1
|
Wang C, Zong S, Cui X, Wang X, Wu S, Wang L, Liu Y, Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer's disease. Front Immunol 2023; 14:1117172. [PMID: 36911732 PMCID: PMC9992739 DOI: 10.3389/fimmu.2023.1117172] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is defined as a severe chronic degenerative neurological disease in human. The pathogenic mechanism of AD has been convincingly elucidated by the "amyloid cascade hypothesis" with the main focus of the pathological accretion of β-amyloid (Aβ) peptides outside the cell. However, increasing evidence suggests that this hypothesis is weak in explaining the pathogenesis of AD. Neuroinflammation is crucial in the development of AD, which is proven by the elevated levels of inflammatory markers and the identification of AD risk genes relevant to the innate immune function. Here, we summarize the effects of microglia-mediated neuroinflammation on AD, focusing on the temporal and spatial changes in microglial phenotype, the interactions among microglia, Aβ, tau, and neurons, and the prospects and recent advances in neuroinflammation as a diagnostic and therapeutic target of AD.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang Wu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Le Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Ahmed MM, Johnson NR, Boyd TD, Coughlan C, Chial HJ, Potter H. Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners? Front Aging Neurosci 2021; 13:718426. [PMID: 34603007 PMCID: PMC8481947 DOI: 10.3389/fnagi.2021.718426] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune system activation and inflammation are associated with and may contribute to clinical outcomes in people with Down syndrome (DS), neurodegenerative diseases such as Alzheimer's disease (AD), and normal aging. In addition to serving as potential diagnostic biomarkers, innate immune system activation and inflammation may play a contributing or causal role in these conditions, leading to the hypothesis that effective therapies should seek to dampen their effects. However, recent intervention studies with the innate immune system activator granulocyte-macrophage colony-stimulating factor (GM-CSF) in animal models of DS, AD, and normal aging, and in an AD clinical trial suggest that activating the innate immune system and inflammation may instead be therapeutic. We consider evidence that DS, AD, and normal aging are accompanied by innate immune system activation and inflammation and discuss whether and when during the disease process it may be therapeutically beneficial to suppress or promote such activation.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy D. Boyd
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Partner Therapeutics, Inc., Lexington, MA, United States
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Wang J, Zhou Y, Yang Y, Gao X, Liu Z, Hong G, Yao L, Yin J, Gu X, Li K. S100B gene polymorphisms are associated with the S100B level and Alzheimer's disease risk by altering the miRNA binding capacity. Aging (Albany NY) 2021; 13:13954-13967. [PMID: 33982673 PMCID: PMC8202836 DOI: 10.18632/aging.203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
To examine the role of S100B in genetic susceptibility to Alzheimer’s disease (AD), we conducted a case-control study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype (OR = 2.622, 95% CI = 1.399–4.915, P = 0.003). Further investigation revealed the serum S100B levels to be lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding would be of great help for the early diagnosis of AD.
Collapse
Affiliation(s)
- Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yixia Yang
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
5
|
Zbóril S, Schmidt AP, Oses JP, Wiener CD, Portela LV, Souza DO, Auler JOC, Carmona MJC, Fugita MS, Flor PB, Cortopassi SRG. S100B protein and neuron-specific enolase as predictors of postoperative cognitive dysfunction in aged dogs: a case-control study. Vet Anaesth Analg 2020; 47:740-747. [PMID: 32800537 DOI: 10.1016/j.vaa.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) may be related to brain injury. S100B protein and neuron-specific enolase (NSE) have been investigated as potential biochemical markers of neural cell injury in animals and humans. This study aimed to investigate the association between POCD, brain injury and serum concentrations of S100B and NSE after periodontal surgery in aged dogs. STUDY DESIGN Prospective observational animal study. ANIMALS A total of 24 male and female dogs undergoing periodontal surgery. METHODS Dogs were separated into two groups based on age: control group, 10 dogs ≤ 8 years and aged group, 14 dogs > 8 years. Cognitive function was measured preoperatively and on the seventh postoperative day using the Canine Cognitive Dysfunction Rating scale and the Age-Related Cognitive and Affective Disorders scale. S100B protein and NSE serum concentrations were measured before and immediately after the surgery. RESULTS POCD was not observed after surgery in the present study. Serum concentrations of S100B and NSE were increased postoperatively in the control group but not in the aged group (p = 0.04 and 0.03, respectively). Preoperative S100B serum concentrations were significantly higher in the aged group (p = 0.01). CONCLUSIONS There was no association between POCD and high concentrations of S100B and NSE in dogs. However, increased postoperative serum concentrations of S100B and NSE were found in the control group after surgery, an effect that may indicate neural damage. CLINICAL RELEVANCE The results suggest that anesthesia and oral surgery are associated with higher postoperative serum concentrations of S100B and NSE in dogs ≤ 8 years old, which may indicate neural damage. Serum concentrations of S100B were elevated in aged dogs before anesthesia, a finding that might be related to chronic preoperative brain damage.
Collapse
Affiliation(s)
- Sabrina Zbóril
- Department of Surgery, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - André P Schmidt
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil; Department of Anesthesia, Santa Casa de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil; Department of Anesthesia, Hospital Nossa Senhora da Conceição, Porto Alegre, RS, Brazil.
| | - Jean P Oses
- Postgraduate Program in Biochemistry and Molecular Biology, Setor de Bioquímica, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Carolina D Wiener
- Postgraduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Luis V Portela
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José O C Auler
- Disciplina de Anestesiologia, Departamento de Cirurgia, Faculdade de Medicina, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Maria J C Carmona
- Disciplina de Anestesiologia, Departamento de Cirurgia, Faculdade de Medicina, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Mariana S Fugita
- Department of Surgery, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Patricia B Flor
- Department of Surgery, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Silvia R G Cortopassi
- Department of Surgery, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Nizami S, Hall‐Roberts H, Warrier S, Cowley SA, Di Daniel E. Microglial inflammation and phagocytosis in Alzheimer's disease: Potential therapeutic targets. Br J Pharmacol 2019; 176:3515-3532. [PMID: 30740661 PMCID: PMC6715590 DOI: 10.1111/bph.14618] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
One of the largest unmet medical needs is a disease-modifying treatment for Alzheimer's disease (AD). Recently, the role of microglia in disease, particularly AD, has gained great interest, following the identification of several disease risk-associated genes that are highly expressed in microglia. Microglia play a critical homeostatic role in the brain, with neuroinflammatory and phagocytic mechanisms being of particular importance. Here, we review the role of NLRP3, the complement system, and the triggering receptor expressed in myeloid cells 2 (TREM2) in modulating microglial functions. We have reviewed the targets, their molecular pathways and the therapeutic interventions aimed at modulating these targets, in the hope of discovering a novel therapeutic approach for the treatment of AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Hazel Hall‐Roberts
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sharat Warrier
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
8
|
Affiliation(s)
- Yongli He
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Porcelli S, Balzarro B, Lee SJ, Han C, Patkar AA, Pae CU, Serretti A. PDE7B, NMBR and EPM2A Variants and Schizophrenia: A Case-Control and Pharmacogenetics Study. Neuropsychobiology 2017; 73:160-8. [PMID: 27092952 DOI: 10.1159/000445295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND We investigated phosphodiesterase 7B (PDE7B), neuromedin B receptor (NMBR) and epilepsy progressive myoclonus type 2A (EPM2A) genes in schizophrenia (SCZ). To the best of our knowledge, these genes have been poorly investigated in studies of SCZ. METHODS Five hundred and seventy-three SCZ inpatients of Korean ethnicity and 560 healthy controls were genotyped for 2 PDE7B, 3 NMBR and 3 EPM2A polymorphisms. Differences in the allelic and genetic frequencies among healthy subjects and patients were calculated using the x03C7;2 statistics. Repeated-measure ANOVA was used to test possible influences of single-nucleotide polymorphisms on treatment efficacy. In case of positive findings, clinical and demographic variables were added as covariates, in order to investigate possible stratixFB01;cation bias. RESULTS The rs2717 and rs6926279 within the NMBR gene and rs702304 and rs2235481 within the EPM2A gene were associated with SCZ liability. rs1415744 was also associated with Positive and Negative Symptom Scale negative clinical improvement. The results remained the same after inclusion of the covariates and were partially confirmed in the allelic and haplotype analyses. CONCLUSION Our preliminary findings suggest a possible role of NMBR and EPM2A genes in SCZ susceptibility and, for the second one, also in antipsychotic pharmacogenetics. Nonetheless, further research is needed to conxFB01;rm our findings.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
DAMPs and neurodegeneration. Ageing Res Rev 2015; 24:17-28. [PMID: 25462192 DOI: 10.1016/j.arr.2014.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.
Collapse
|
11
|
Wang S, Ren H, Xu J, Yu Y, Han S, Qiao H, Cheng S, Xu C, An S, Ju B, Yu C, Wang C, Wang T, Yang Z, Taylor EW, Zhao L. Diminished serum repetin levels in patients with schizophrenia and bipolar disorder. Sci Rep 2015; 5:7977. [PMID: 25613293 PMCID: PMC4303898 DOI: 10.1038/srep07977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Repetin (RPTN) protein is a member of S100 family and is known to be expressed in the normal epidermis. Here we show that RPTN is ubiquitously expressed in both mouse and human brain, with relatively high levels in choroid plexus, hippocampus and prefrontal cortex. To investigate the expression of RPTN in neuropsychiatric disorders, we determined serum levels of RPTN in patients with schizophrenia (n = 88) or bipolar disorder (n = 34) and in chronic psychostimulant users (n = 91). We also studied its expression in a mouse model of chronic unpredictable mild stress (CUMS). The results showed that serum RPTN levels were significantly diminished in patients with schizophrenia and bipolar disorder or in psychostimulant users, compared with healthy subjects (n = 115) or age-matched controls (n = 92) (p < 0.0001). In CUMS mice, RPTN expression in hippocampus and prefrontal cortex was reduced with progression of the CUMS procedure; the serum RPTN level remained unchanged. Since CUMS is a model for depression and methamphetamine (METH) abuse induced psychosis recapitulates many of the psychotic symptoms of schizophrenia, the results from this study may imply that RPTN plays a potential role in emotional and cognitive processing; its decrease in serum may indicate its involvement in the pathogenesis of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huixun Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Xu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Yu
- Department of Clinical Chemistry, Xi'an mental health center, Xi'an 710061, China
| | - Shuiping Han
- Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Qiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shaoli Cheng
- Center for Experimental Morphology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shucheng An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bomiao Ju
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chengyuan Yu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chanyuan Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Ethan Will Taylor
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Lijun Zhao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
12
|
Validating serum S100B and neuron-specific enolase as biomarkers for the human brain - a combined serum, gene expression and MRI study. PLoS One 2012; 7:e43284. [PMID: 22916238 PMCID: PMC3422594 DOI: 10.1371/journal.pone.0043284] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/23/2012] [Indexed: 12/02/2022] Open
Abstract
Introduction Former studies have investigated the potential of serum biomarkers for diseases affecting the human brain. In particular the glial protein S100B, a neuro- and gliotrophin inducing plasticity, seems to be involved in the pathogenesis and treatment of psychiatric diseases such as major depression and schizophrenia. Neuron-specific enolase (NSE) is a specific serum marker for neuronal damage. However, the specificity of these biomarkers for cell type and brain region has not been investigated in vivo until now. Methods We acquired two magnetic resonance imaging parameters sensitive to changes in gray and white matter (T1-weighted/diffusion tensor imaging) and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, we analyzed whole brain gene expressions of S100B in another male cohort of three subjects using the Allen Brain Atlas. Furthermore, a female post mortal brain was investigated using double immunofluorescence labelling with oligodendrocyte markers. Results We show that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. Conclusion Our data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. Our study is the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. Our results open a new perspective for future studies investigating major neuropsychiatric disorders.
Collapse
|
13
|
Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med 2011; 49:409-24. [PMID: 21303299 DOI: 10.1515/cclm.2011.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Classic" neurodegenerative disorders, such as Alzheimer's disease and amyotrophic lateral sclerosis share common pathophysiological features and involve progressive loss of specific neuronal populations, axonal or synaptic loss and dysfunction, reactive astrogliosis, and reduction in myelin. Furthermore, despite the absence of astrogliosis, impaired expression of astrocyte- and oligodendrocyte-related genes has been observed in patients with major psychiatric disorders, including schizophrenia and mood disorders. Because S100B is expressed in astrocytes and oligodendrocytes, its concentration in cerebrospinal fluid (CSF) or serum has been considered a suitable surrogate marker for the diagnostic or prognostic assessment of neurodegeneration. This review summarizes previous postmortem, CSF and serum studies regarding the role of S100B in this context. A general drawback is that only small single-center studies have been performed. Many potential confounding factors exist because of the wide extra-astrocytic and extracerebral expression of S100B. Due to lack of disease specificity, reliance on S100B concentrations for differential diagnostic purposes in cases of suspected neurodegenerative disorders is not recommended. Moreover, there is no consistent evidence for a correlation between disease severity and concentrations of S100B in CSF or serum. Therefore, S100B has limited usefulness for monitoring disease progression.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
14
|
Roltsch E, Holcomb L, Young KA, Marks A, Zimmer DB. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 2010; 7:78. [PMID: 21080947 PMCID: PMC2996465 DOI: 10.1186/1742-2094-7-78] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD) pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons. METHODS Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit S100B function in the PSAPP AD mouse model. The PSAPP/S100B-/- line was generated by crossing PSAPP double transgenic males with S100B-/- females and maintained as PSAPP/S100B+/- crosses. Congo red staining was used to quantify plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B-/- littermates. The microglial marker Iba1 and astrocytic marker glial fibrillary acidic protein (GFAP) were used to quantify gliosis. Dystrophic neurons were detected with the phospho-tau antibody AT8. S100B immunohistochemistry was used to assess the spatial distribution of S100B in the PSAPP line. RESULTS PSAPP/S100B-/- mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by decreases in plaque number, GFAP-positive astrocytes, Iba1-positive microglia and phospho-tau positive dystrophic neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and cortical S100B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and microglia. CONCLUSIONS Collectively, these data support S100B inhibition as a novel strategy for reducing cortical plaque load, gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular S100B contribute to AD histopathology.
Collapse
Affiliation(s)
- Emily Roltsch
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
15
|
Houlihan LM, Harris SE, Deary IJ, Starr JM. Replication association analysis of S100B and cognitive ageing. Psychiatr Genet 2010; 20:133-4. [PMID: 20473040 DOI: 10.1097/ypg.0b013e32833a2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Lorna M Houlihan
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
16
|
Abstract
Developmental dyslexia is a highly heritable disorder with a prevalence of at least 5% in school-aged children. Linkage studies have identified numerous loci throughout the genome that are likely to harbour candidate dyslexia susceptibility genes. Association studies and the refinement of chromosomal translocation break points in individuals with dyslexia have resulted in the discovery of candidate genes at some of these loci. A key function of many of these genes is their involvement in neuronal migration. This complements anatomical abnormalities discovered in dyslexic brains, such as ectopias, that may be the result of irregular neuronal migration.
Collapse
|
17
|
Hohoff C, Ponath G, Freitag CM, Kästner F, Krakowitzky P, Domschke K, Koelkebeck K, Kipp F, von Eiff C, Deckert J, Rothermundt M. Risk variants in the S100B gene predict elevated S100B serum concentrations in healthy individuals. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:291-7. [PMID: 19330775 DOI: 10.1002/ajmg.b.30950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several lines of evidence suggest an important role of the S100B protein and its coding gene in different neuropathological and psychiatric disorders like dementia, bipolar affective disorders and schizophrenia. To clarify whether a direct link exists between gene and gene product, that is, whether S100B variants directly modulate S100B serum concentration, 196 healthy individuals were assessed for S100B serum concentrations and genotyped for five potentially functional S100B SNPs. Functional variants of the serotonergic genes 5-HT1A and 5-HTT possibly modulating S100B serum levels were also studied. Further, publicly available human postmortem gene expression data were re-analyzed to elucidate the impact of S100B, 5-HT1A and 5-HTT SNPs on frontal cortex S100B mRNA expression. Several S100B SNPs, particularly rs9722, and the S100B haplotype T-G-G-A (including rs2186358-rs11542311-rs2300403-rs9722) were associated with elevated S100B serum concentrations (Bonferroni corrected P < 0.05). Of these, rs11542311 was also associated with S100B mRNA expression directly (Bonferroni corrected P = 0.05) and within haplotype G-A-T-C (rs11542311-rs2839356-rs9984765-rs881827; P = 0.004), again with the G-allele increasing S100B expression. Our results suggest an important role of S100B SNPs on S100B serum concentrations and S100B mRNA expression. It hereby links recent evidence for both, the impact of S100B gene variation on various neurological or psychiatric disorders like dementia, bipolar affective disorders and schizophrenia and the strong relation between S100B serum levels and these disorders.
Collapse
Affiliation(s)
- Christa Hohoff
- Department of Psychiatry, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Payton A. The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychol Rev 2009; 19:451-77. [DOI: 10.1007/s11065-009-9116-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
|
19
|
Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126:215-32. [PMID: 19294424 DOI: 10.1007/s00439-009-0655-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/08/2009] [Indexed: 02/07/2023]
Abstract
Individual differences in intelligence (cognitive abilities) are a prominent aspect of human psychology, and play a substantial role in influencing important life outcomes. Their phenotypic structure-as described by the science of psychometrics-is well understood and well replicated. Approximately half of the variance in a broad range of cognitive abilities is accounted by a general cognitive factor (g), small proportions of cognitive variance are caused by separable broad domains of mental function, and the substantial remainder is caused by variance that is unique to highly specific cognitive skills. The heritability of g is substantial. It increases from a low value in early childhood of about 30%, to well over 50% in adulthood, which continues into old age. Despite this, there is still almost no replicated evidence concerning the individual genes, which have variants that contribute to intelligence differences. Here, we describe the human intelligence phenotype, summarise the evidence for its heritability, provide an overview of and comment on molecular genetic studies, and comment on future progress in the field.
Collapse
Affiliation(s)
- Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, Scotland, UK.
| | | | | |
Collapse
|
20
|
Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mol Psychiatry 2009; 14:235-7. [PMID: 19229202 DOI: 10.1038/mp.2008.85] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Abstract
There is growing evidence that receptors that respond to orexigenic and anorexigenic signals of respective neuropeptides are also implicated in cognitive, emotional, sensory and motor functions. How do these signals trigger a particular appetitive function while also acting in so different contexts in controlling non-appetitive behaviours? This perspective seeks an answer in their peculiar modular organization when each module planted in complex networks controlling appetite is also engaged in different domains. Network analysis may be essential in considering pharmacotherapeutic interventions and, in particular, when anticipating untoward central effects of agents explored from a therapeutic point of view.
Collapse
Affiliation(s)
- M Myslobodsky
- Howard University Graduate School, Washington, DC and Clinical Brain Disorders Branch, NIMH/National Institutes of Health, Bethesda, MD 20892-1379, USA.
| |
Collapse
|
22
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
23
|
Sakurai M, Sekiguchi M, Zushida K, Yamada K, Nagamine S, Kabuta T, Wada K. Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. Eur J Neurosci 2008; 27:691-701. [DOI: 10.1111/j.1460-9568.2008.06047.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|