1
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
2
|
|
3
|
Hodes GE, Russo SJ. The Neurobiology of Depression and Anxiety: How Do We Change from Models of Drug Efficacy to Understanding Mood and Anxiety Disorders? DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Current treatments for depression and anxiety disorders are only effective in approximately half of the patient population. Effective treatments have negative side-effects including sexual dysfunction, weight gain and gastrointestinal problems. Furthermore, even when patients achieve remission, they often need to increase dosage or change treatment across their lifetime as efficacy weakens. The majority of treatments being used today are based on the monoamine hypothesis of depression, a theory of depression that was based on the effectiveness of drugs discovered by chance to alleviate the symptoms of depression. This chapter provides an overview of the neurobiology of depression and anxiety disorders within the context of drug discovery. The chapter starts with what we currently know about these disorders through the lens of the monoamine hypothesis of depression. We then provide a background into the animal models of depression and anxiety that are being used to understand the underlying biology of these disorders and test new treatments. Work conducted using these animal models has directed human imagining and has provided us with new information about both the molecular and cellular mechanism of depression and anxiety as well as the neural circuitry controlling these disorders. Finally, we will conclude with a discussion of new treatments being developed based on empirical evidence about the neurobiology of depression and anxiety and the need to develop more personalized treatments in the future. It is hoped that these new drugs will be able to provide effective treatment for more people, with fewer negative side-effects.
Collapse
Affiliation(s)
- Georgia E. Hodes
- Fishberg Department of Neuroscience and Freidman Brain Institute Mount Sinai School of Medicine 1425 Madison Ave., New York, NY 10029 USA
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Freidman Brain Institute Mount Sinai School of Medicine 1425 Madison Ave., New York, NY 10029 USA
| |
Collapse
|
4
|
Kfoury N, Kapatos G. Identification of neuronal target genes for CCAAT/enhancer binding proteins. Mol Cell Neurosci 2008; 40:313-27. [PMID: 19103292 DOI: 10.1016/j.mcn.2008.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023] Open
Abstract
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in the development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPbeta target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPbeta binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPbeta to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPalpha, beta and delta. Analysis of the hippocampal transcriptome of C/EBPbeta knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain.
Collapse
Affiliation(s)
- Najla Kfoury
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
5
|
Nestler EJ. Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond B Biol Sci 2008; 363:3245-55. [PMID: 18640924 DOI: 10.1098/rstb.2008.0067] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulation of gene expression is considered a plausible mechanism of drug addiction, given the stability of behavioural abnormalities that define an addicted state. Among many transcription factors known to influence the addiction process, one of the best characterized is DeltaFosB, which is induced in the brain's reward regions by chronic exposure to virtually all drugs of abuse and mediates sensitized responses to drug exposure. Since DeltaFosB is a highly stable protein, it represents a mechanism by which drugs produce lasting changes in gene expression long after the cessation of drug use. Studies are underway to explore the detailed molecular mechanisms by which DeltaFosB regulates target genes and produces its behavioural effects. We are approaching this question using DNA expression arrays coupled with the analysis of chromatin remodelling--changes in the posttranslational modifications of histones at drug-regulated gene promoters--to identify genes that are regulated by drugs of abuse via the induction of DeltaFosB and to gain insight into the detailed molecular mechanisms involved. Our findings establish chromatin remodelling as an important regulatory mechanism underlying drug-induced behavioural plasticity, and promise to reveal fundamentally new insight into how DeltaFosB contributes to addiction by regulating the expression of specific target genes in brain reward pathways.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
6
|
Feldmann RE, Sawa A, Seidler GH. Causality of stem cell based neurogenesis and depression--to be or not to be, is that the question? J Psychiatr Res 2007; 41:713-23. [PMID: 16889797 DOI: 10.1016/j.jpsychires.2006.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/10/2006] [Accepted: 06/22/2006] [Indexed: 01/17/2023]
Abstract
Mood disorders compose a considerable portion of the worldwide prevailing diseases with high suicide rates and urgent demand for novel therapeutic interventions as efficacious treatment is still lacking. Depression is thought to feature distinct morphological correlatives in the brain and has recently been linked to adult neurogenesis (NG) in the hippocampal formation. Numerous findings give rise to the hypothesis that depression and declining NG in the hippocampus may be causally connected. This implies that depressive symptoms could originate from impairments in NG and, vice versa, that improved NG could mediate antidepressant action and alleviate symptoms. Thus, great hopes rest on the question whether the observed increase in NG following antidepression treatment may have the potential to become a novel drug target and specific mechanism in the development of the next generation of antidepressants that specifically involves targeting of neuropoetic factors in addition to their "traditional" effects as modulators of synaptic transmission. Along the still hypothetical association of depression and NG, however, several controversies and unresolved questions exist with respect to the presently available data and interpretation. This article highlights and summarizes some of the most pressing issues and identifies the crucial ones that await urgent clarification and resolving. Without their reliable answering, the fascinating notion of a neurogenic basis for depression will remain to be greatly speculative.
Collapse
Affiliation(s)
- Robert E Feldmann
- Department of Physiology and Pathophysiology, Division of Systems Physiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
7
|
Schroeder-Gloeckler JM, Rahman SM, Janssen RC, Qiao L, Shao J, Roper M, Fischer SJ, Lowe E, Orlicky DJ, McManaman JL, Palmer C, Gitomer WL, Huang W, O’Doherty RM, Becker TC, Klemm DJ, Jensen DR, Pulawa LK, Eckel RH, Friedman JE. CCAAT/enhancer-binding protein beta deletion reduces adiposity, hepatic steatosis, and diabetes in Lepr(db/db) mice. J Biol Chem 2007; 282:15717-29. [PMID: 17387171 PMCID: PMC4109269 DOI: 10.1074/jbc.m701329200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPbeta) plays a key role in initiation of adipogenesis in adipose tissue and gluconeogenesis in liver; however, the role of C/EBPbeta in hepatic lipogenesis remains undefined. Here we show that C/EBPbeta inactivation in Lepr(db/db) mice attenuates obesity, fatty liver, and diabetes. In addition to impaired adipogenesis, livers from C/EBPbeta(-/-) x Lepr(db/db) mice had dramatically decreased triglyceride content and reduced lipogenic enzyme activity. C/EBPbeta deletion in Lepr(db/db) mice down-regulated peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and stearoyl-CoA desaturase-1 and up-regulated PPARalpha independent of SREBP1c. Conversely, C/EBPbeta overexpression in wild-type mice increased PPARgamma2 and stearoyl-CoA desaturase-1 mRNA and hepatic triglyceride content. In FAO cells, overexpression of the liver inhibiting form of C/EBPbeta or C/EBPbeta RNA interference attenuated palmitate-induced triglyceride accumulation and reduced PPARgamma2 and triglyceride levels in the liver in vivo. Leptin and the anti-diabetic drug metformin acutely down-regulated C/EBPbeta expression in hepatocytes, whereas fatty acids up-regulate C/EBPbeta expression. These data provide novel evidence linking C/EBPbeta expression to lipogenesis and energy balance with important implications for the treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Jill M. Schroeder-Gloeckler
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Shaikh Mizanoor Rahman
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Rachel C. Janssen
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Liping Qiao
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Jianhua Shao
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Michael Roper
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Stephanie J. Fischer
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Erin Lowe
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - David J. Orlicky
- Department of Pathology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - James L. McManaman
- Department of Obstetrics and Gynecology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
- Department of Physiology and Biophysics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Carol Palmer
- Department of Obstetrics and Gynecology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | | | - Wan Huang
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Robert M. O’Doherty
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas C. Becker
- Division of Endocrinology, Nutrition, and Metabolism, Duke University Medical Center, Durham, North Carolina 27704
| | - Dwight J. Klemm
- Pulmonary Sections, Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Dalan R. Jensen
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Leslie K. Pulawa
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Robert H. Eckel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
| | - Jacob E. Friedman
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045
- To whom correspondence should be addressed: Depts. of Pediatrics and Biochemistry and Molecular Genetics, UCDHSC-Mail Stop F-8106, P.O. Box 6511, Aurora, CO 80045. Tel.: 303-724-3983; Fax: 303-724-3920;
| |
Collapse
|
8
|
Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR. C/EBPβ couples dopamine signalling to substance P precursor gene expression in striatal neurones. J Neurochem 2006; 98:1390-9. [PMID: 16771829 DOI: 10.1111/j.1471-4159.2006.03957.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.
Collapse
Affiliation(s)
- Krisztián A Kovács
- Center for Psychiatric Neuroscience, University Medical Center, University of Lausanne, Prilly, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Madsen TM, Bolwig TG, Mikkelsen JD. Differential regulation of c-Fos and FosB in the rat brain after amygdala kindling. Cell Mol Neurobiol 2006; 26:87-100. [PMID: 16633904 PMCID: PMC11521382 DOI: 10.1007/s10571-006-9202-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/24/2005] [Indexed: 11/24/2022]
Abstract
Members of the inducible transcription factor Fos family, that are part of the AP-1 complex that binds to the corresponding promoter site, are implicated in the regulation of gene transcription after acute and chronic seizures. However, little is known about the temporal expression of the AP-1 transcription factors and if individual proteins composing this complex have distinct roles in development and maintenance of permanent epilepsy. In this study, the AP-1 binding capacity, its content of different Fos proteins, and the anatomical specificity, were analyzed 2 or 18 h after achieving full kindling in rats. The same analysis was performed in fully kindled animal receiving a new stimulus after a 3-week pause to determine the extent of stability of the AP-1 transcription factors. While both c-Fos and FosB were induced in all cortical areas after a single stimulus, only FosB-immunoreactivity remained after 18 h. A single stimulation to kindled animals left undisturbed for 3 weeks induced a long-lasting upregulation of AP-1 binding in the frontal cortex, but not in the hippocampus suggesting a permanent exposure of AP-1 heterocomplexes in the frontal cortex. Supershift assays showed that FosB is the dominant component of the long-term AP-1 complex. It is concluded that the AP-1 binding complex in fully kindled rats is composed of different proteins, and that FosB-containing AP-1 complexes mediate long-term effects in the frontal cortex.
Collapse
Affiliation(s)
- Torsten M. Madsen
- Department of Psychiatry, Neuropsychiatry Laboratory, H:S Rigshospitalet, Denmark
- Present Address: Center for Basic Psychiatric Research, Aarhus Psychiatric Hospital, Skovagervej 2, DK-8240 Risskov, Denmark
| | - Tom G. Bolwig
- Department of Psychiatry, Neuropsychiatry Laboratory, H:S Rigshospitalet, Denmark
| | - Jens D. Mikkelsen
- NeuroSearch A/S, Ballerup, Denmark
- NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark
| |
Collapse
|
10
|
Abstract
Depressive disorders are among the most frequent psychiatric diseases in the Western world with prevalence numbers between 9% and 18%. They are characterized by depressed mood, a diminished interest in pleasurable activities, feelings of worthlessness or inappropriate guilt, decrease in appetite and libido, insomnia, and recurrent thoughts of death or suicide. Among other findings, reduced activity of monoaminergic neurotransmission has been postulated to play a role in the pathogenesis of depression. Consistent with this hypothesis, most antidepressive drugs exert their action by elevating the concentration of monoamines in the synaptic cleft. However, it is not the enhancement of monoaminergic signaling per se, but rather long-term, adaptive changes that may underlie the therapeutic effect. These include functional and structural changes that are discussed later. In addition, in the last years, evidence has emerged that remissions induced in patients using lithium or electroconvulsive therapy are accompanied by structural changes in neuronal networks thereby affecting synaptic plasticity in various regions of the brain.
Collapse
Affiliation(s)
- Patrick Schloss
- Central Institute of Mental Health, J5, 68159 Mannheim, Germany
| | | |
Collapse
|