jpsychires.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Although low weight is a key factor contributing to the high mortality in anorexia nervosa (AN), it is unclear how AN patients sustain low weight compared with bulimia nervosa (BN) patients with similar psychopathology. Studies of genes involved in appetite and weight regulation in eating disorders have yielded variable findings, in part due to small sample size and clinical heterogeneity. This study: (1) assessed the role of leptin, melanocortin, and neurotrophin genetic variants in conferring risk for AN and BN; and (2) explored the involvement of these genes in body mass index (BMI) variations within AN and BN. METHOD Our sample consisted of 745 individuals with AN without a history of BN, 245 individuals with BN without a history of AN, and 321 controls. We genotyped 20 markers with known or putative function among genes selected from leptin, melanocortin, and neurotrophin systems. RESULTS There were no significant differences in allele frequencies among individuals with AN, BN, and controls. AGRP rs13338499 polymorphism was associated with lowest illness-related BMI in those with AN (p = 0.0013), and NTRK2 rs1042571 was associated with highest BMI in those with BN (p = 0.0018). DISCUSSION To our knowledge, this is the first study to address the issue of clinical heterogeneity in eating disorder genetic research and to explore the role of known or putatively functional markers in genes regulating appetite and weight in individuals with AN and BN. If replicated, our results may serve as an important first step toward gaining a better understanding of weight regulation in eating disorders.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada
| | - Allan S Kaplan
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - Robert D Levitan
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sara Piran
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Andrew W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Hakon Hakonarson
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center of Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry A Brandt
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven Crawford
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Manfred M Fichter
- Department of Psychiatry, University of Munich (LMU), Munich, Germany; Roseneck Hospital for Behavioral Medicine, Prien, Germany
| | - Katherine A Halmi
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | | | - Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Pierre Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James E Mitchell
- Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; Neuropsychiatric Research Institute, Fargo, ND, USA
| | - Michael Strober
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Treasure
- Department of Academic Psychiatry, King's College London, Institute of Psychiatry, London, United Kingdom
| | - D Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, Canada; Eating Disorders Program, Toronto General Hospital, Toronto, Canada
| | - Joanne Knight
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
40
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
41
|
Abstract
Over the past decade, considerable advances have been made in understanding genetic influences on eating pathology. Eating disorders aggregate in families, and twin studies reveal that additive genetic factors account for approximately 40% to 60% of liability to anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). Molecular genetics studies have been undertaken to identify alterations in deoxyribonucleic acid sequence and/or gene expression that may be involved in the pathogenesis of disordered eating behaviors, symptoms, and related disorders and to uncover potential genetic variants that may contribute to variability of treatment response. This article provides an in-depth review of the scientific literature on the genetics of AN, BN, and BED including extant studies, emerging hypotheses, future directions, and clinical implications.
Collapse
Affiliation(s)
- Sara E Trace
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
42
|
Llerena A, Berecz R, Peñas-Lledó E, Süveges A, Fariñas H. Pharmacogenetics of clinical response to risperidone. Pharmacogenomics 2013; 14:177-94. [PMID: 23327578 DOI: 10.2217/pgs.12.201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite risperidone's proven safety and efficacy, existing pharmacogenetic knowledge could be applied to improve its clinical use. The present work aims to summarize the information about genetic polymorphisms affecting risperidone adverse reactions and efficacy during routine clinical practice. The most relevant genes involved in the metabolism of the drug (i.e., CYP2D6, CYP3A and ABCB1) appear to have the greatest potential to predict differences in plasma concentrations of the drug and its interactions, but also relate to side effects, such as neuroleptic syndrome, weight gain or polydipsia. Other genes that have been found in association at least twice with any adverse reactions including metabolic changes, extrapyramidal symptoms or prolactine increase are: 5HT2A; 5HT2C; 5HT6; DRD2; DRD3; and BDNF. Some of these genes (5HTR2A, DRD2 and DRD3), along with 5-HTTLPR and COMT, have also been reported to be related with negative clinical outcomes. However, there is not yet enough evidence to support their routine screening during clinical practice.
Collapse
Affiliation(s)
- Adrián Llerena
- University of Extremadura Medical School, Badajoz, Spain.
| | | | | | | | | |
Collapse
|
43
|
Nikolac Perkovic M, Mustapic M, Pavlovic M, Uzun S, Kozumplik O, Barisic I, Muck-Seler D, Pivac N. Lack of association between brain-derived neurotrophic factor Val66Met polymorphism and body mass index change over time in healthy adults. Neurosci Lett 2013; 545:127-31. [PMID: 23643991 DOI: 10.1016/j.neulet.2013.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 01/09/2023]
Abstract
Obesity is becoming the epidemic health problem worldwide with a very complex etiology. The interaction between diverse genetic and environmental factors contributes to development of obesity. Among myriad of functions in central and peripheral tissues, brain-derived neurotrophic factor (BDNF) also regulates energy homeostasis, food intake and feeding behavior, and has a role in obesity and increased body mass index (BMI). BDNF Val66Met (rs6265) polymorphism is associated with BMI gain, but both positive associations and non-replications are reported. Since BMI changes over time and since genetic influences on BMI vary with age, the aim of the study was to evaluate association between BDNF Val66Met polymorphism and BMI gain in healthy subjects with middle or old age. The study included a cohort of 339 adult healthy Caucasians of Croatian origin, free of eating and metabolic disorders, evaluated in three time periods in the year 1972, 1982 and 2006, when the subjects were around 40, 50 and 70 years old, respectively. The results revealed a significant effect of smoking on BMI, but a lack of significant association between BDNF Val66Met polymorphism and overweight or obesity, and no significant association between BDNF Val66Met and BMI changes over time. These results did not confirm the major role of BDNF Val66Met in the regulation of BMI changes in adult and old healthy subjects.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Byerly MS, Swanson RD, Semsarzadeh NN, McCulloh PS, Kwon K, Aja S, Moran TH, Wong GW, Blackshaw S. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1085-95. [PMID: 23576617 DOI: 10.1152/ajpregu.00368.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruption of finely coordinated neuropeptide signals in the hypothalamus can result in altered food intake and body weight. We identified neuron-derived neurotrophic factor (NENF) as a novel secreted protein through a large-scale screen aimed at identifying novel secreted hypothalamic proteins that regulate food intake. We observed robust Nenf expression in hypothalamic nuclei known to regulate food intake, and its expression was altered under the diet-induced obese (DIO) condition relative to the fed state. Hypothalamic Nenf mRNA was regulated by brain-derived neurotrophic factor (BDNF) signaling, itself an important regulator of appetite. Delivery of purified recombinant BDNF into the lateral cerebral ventricle decreased hypothalamic Nenf expression, while pharmacological inhibition of trkB signaling increased Nenf mRNA expression. Furthermore, recombinant NENF administered via an intracerebroventricular cannula decreased food intake and body weight and increased hypothalamic Pomc and Mc4r mRNA expression. Importantly, the appetite-suppressing effect of NENF was abrogated in obese mice fed a high-fat diet, demonstrating a diet-dependent modulation of NENF function. We propose the existence of a regulatory circuit involving BDNF, NENF, and melanocortin signaling. Our study validates the power of using an integrated experimental and bioinformatic approach to identify novel CNS-derived proteins with appetite-modulating function and reveals NENF as an important central modulator of food intake.
Collapse
Affiliation(s)
- Mardi S Byerly
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain.
Collapse
|
46
|
|
47
|
Min HJ, Cho HS, Kim SJ, Seok JH, Lee E, Jon DI. Association of the Brain-derived Neurotrophic Factor Gene and Clinical Features of Bipolar Disorder in Korea. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:163-7. [PMID: 23430274 PMCID: PMC3569161 DOI: 10.9758/cpn.2012.10.3.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 01/19/2023]
Abstract
Objective Brain-derived neurotrophic factor (BDNF) plays an important role in cell survival, differentiation, and cell death as well as in neural plasticity. Recent studies have suggested that BDNF is involved in the pathogenesis of bipolar disorder. The aim of this study was to investigate the association of the genetic variations of the BDNF gene with bipolar disorder in Korea. We also studied the possible association of these genetic variants with clinical features. Methods The allelic and genotypic distributions of Val66Met polymorphism of the BDNF gene were analyzed using a polymerase chain reaction-based method in 184 bipolar patients and 214 controls. Analysis was performed to investigate an association of the Val66Met polymorphism of the BDNF gene and the clinical features in bipolar patients. Results No significant difference was found between bipolar patients and controls in the genotype and allele frequencies for the investigated BDNF polymorphism. However, the age of onset of bipolar disorder among the Val/Val (25.57), Val/Met (30.42) and Met/Met (32.45) genotype groups were significantly different (p=0.037). Conclusion This study suggests that Val66Met polymorphisms are unlikely to contribution to the genetic predisposition to bipolar disorder as a whole. But Val66Met polymorphism may be associated with age of onset of the disorder, further studies designed to investigate the relationship in a larger population may be warranted.
Collapse
Affiliation(s)
- Hye Ji Min
- Department of Psychiatry, Hallym University College of Medicine, Anyang, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Freundlieb N, Philipp S, Schneider SA, Brüggemann N, Klein C, Gerloff C, Hummel FC. No association of the BDNF val66met polymorphism with implicit associative vocabulary and motor learning. PLoS One 2012; 7:e48327. [PMID: 23152767 PMCID: PMC3496723 DOI: 10.1371/journal.pone.0048327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/24/2012] [Indexed: 01/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been suggested to play a major role in plasticity, neurogenesis and learning in the adult brain. The BDNF gene contains a common val66met polymorphism associated with decreased activity-dependent excretion of BDNF and a potential influence on behaviour, more specifically, on motor learning. The objective of this study was to determine the influence of the BDNF val66met polymorphism on short-term implicit associative learning and whether its influence is cognitive domain-specific (motor vs. language). A sample of 38 young healthy participants was genotyped, screened for background and neuropsychological differences, and tested with two associative implicit learning paradigms in two different cognitive domains, i.e., motor and vocabulary learning. Subjects performed the serial reaction time task (SRTT) to determine implicit motor learning and a recently established associative vocabulary learning task (AVL) for implicit learning of action and object words. To determine the influence of the BDNF polymorphism on domain-specific implicit learning, behavioural improvements in the two tasks were compared between val/val (n = 22) and met carriers (val/met: n = 15 and met/met: n = 1). There was no evidence for an impact of the BDNF val66met polymorphism on the behavioural outcome in implicit short-term learning paradigms in young healthy subjects. Whether this polymorphism plays a relevant role in long-term training paradigms or in subjects with impaired neuronal plasticity or reduced learning capacity, such as aged individuals, demented patients or patients with brain lesions, has to be determined in future studies.
Collapse
Affiliation(s)
- Nils Freundlieb
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Philipp
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne A. Schneider
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Norbert Brüggemann
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Christine Klein
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Christian Gerloff
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Yamada H, Yoshimura C, Nakajima T, Nagata T. Recovery of low plasma BDNF over the course of treatment among patients with bulimia nervosa. Psychiatry Res 2012; 198:448-51. [PMID: 22425474 DOI: 10.1016/j.psychres.2011.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/04/2011] [Accepted: 12/11/2011] [Indexed: 10/28/2022]
Abstract
Recent studies have suggested that brain-derived neurotrophic factor (BDNF) is associated with energy balance, eating behaviors, and psychological states such as depression. Although decreased BDNF levels in patients with bulimia nervosa (BN) have been reported, the mechanism is still unclear. Few studies have investigated longitudinal changes of BDNF in BN patients. We investigated changes in the levels of plasma BDNF before and after inpatient treatment. Subjects were 16 female patients with BN and 10 control females. The levels of plasma BDNF were measured. In seven patients who completed a 4-week inpatient treatment program based on cognitive behavior therapy, levels of plasma BDNF were measured twice, before and after inpatient treatment. Plasma BDNF levels were significantly lower in BN subjects than in controls. BDNF levels were significantly higher following inpatient treatment. Increased plasma BDNF after inpatient treatment suggests that lower plasma BDNF levels in BN patients are associated with abnormal eating behaviors, especially binge eating.
Collapse
Affiliation(s)
- Hisashi Yamada
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | | | | | | |
Collapse
|
50
|
Hong CJ, Liou YJ, Tsai SJ. Reprint of: Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull 2012; 88:406-17. [PMID: 22677226 DOI: 10.1016/j.brainresbull.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/22/2011] [Accepted: 08/31/2011] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), the most abundant neurotrophin in the brain, serves an important role during brain development and in synaptic plasticity. Given its pleiotropic effects in the central nervous system, BDNF has been implicated in cognitive function and personality development as well as the pathogenesis of various psychiatric disorders. Thus, BDNF is considered an attractive candidate gene for the study of healthy and diseased brain function and behaviors. Over the past decade, many studies have tested BDNF genetic association, particularly its functional Val66Met polymorphism, with psychiatric diseases, personality disorders, and cognitive function. Although many reports indicated a possible role for BDNF genetic effects in mental problems or brain function, other reports were unable to replicate the findings. The conflicting results in BDNF genetic studies may result from confounding factors such as age, gender, other environmental factors, sample size, ethnicity and phenotype assessment. Future studies with more homogenous populations, well-controlled confounding factors, and well-defined phenotypes are needed to clarify the BDNF genetic effects on mental diseases and human behaviors.
Collapse
Affiliation(s)
- Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | |
Collapse
|