1
|
Snelleksz M, Scarr E, Dean B. Lower levels of kainate receptors, but not AMPA or NMDA receptors, in Brodmann's area (BA) 9, but not BA 10, from a subgroup of people with schizophrenia who have a marked deficit in cortical muscarinic M1 receptors. Schizophr Res 2024; 274:129-136. [PMID: 39293250 DOI: 10.1016/j.schres.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
In a previous study on ionotropic glutamate receptors, we have shown that [3H]kainate, but not [3H]AMPA or [3H]NMDA, receptor binding was lower in Brodmann's area (BA) 9 from people with schizophrenia. Subsequently, we defined a subgroup within the syndrome of schizophrenia who are termed the Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS) as they have markedly lower levels of [3H]pirenzepine binding to the muscarinic M1 receptor. The previous glutamate receptor study did not contain enough people with MRDS and other forms of schizophrenia (non-MRDS) to study any subgroup-specific differences. Hence, in this study we first measured [3H]pirenzepine binding to the muscarinic M1 receptor to confirm the MRDS subgroup, then measured [3H]kainate, [3H]AMPA and [3H]NMDA receptor binding using autoradiography in BA 9 from people with MRDS, non-MRDS and controls. We also measured binding in BA 10 as our gene expression study indicated that BA 10 is disproportionally affected by the molecular pathology of schizophrenia. As expected, due to case-selection criteria, [3H]pirenzepine binding to the M1 receptor was lower in BA 9 and BA 10 from people with MRDS, although more profound in BA 10. [3H]kainate receptor binding was lower only in BA 9 from people with MRDS, while [3H]AMPA and [3H]NMDA receptor binding was not altered in either region. Muscarinic M1 receptors and kainate receptors are both located on glutamatergic pyramidal neurons so a perturbation in both receptors could indicate altered excitatory neurotransmission in BA 9 from people with MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int J Mol Sci 2022; 23:ijms23137067. [PMID: 35806070 PMCID: PMC9266666 DOI: 10.3390/ijms23137067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The default mode network (DMN) plays an outstanding role in psychiatric disorders. Still, gene expressional changes in its major component, the dorsomedial prefrontal cortex (DMPFC), have not been characterized. We used RNA sequencing in postmortem DMPFC samples to investigate suicide victims compared to control subjects. 1400 genes differed using log2FC > ±1 and adjusted p-value < 0.05 criteria between groups. Genes associated with depressive disorder, schizophrenia and impaired cognition were strongly overexpressed in top differentially expressed genes. Protein−protein interaction and co-expressional networks coupled with gene set enrichment analysis revealed that pathways related to cytokine receptor signaling were enriched in downregulated, while glutamatergic synaptic signaling upregulated genes in suicidal individuals. A validated differentially expressed gene, which is known to be associated with mGluR5, was the N-terminal EF-hand calcium-binding protein 2 (NECAB2). In situ hybridization histochemistry and immunohistochemistry proved that NECAB2 is expressed in two different types of inhibitory neurons located in layers II-IV and VI, respectively. Our results imply extensive gene expressional alterations in the DMPFC related to suicidal behavior. Some of these genes may contribute to the altered mental state and behavior of suicide victims.
Collapse
|
3
|
Hu TM, Wu CL, Hsu SH, Tsai HY, Cheng FY, Cheng MC. Ultrarare Loss-of-Function Mutations in the Genes Encoding the Ionotropic Glutamate Receptors of Kainate Subtypes Associated with Schizophrenia Disrupt the Interaction with PSD95. J Pers Med 2022; 12:783. [PMID: 35629206 PMCID: PMC9144110 DOI: 10.3390/jpm12050783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is a complex mental disorder with a genetic component. The GRIK gene family encodes ionotropic glutamate receptors of the kainate subtype, which are considered candidate genes for schizophrenia. We screened for rare and pathogenic mutations in the protein-coding sequences of the GRIK gene family in 516 unrelated patients with schizophrenia using the ion semiconductor sequencing method. We identified 44 protein-altered variants, and in silico analysis indicated that 36 of these mutations were rare and damaging or pathological based on putative protein function. Notably, we identified four truncating mutations, including two frameshift deletion mutations (GRIK1p.Phe24fs and GRIK1p.Thr882fs) and two nonsense mutations (GRIK2p.Arg300Ter and GRIK4p.Gln342Ter) in four unrelated patients with schizophrenia. They exhibited minor allele frequencies of less than 0.01% and were absent in 1517 healthy controls from Taiwan Biobank. Functional analysis identified these four truncating mutants as loss-of-function (LoF) mutants in HEK-293 cells. We also showed that three mutations (GRIK1p.Phe24fs, GRIK1p.Thr882fs, and GRIK2p.Arg300Ter) weakened the interaction with the PSD95 protein. The results suggest that the GRIK gene family harbors ultrarare LoF mutations in some patients with schizophrenia. The identification of proteins that interact with the kainate receptors will be essential to determine kainate receptor-mediated signaling in the brain.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
- Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Fu-Yu Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| |
Collapse
|
4
|
AMPA receptors in schizophrenia: A systematic review of postmortem studies on receptor subunit expression and binding. Schizophr Res 2022; 243:98-109. [PMID: 35247795 DOI: 10.1016/j.schres.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/04/2021] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND While altered expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor has been reported in postmortem studies of schizophrenia, these findings are inconsistent. Therefore, we aimed to systematically review postmortem studies that investigated AMPA receptor expressions in schizophrenia. METHODS A systematic literature search was conducted for postmortem studies that measured AMPA receptor subunit expressions or receptor bindings in schizophrenia compared to healthy individuals on February 3, 2021, using Medline and Embase. RESULTS A total of 39 relevant articles were identified from 1360 initial reports. The dorsolateral prefrontal cortex (DLPFC) was the most investigated region (15 studies), followed by the medial temporal lobe (8 studies). For the DLPFC, 4/15 studies (26.7%) showed increased AMPA receptor binding or subunit expression in patients with schizophrenia compared to that in controls, especially in GRIA1 and GRIA4, 2/15 studies (13.3%) reported a decrease, particularly in GRIA2, and 8/15 studies (56.7%) found no significant differences. A decreased expression or receptor binding was observed in 6/8 studies (75.0%) in the subregions of the hippocampus in patients with schizophrenia compared to that in controls, whereas the other two studies found no significant differences. CONCLUSION Published data have reported decreased subunit expression or receptor binding in the hippocampus in schizophrenia. These findings were inconsistent in other brain regions, which might be due to the heterogeneity of this population, various study design, physiological changes after death, and limited number of studies. Future in vivo studies are warranted to examine AMPA receptor expressions in human brains, together with their comprehensive clinical characterization.
Collapse
|
5
|
Rahman T, Purves-Tyson T, Geddes AE, Huang XF, Newell KA, Weickert CS. N-Methyl-d-Aspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2022; 240:61-70. [PMID: 34952289 DOI: 10.1016/j.schres.2021.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Lower N-methyl-d-aspartate receptor (NMDAR) GluN1 subunit levels and heightened neuroinflammation are found in the cortex in schizophrenia. Since neuroinflammation can lead to changes in NMDAR function, it is possible that these observations are linked in schizophrenia. We aimed to extend our previous studies by measuring molecular indices of NMDARs that define key functional properties of this receptor - particularly the ratio of GluN2A and GluN2B subunits - in dorsolateral prefrontal cortex (DLPFC) from schizophrenia and control cases (37/37). We sought to test whether changes in these measures are specific to the subset of schizophrenia cases with high levels of inflammation-related mRNAs, defined as a high inflammatory subgroup. Quantitative autoradiography was used to detect 'functional' NMDARs ([3H]MK-801), GluN1-coupled-GluN2A subunits ([3H]CGP-39653), and GluN1-coupled-GluN2B subunits ([3H]Ifenprodil). Quantitative RT-PCR was used to measure NMDAR subunit transcripts (GRIN1, GRIN2A and GRIN2B). The ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were calculated as an index of putative NMDAR composition. We found: 1) GluN2A binding, and 2) the ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were lower in schizophrenia cases versus controls (p < 0.05), and 3) lower GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNA ratios were exaggerated in the high inflammation/schizophrenia subgroup compared to the low inflammation/control subgroup (p < 0.05). No other NMDAR-related indices were significantly changed in the high inflammation/schizophrenia subgroup. This suggests that neuroinflammation may alter NMDAR stoichiometry rather than targeting total NMDAR levels overall, and future studies could aim to determine if anti-inflammatory treatment can alleviate this aspect of NMDAR-related pathology.
Collapse
Affiliation(s)
- Tasnim Rahman
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tertia Purves-Tyson
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Amy E Geddes
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia.
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
6
|
Downregulation of kainate receptors regulating GABAergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents. Transl Psychiatry 2021; 11:538. [PMID: 34663781 PMCID: PMC8523542 DOI: 10.1038/s41398-021-01654-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.
Collapse
|
7
|
Negrete-Díaz JV, Falcón-Moya R, Rodríguez-Moreno A. Kainate receptors: from synaptic activity to disease. FEBS J 2021; 289:5074-5088. [PMID: 34143566 DOI: 10.1111/febs.16081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors that participate in the postsynaptic transmission of information and in the control of neuronal excitability, as well as presynaptically modulating the release of the neurotransmitters GABA and glutamate. These modulatory effects, general follow a biphasic pattern, with low KA concentrations provoking an increase in GABA and glutamate release, and higher concentrations mediating a decrease in the release of these neurotransmitters. In addition, KARs are involved in different forms of long- and short-term plasticity. Importantly, altered activity of these receptors has been implicated in different central nervous system diseases and disturbances. Here, we describe the pre- and postsynaptic actions of KARs, and the possible role of these receptors in disease, a field that has seen significant progress in recent years.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Psicología Experimental y Neurociencias, División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, México
| | - Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
8
|
Valbuena S, Lerma J. Losing balance: Kainate receptors and psychiatric disorders comorbidities. Neuropharmacology 2021; 191:108558. [PMID: 33862031 DOI: 10.1016/j.neuropharm.2021.108558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/28/2023]
Abstract
Cognition and behavior are tightly linked to synaptic function. A growing body of evidence suggests that aberrant neurotransmission, caused by changes in synaptic protein expression levels, may be a major cause underlying different brain disorders. These changes in expression result in abnormal synaptic organization or function, leading to impaired neurotransmission and unbalanced circuit operations. Here, we review the data supporting the involvement of mutations in genes coding for kainate receptor (KAR) subunits in the pathogenesis of psychiatric disorders and Down syndrome (DS). We show that most of these mutations do not affect the biophysical properties or the receptors, but rather alter subunit expression levels. On the basis of reports studying KAR genes mutations in mouse models of autism spectrum disorders and DS, we illustrate how deviations from the physiological regulatory role that these receptors play in neurotransmitter release and plasticity give rise to synaptic alterations that lead to behavioral and cognitive deficits underlying these disorders.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
9
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
10
|
Rahman T, Zavitsanou K, Purves-Tyson T, Harms LR, Meehan C, Schall U, Todd J, Hodgson DM, Michie PT, Weickert CS. Effects of Immune Activation during Early or Late Gestation on N-Methyl-d-Aspartate Receptor Measures in Adult Rat Offspring. Front Psychiatry 2017; 8:77. [PMID: 28928676 PMCID: PMC5591421 DOI: 10.3389/fpsyt.2017.00077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamatergic receptor [N-methyl-d-aspartate receptor (NMDAR)] alterations within cortex, hippocampus, and striatum are linked to schizophrenia pathology. Maternal immune activation (MIA) is an environmental risk factor for the development of schizophrenia in offspring. In rodents, gestational timing of MIA may result in distinct behavioral outcomes in adulthood, but how timing of MIA may impact the nature and extent of NMDAR-related changes in brain is not known. We hypothesize that NMDAR-related molecular changes in rat cortex, striatum, and hippocampus are induced by MIA and are dependent on the timing of gestational inflammation and sex of the offspring. METHODS Wistar dams were treated the with viral mimic, polyriboinosinic:polyribocytidylic acid (polyI:C), or vehicle on either gestational day 10 or 19. Fresh-frozen coronal brain sections were collected from offspring between postnatal day 63-91. Autoradiographic binding was used to infer levels of the NMDAR channel, and NR2A and NR2B subunits in cortex [cingulate (Cg), motor, auditory], hippocampus (dentate gyrus, cornu ammonis area 3, cornu ammonis area 1), and striatum [dorsal striatum, nucleus accumbens core, and nucleus accumbens shell (AS)]. NR1 and NR2A mRNA levels were measured by in situ hybridization in cortex, hippocampus, and striatum in male offspring only. RESULTS In the total sample, NMDAR channel binding was elevated in the Cg of polyI:C offspring. NR2A binding was elevated, while NR2B binding was unchanged, in all brain regions of polyI:C offspring overall. Male, but not female, polyI:C offspring exhibited increased NMDAR channel and NR2A binding in the striatum overall, and increased NR2A binding in the cortex overall. Male polyI:C offspring exhibited increased NR1 mRNA in the AS, and increased NR2A mRNA in cortex and subregions of the hippocampus. CONCLUSION MIA may alter glutamatergic signaling in cortical and hippocampal regions via alterations in NMDAR indices; however, this was independent of gestational timing. Male MIA offspring have exaggerated changes in NMDAR compared to females in both the cortex and striatum. The MIA-induced increase in NR2A may decrease brain plasticity and contribute to the exacerbated behavioral changes reported in males and indicate that the brains of male offspring are more susceptible to long-lasting changes in glutamate neurotransmission induced by developmental inflammation.
Collapse
Affiliation(s)
- Tasnim Rahman
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia
| | - Katerina Zavitsanou
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia
| | - Tertia Purves-Tyson
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia
| | - Lauren R Harms
- Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Crystal Meehan
- Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Juanita Todd
- Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Patricia T Michie
- Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cyndi Shannon Weickert
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,Schizophrenia Research Institute, at Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
11
|
Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, McCullumsmith RE. Changes in cortical N-methyl- d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust N Z J Psychiatry 2016; 50:275-83. [PMID: 26013316 PMCID: PMC7683009 DOI: 10.1177/0004867415586601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. METHOD We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. RESULTS Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. CONCLUSION These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine.
Collapse
Affiliation(s)
- Brian Dean
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Andrew S Gibbons
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Simone Boer
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Akihito Uezato
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Elizabeth Scarr
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
12
|
Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia. NPJ SCHIZOPHRENIA 2015; 1:15037. [PMID: 27336043 PMCID: PMC4849460 DOI: 10.1038/npjschz.2015.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.
Collapse
|
13
|
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol 2015; 2015:615356. [PMID: 26491441 PMCID: PMC4600562 DOI: 10.1155/2015/615356] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alyssa M. Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Li W, Ghose S, Gleason K, Begovic’ A, Perez J, Bartko J, Russo S, Wagner AD, Selemon L, Tamminga CA. Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. Am J Psychiatry 2015; 172:373-82. [PMID: 25585032 PMCID: PMC4457341 DOI: 10.1176/appi.ajp.2014.14010123] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In schizophrenia, hippocampal perfusion is increased and declarative memory function is degraded. Based on an a priori model of hippocampal dysfunction in schizophrenic psychosis, the authors postulated molecular and cellular changes in CA3 consistent with increased NMDA receptor signaling. METHOD Postmortem hippocampal subfield tissue (CA3, CA1) from subjects with schizophrenia and nonpsychiatric comparison subjects was analyzed using Western blotting and Golgi histochemistry to examine the hypothesized outcomes. RESULTS The GluN2B-containing NMDA receptors (GluN2B/GluN1) and their associated postsynaptic membrane protein PSD95 were both increased in schizophrenia in CA3 tissue, but not in CA1 tissue. Quantitative analyses of Golgi-stained hippocampal neurons showed an increase in spine density on CA3 pyramidal cell apical dendrites (stratum radiatum) and an increase in the number of thorny excrescences. CONCLUSIONS The hippocampal data are consistent with increased excitatory signaling in CA3 and/or with an elevation in silent synapses in CA3, a state that may contribute to an increase in long-term potentiation in CA3 with subsequent stimulation and "unsilencing." These changes are plausibly associated with increased associational activity in CA3, with degraded declarative memory function, and with formation of false memories with psychotic content. The influence of these hyperactive hippocampal projections on targets in the limbic neocortex could contribute to components of schizophrenia manifestations in other cerebral regions.
Collapse
Affiliation(s)
- Wei Li
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Subroto Ghose
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Kelly Gleason
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anita Begovic’
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Jessica Perez
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John Bartko
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Scott Russo
- Neuroscience Department, Mount Sinai Medical School, NY NY 10029
| | - Anthony D. Wagner
- Department of Psychology and Neuroscience Program, Stanford University, Palo Alto, CA 94305
| | - Lynn Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Carol A. Tamminga
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
15
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
16
|
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul) 2014; 20:1-18. [PMID: 24116269 PMCID: PMC3792192 DOI: 10.4062/biomolther.2012.20.1.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specific changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.
Collapse
Affiliation(s)
- Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
17
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
18
|
Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol Psychiatry 2013; 18:1185-92. [PMID: 23070074 PMCID: PMC3807670 DOI: 10.1038/mp.2012.137] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/05/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
Blockade of N-methyl-D-aspartate receptors (NMDARs) produces behavior in healthy people that is similar to the psychotic symptoms and cognitive deficits of schizophrenia and can exacerbate symptoms in people with schizophrenia. However, an endogenous brain disruption of NMDARs has not been clearly established in schizophrenia. We measured mRNA transcripts for five NMDAR subunit mRNAs and protein for the NR1 subunit in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control (n=74) brains. Five NMDAR single-nucleotide polymorphisms (SNPs) previously associated with schizophrenia were tested for association with NMDAR mRNAs in postmortem brain and for association with cognitive ability in an antemortem cohort of 101 healthy controls and 48 people with schizophrenia. The NR1 subunit (mRNA and protein) and NR2C mRNA were decreased in postmortem brain from people with schizophrenia (P=0.004, P=0.01 and P=0.01, respectively). In the antemortem cohort, the minor allele of NR2B rs1805502 (T5988C) was associated with significantly lower reasoning ability in schizophrenia. In the postmortem brain, the NR2B rs1805502 (T5988C) C allele was associated with reduced expression of NR1 mRNA and protein in schizophrenia. Reduction in NR1 and NR2C in the DLPFC of people with schizophrenia may lead to altered NMDAR stoichiometry and provides compelling evidence for an endogenous NMDAR deficit in schizophrenia. Genetic variation in the NR2B gene predicts reduced levels of the obligatory NR1 subunit, suggesting a novel mechanism by which the NR2B SNP may negatively influence other NMDAR subunit expression and reasoning ability in schizophrenia.
Collapse
|
19
|
Genius J, Geiger J, Dölzer AL, Benninghoff J, Giegling I, Hartmann AM, Möller HJ, Rujescu D. Glutamatergic dysbalance and oxidative stress in in vivo and in vitro models of psychosis based on chronic NMDA receptor antagonism. PLoS One 2013; 8:e59395. [PMID: 23869202 PMCID: PMC3711936 DOI: 10.1371/journal.pone.0059395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/16/2013] [Indexed: 12/23/2022] Open
Abstract
Background The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists in healthy humans and their tendency to aggravate psychotic symptoms in schizophrenic patients have promoted the notion of altered glutamatergic neurotransmission in the pathogenesis of schizophrenia. Methods The NMDA-receptor antagonist MK-801 was chronically administered to rats (0.02 mg/kg intraperitoneally for 14 days). In one subgroup the antipsychotic haloperidol (1 mg/kg) was employed as a rescue therapy. Glutamate distribution and 3-NT (3-nitrotyrosine) as a marker of oxidative stress were assessed by immunohistochemistry in tissue sections. In parallel, the effects of MK-801 and haloperidol were investigated in primary embryonal hippocampal cell cultures from rats. Results Chronic NMDA-R antagonism led to a marked increase of intracellular glutamate in the hippocampus (126.1 +/− 10.4% S.E.M of control; p = 0.037), while 3-NT staining intensity remained unaltered. No differences were observed in extrahippocampal brain regions. Essentially these findings could be reproduced in vitro. Conclusion The combined in vivo and in vitro strategy allowed us to assess the implications of disturbed glutamate metabolism for the occurrence of oxidative stress and to investigate the effects of antipsychotics. Our data suggest that oxidative stress plays a minor role in this model than previously suggested. The same applies to apoptosis. Moreover, the effect of haloperidol seems to be mediated through yet unidentified mechanisms, unrelated to D2-antagonism. These convergent lines of evidence indicate that further research should be focused on the glutamatergic system and that our animal model may provide a tool to explore the biology of schizophrenia.
Collapse
Affiliation(s)
- Just Genius
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, University of Essen, Essen, Germany
| | - Johanna Geiger
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Anna-Lena Dölzer
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jens Benninghoff
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, University of Essen, Essen, Germany
| | - Ina Giegling
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Annette M. Hartmann
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, University of Halle, Halle, Germany
- * E-mail:
| |
Collapse
|
20
|
Newell KA, Karl T, Huang XF. A neuregulin 1 transmembrane domain mutation causes imbalanced glutamatergic and dopaminergic receptor expression in mice. Neuroscience 2013; 248:670-80. [PMID: 23811072 DOI: 10.1016/j.neuroscience.2013.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023]
Abstract
The neuregulin 1 gene has repeatedly been identified as a susceptibility gene for schizophrenia, thus mice with genetic mutations in this gene offer a valuable tool for studying the role of neuregulin 1 in schizophrenia-related neurotransmission. In this study, slide-based receptor autoradiography was used to quantify glutamatergic N-methyl-d-aspartate (NMDA), dopaminergic D2, cannabinoid CB1 and acetylcholine M1/4 receptor levels in the brains of male heterozygous transmembrane domain neuregulin 1 mutant (Nrg1(+/-)) mice at two ages. Mutant mice expressed small but significant increases in NMDA receptor levels in the cingulate cortex (7%, p=0.044), sensory cortex (8%, p=0.024), and motor cortex (8%, p=0.047), effects that were independent of age. In the nucleus accumbens and thalamus Nrg1(+/-) mice exhibited age-dependent alterations in NMDA receptors. Nrg1(+/-) mice showed a statistically significant increase in NMDA receptor levels in the nucleus accumbens of 14-week-old Nrg1(+/-) mice compared to control littermates of the same age (12%, p=0.026), an effect that was not seen in 20-week-old mice. In contrast, NMDA receptor levels in the thalamus, while initially unchanged in 14-week-old mice, were then decreased in the 20-week-old Nrg1(+/-) mice compared to control littermates of the same age (14%, p=0.011). Nrg1(+/-) mutant mice expressed a significant reduction in D2 receptor levels (13-16%) in the striatum compared to controls, independent of age. While there was a borderline significant increase (6%, p=0.058) in cannabinoid CB1 receptor levels in the substantia nigra of Nrg1(+/-) mice compared to controls, CB1 as well as acetylcholine M1/4 receptors showed no change in Nrg1(+/-) mice in any other brain region examined. These data indicate that a Nrg1 transmembrane mutation produces selective imbalances in glutamatergic and dopaminergic neurotransmission, which are two key systems believed to contribute to schizophrenia pathogenesis. While the effects on these systems are subtle, they may underlie the susceptibility of these mutants to further impacts.
Collapse
Affiliation(s)
- K A Newell
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, NSW 2522, Australia.
| | | | | |
Collapse
|
21
|
Chana G, Bousman CA, Money TT, Gibbons A, Gillett P, Dean B, Everall IP. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci 2013; 7:95. [PMID: 23805071 PMCID: PMC3693064 DOI: 10.3389/fncel.2013.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/03/2013] [Indexed: 12/28/2022] Open
Abstract
Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
Collapse
Affiliation(s)
- Gursharan Chana
- Department of Psychiatry, Melbourne Brain Centre, The University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Drummond JB, Tucholski J, Haroutunian V, Meador-Woodruff JH. Transmembrane AMPA receptor regulatory protein (TARP) dysregulation in anterior cingulate cortex in schizophrenia. Schizophr Res 2013; 147:32-38. [PMID: 23566497 PMCID: PMC3650109 DOI: 10.1016/j.schres.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 02/09/2023]
Abstract
The glutamate hypothesis of schizophrenia proposes that abnormal glutamatergic neurotransmission occurs in this illness, and a major contribution may involve dysregulation of the AMPA subtype of ionotropic glutamate receptor (AMPAR). Transmembrane AMPAR regulatory proteins (TARPs) form direct associations with AMPARs to modulate the trafficking and biophysical functions of these receptors, and their dysregulation may alter the localization and activity of AMPARs, thus having a potential role in the pathophysiology of schizophrenia. We performed comparative quantitative real-time PCR and Western blot analysis to measure transcript (schizophrenia, N=25; comparison subjects, N=25) and protein (schizophrenia, N=36; comparison subjects, N=33) expression of TARPs (γ subunits 1-8) in the anterior cingulate cortex (ACC) in schizophrenia and a comparison group. TARP expression was also measured in frontal cortex of rats chronically treated with haloperidol decanoate (28.5mg/kg every three weeks for nine months) to determine the effect of antipsychotic treatment on the expression of these molecules. We found decreased transcript expression of TARP γ-8 in schizophrenia. At the protein level, γ-3 and γ-5 were increased, while γ-4, γ-7 and γ-8 were decreased in schizophrenia. No changes in any of the molecules were noted in the frontal cortex of haloperidol-treated rats. TARPs are abnormally expressed at transcript and protein levels in ACC in schizophrenia, and these changes are likely due to the illness and not to the antipsychotic treatment. Alterations in the expression of TARPs may contribute to the pathophysiology of schizophrenia, and represent a potential mechanism of glutamatergic dysregulation in this illness.
Collapse
Affiliation(s)
- Jana B. Drummond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, CIRC 589A, 1719 6th Ave South, Birmingham, AI 25294 USA
,Corresponding author. . Tel.: 205.996.6164; fax: 205.975.4879
| | - Janusz Tucholski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, CIRC 589A, 1719 6th Ave South, Birmingham, AI 25294 USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, James J Peters Veteran Adminis Room 4F-20 130 West Kingsbridge Road Bronx, NY 10468 USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, CIRC 589A, 1719 6th Ave South, Birmingham, AI 25294 USA
| |
Collapse
|
23
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
24
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
25
|
Schubert KO, Föcking M, Prehn JHM, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012; 17:669-81. [PMID: 21986877 DOI: 10.1038/mp.2011.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.
Collapse
Affiliation(s)
- K O Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | |
Collapse
|
26
|
Hirata Y, Zai CC, Souza RP, Lieberman JA, Meltzer HY, Kennedy JL. Association study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies. Hum Psychopharmacol 2012; 27:345-51. [PMID: 22730074 DOI: 10.1002/hup.2233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED Glutamatergic function is one of the major hypotheses for schizophrenia. Within the glutamate system, the glutamate receptor ionotropic kainate-1 (GRIK1) gene is thought to be particularly involved in schizophrenia because of the reported reduction of GRIK1 in the dorsolateral prefrontal cortex of patients. OBJECTIVE We examined single-nucleotide polymorphisms (SNPs) in the GRIK1 gene for possible association with schizophrenia. METHODS We analyzed eight SNPs across the GRIK1 gene in 202 case-control pairs and 108 small nuclear families. RESULTS For the case-control study, we found nominal significant associations in the analysis of rs469472 (p = 0.028) and its haplotypes. In the family-based study, nominal significant association was also observed for rs469472 (p = 0.046), as well as rs455892 (p = 0.024). The marker rs469472 was associated with schizophrenia when we combined the case-control and family samples (p = 0.027). The association findings did not survive correction for multiple testing. CONCLUSIONS Because we observed similar association findings with marker rs469472 in two independent samples, further analyses in larger samples are warranted.
Collapse
Affiliation(s)
- Yuko Hirata
- Neurogenetics Section, Center for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Wong-Riley MTT, Besharse JC. The kinesin superfamily protein KIF17: one protein with many functions. Biomol Concepts 2012; 3:267-282. [PMID: 23762210 DOI: 10.1515/bmc-2011-0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kinesins are ATP-dependent molecular motors that carry cargos along microtubules, generally in an anterograde direction. They are classified into 14 distinct families with varying structural and functional characteristics. KIF17 is a member of the kinesin-2 family that is plus end-directed. It is a homodimer with a pair of head motor domains that bind microtubules, a coiled-coil stalk, and a tail domain that binds cargos. In neurons, KIF17 transports N-methyl-D-aspartate receptor NR2B subunit, kainate receptor GluR5, and potassium Kv4.2 channels from cell bodies exclusively to dendrites. These cargos are necessary for synaptic transmission, learning, memory, and other functions. KIF17's interaction with NXF2 enables the transport of mRNA bidirectionally in dendrites. KIF17 or its homolog OSM-3 also mediates intraflagellar transport of cargos to the distal tips of flagella or cilia, thereby aiding in ciliogenesis. In many invertebrate and vertebrate sensory cells, KIF17 delivers cargos that contribute to chemosensory perception and signal transduction. In vertebrate photoreceptors, KIF17 is necessary for outer segment development and disc morphogenesis. In the testis, KIF17 (KIF17b) mediates microtubule-independent delivery of ACT from the nucleus to the cytoplasm and microtubule-dependent transport of Spatial-ε, both are presumably involved in spermatogenesis. KIF17 is also implicated in epithelial polarity and morphogenesis, placental transport and development, and the development of specific brain regions. The transcriptional regulation of KIF17 has recently been found to be mediated by nuclear respiratory factor 1 (NRF-1), which also regulates NR2B as well as energy metabolism in neurons. Dysfunctions of KIF17 are linked to a number of pathologies.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
28
|
Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord 2012; 136:1232-7. [PMID: 22036795 PMCID: PMC3275646 DOI: 10.1016/j.jad.2011.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Glutamate is thought to be involved in the pathophysiology of major depressive disorder and bipolar disorder; however, the molecular changes underlying abnormal glutamatergic signalling remain poorly understood. Whilst previous studies have suggested that the NMDA receptor may be involved in the pathophysiology of mood disorders, it is unclear whether the non-NMDA receptors are also involved. Therefore, we sought to examine whether the expression of the non-NMDA, ionotropic glutamate receptors, AMPA receptor and kainate receptor, is altered in mood disorders. METHODS We used [3H]AMPA and [3H]kainate to measure the levels of AMPA and kainate receptor, respectively, in the anterior cingulate (BA 24) and dorsolateral prefrontal cortex (BA 46) from post-mortem CNS in 10 subjects with major depressive disorder, 10 subjects with bipolar disorder and 10 control subjects. RESULTS A 20.7% to 27.7% increase in [3H]AMPA binding density was seen in BA 24 (p<0.05) but not BA 46 (p>0.05) in major depressive disorder compared to control levels. [3H]AMPA binding density was not changed in bipolar disorder in either BA 24 or BA 46 (p>0.05) compared to controls. [3H]Kainate binding was not changed in either BA 24 or BA 46 in either disorder compared to controls (p>0.05). LIMITATIONS Small sample sizes (n=10) were used in this study. The subjects were not drug naïve. CONCLUSIONS Our data suggests increased in AMPA receptor levels in the anterior cingulate are involved in the pathophysiology of major depressive disorder. This data has relevance for the development of new anti-depressant drugs targeted towards the AMPA receptors.
Collapse
Affiliation(s)
- Andrew Stuart Gibbons
- Rebecca L Cooper Laboratories, Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia.
| | - Lucy Brooks
- Rebecca L Cooper Laboratories, Mental Health Research Institute of Victoria, Parkville, Victoria, Victoria 3052, Australia,Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria 3010, Australia,Department of Neuroscience, The University of Nottingham, Nottingham, UK
| | - Elizabeth Scarr
- Rebecca L Cooper Laboratories, Mental Health Research Institute of Victoria, Parkville, Victoria, Victoria 3052, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brian Dean
- Rebecca L Cooper Laboratories, Mental Health Research Institute of Victoria, Parkville, Victoria, Victoria 3052, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia,Department of Psychological Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Duncan GE, Koller BH, Moy SS. Effects of the selective kainate receptor antagonist ACET on altered sensorimotor gating in a genetic model of reduced NMDA receptor function. Brain Res 2012; 1443:98-105. [PMID: 22297176 DOI: 10.1016/j.brainres.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 12/19/2022]
Abstract
The pathophysiology of schizophrenia may involve reduced NMDA receptor function. Accordingly, experimental models of NMDA receptor hypofunction may be useful for testing potential new antipsychotic agents and for characterizing neurobiological abnormalities relevant to schizophrenia. We demonstrated previously that mice under-expressing the NR1 subunit of the NMDA receptor show supersensitive behavioral responses to kainic acid and that a kainate receptor antagonist normalized altered behaviors in the mutant mice (NR1(neo/neo)). The present work examined effects of another selective kainate receptor antagonist, (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl-methylpyrimidine-2,4-dione (ACET), on altered behavioral phenotypes in the genetic model of NMDA receptor hypofunction. ACET, at a dose of 15 mg/kg, partially reversed the deficits in prepulse inhibition produced by the mutation. The 15 mg/kg dose of ACET was also effective in reversing behavioral effects of the selective kainate agonist ATPA. However, ACET did not significantly reduce the increased locomotor activity and rearing behavior observed in the NR1(neo/neo) mice. These findings show that a highly selective kainate receptor antagonist can affect the deficits in sensorimotor gating in the NR1(neo/neo) mice. The results also provide further support for the idea that selective kainate receptor antagonists could be novel therapeutic candidates for schizophrenia.
Collapse
Affiliation(s)
- Gary E Duncan
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
30
|
Knight HM, Walker R, James R, Porteous DJ, Muir WJ, Blackwood DHR, Pickard BS. GRIK4/KA1 protein expression in human brain and correlation with bipolar disorder risk variant status. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:21-9. [PMID: 22052594 DOI: 10.1002/ajmg.b.31248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022]
Abstract
The kainate class of ionotropic glutamate receptors is involved in the regulation of neuronal transmission and synaptic plasticity. Previously we reported that a deletion variant within the gene GRIK4, which encodes the KA1 kainate receptor subunit, was associated with a reduced risk of bipolar disorder and increased GRIK4 mRNA abundance. Using a high resolution immunohistochemistry technique, we characterized KA1 protein localization in human brain and performed a genotype-protein expression correlation study. KA1 was expressed in specific populations of neuronal cells in the cerebellum and all layers of the frontal and parahippocampal cortices. In the hippocampus, strong KA1 expression was observed in the stratum pyramidale and stratum lucidum of CA3 and CA2, in cell processes in CA1, in the neuropil of the CA4 region, in polymorphic cells including mossy fiber neurons in the hilus, and dentate gyrus (DG) granule cells. Mean counts of KA1 positive DG granule cells, hippocampal CA3 pyramidal cells, and layer 1 of the frontal cortex were significantly increased in subjects with the deletion allele (P = 0.0005, 0.018, and 0.0058, respectively) compared to subjects homozygous for the insertion. Neuronal expression levels in all regions quantified were higher in the deletion group. These results support our hypothesis that the deletion allele affords protection against bipolar disorder through increased KA1 protein abundance in neuronal cells. Biological mechanisms which may contribute to this protective effect include KA1 involvement in adult hippocampal neurogenesis, HPA axis activation, or plasticity processes affecting neuronal circuitry.
Collapse
Affiliation(s)
- Helen M Knight
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
32
|
Catches JS, Xu J, Contractor A. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice. Behav Brain Res 2011; 228:406-14. [PMID: 22203159 DOI: 10.1016/j.bbr.2011.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders.
Collapse
Affiliation(s)
- Justin S Catches
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
33
|
Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M, Maios C, Piton A, Spiegelman D, Henrion E, Millet B, Rapoport JL, Delisi LE, Joober R, Fathalli F, Fombonne E, Mottron L, Forget-Dubois N, Boivin M, Michaud JL, Lafrenière RG, Drapeau P, Krebs MO, Rouleau GA. De novo truncating mutation in Kinesin 17 associated with schizophrenia. Biol Psychiatry 2010; 68:649-56. [PMID: 20646681 DOI: 10.1016/j.biopsych.2010.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is one of the most disabling psychiatric disorders. It is thought to be due to a complex interplay between polygenic and various environmental risk factors, although recent reports on genomic copy number variations suggest that a fraction of the cases could result from variably penetrant de novo variants. The gene encoding the synaptic motor protein kinesin 17 (KIF17) involved in glutamatergic synapse is a candidate gene for SCZ. METHODS As part of our Synapse to Disease project, we resequenced KIF17 in a cohort of individuals with sporadic SCZ (188 subjects). Additional populations included autism spectrum disorder (142 subjects), nonsyndromic mental retardation (95 subjects), and control subjects (568 subjects). Functional validation of the human mutation was done in developing zebrafish. RESULTS Here we report the identification of a de novo nonsense truncating mutation in one patient with SCZ, in kinesin 17, a synaptic motor protein. No de novo or truncating KIF17 mutations were found in the additional samples. We further validated the pathogenic nature of this mutation by knocking down its expression in zebrafish embryos, which resulted in a developmental defect. CONCLUSIONS Together our findings suggest that disruption of KIF17, although rare, could result in a schizophrenia phenotype and emphasize the possible involvement of rare de novo mutations in this disorder.
Collapse
Affiliation(s)
- Julien Tarabeux
- Department of Medicine, Center of Excellence in Neuromics of Université de Montréal, Centre Hospitalier de l'Université de Montreal Research Center, University of Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 2010; 35:2110-9. [PMID: 20571483 PMCID: PMC2922423 DOI: 10.1038/npp.2010.87] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 01/01/2023]
Abstract
Several lines of evidence point to alterations of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor trafficking in schizophrenia. Multiple proteins, including synapse-associated protein 97 (SAP97), glutamate receptor-interacting protein 1 (GRIP1), and N-ethylmaleimide sensitive factor (NSF), facilitate the forward trafficking of AMPA receptors toward the synapse. Once localized to the synapse, AMPA receptors are trafficked in a complex endosomal system. We hypothesized that alterations in the expression of these proteins and alterations in the subcellular localization of AMPA receptors in endosomes may contribute to the pathophysiology of schizophrenia. Accordingly, we measured protein expression of SAP97, GRIP1, and NSF in the dorsolateral prefrontal cortex and found an increase in the expression of SAP97 and GRIP1 in schizophrenia. To determine the subcellular localization of AMPA receptor subunits, we developed a technique to isolate early endosomes from post-mortem tissue. We found increased GluR1 receptor subunit protein in early endosomes in subjects with schizophrenia. Together, these data suggest that there is an alteration of forward trafficking of AMPA receptors as well as changes in the subcellular localization of an AMPA receptor subunit in schizophrenia.
Collapse
Affiliation(s)
- John C Hammond
- Department of Neurobiology, University of Alabama Birmingham, 35294-0021, USA.
| | | | | | | | | |
Collapse
|
35
|
Kristiansen LV, Bakir B, Haroutunian V, Meador-Woodruff JH. Expression of the NR2B-NMDA receptor trafficking complex in prefrontal cortex from a group of elderly patients with schizophrenia. Schizophr Res 2010; 119:198-209. [PMID: 20347576 PMCID: PMC2868940 DOI: 10.1016/j.schres.2010.02.1069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Dysregulated glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. In particular, hypofunction of the NMDA glutamate receptor has been proposed to play an important role in mediating cognitive deficits in patients. The two NMDA receptor subunits, NR2A and NR2B, are distinctly regulated during development and are associated with different intracellular pathways and functions, which suggest that these receptors play separate roles in the control of higher cognitive functions such as learning and memory. Trafficking of the NR2B subunit-containing receptor is regulated by a microtubule-associated trafficking complex consisting of the KIF17, APBA1, CASK, and mLin7 proteins. Several studies have demonstrated an integrated functional regulation of this trafficking complex with NR2B receptor subunit expression, which in turn has been linked to higher cognitive functions. In the present work, we investigated whether expression of this NR2B-associated trafficking complex might be abnormal in schizophrenia. We analyzed the expression of KIF17, APBA1, CASK, mLin7A and mLin7C in postmortem brain from patients with schizophrenia a comparison group. Analysis of transcripts for all of these proteins revealed particularly prominent expression in cortical layer III and layer IV, which overlapped with NR2B but not NR2A transcripts. We found altered expression of transcripts for the CASK, ABPA1, and mLin7 molecules and the CASK, mLin7 proteins, suggesting that NR2B-containing NMDA receptor transport could be selectively compromised in schizophrenia, and that these changes likely involve altered NR2B function in a subset of cortical neurons.
Collapse
Affiliation(s)
- L V Kristiansen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
36
|
Boer S, Sanchez D, Reinieren I, van den Boom T, Udawela M, Scarr E, Ganfornina MD, Dean B. Decreased kainate receptors in the hippocampus of apolipoprotein D knockout mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:271-8. [PMID: 19963028 DOI: 10.1016/j.pnpbp.2009.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Apolipoprotein D (ApoD) has many actions critical to maintaining mammalian CNS function. It is therefore significant that levels of ApoD have been shown to be altered in the CNS of subjects with schizophrenia, suggesting a role for ApoD in the pathophysiology of the disorder. There is also a large body of evidence that cortical and hippocampal glutamatergic, serotonergic and cholinergic systems are affected by the pathophysiology of schizophrenia. Thus, we decided to use in vitro radioligand binding and autoradiography to measure levels of ionotropic glutamate, some muscarinic and serotonin 2A receptors in the CNS of ApoD(-/-) and isogenic wild-type mice. These studies revealed a 20% decrease (mean+/-SEM: 104+/-10.2 vs. 130+/-10.4 fmol/mg ETE) in the density of kainate receptors in the CA 2-3 of the ApoD(-/-) mice. In addition there was a global decrease in AMPA receptors (F(1,214)=4.67, p<0.05) and a global increase in muscarinic M2/M4 receptors (F(1,208)=22.77, p<0.0001) in the ApoD(-/-) mice that did not reach significance in any single cytoarchitectural region. We conclude that glutamatergic pathways seem to be particularly affected in ApoD(-/-) mice and this may contribute to the changes in learning and memory, motor tasks and orientation-based tasks observed in these animals, all of which involve glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Simone Boer
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Increased sensitivity to kainic acid in a genetic model of reduced NMDA receptor function. Brain Res 2009; 1307:166-76. [PMID: 19840778 DOI: 10.1016/j.brainres.2009.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 01/14/2023]
Abstract
The pathophysiology of schizophrenia may involve reduced NMDA receptor function and experimental models of NMDA receptor hypofunction have proven useful for characterizing neurobiological abnormalities potentially relevant to schizophrenia. The present study assessed behavioral responses and induction of Fos after administration of kainic acid to wild type mice (NR1(+/+)) and mice with genetically reduced NMDA receptor expression (NR1(neo/neo)). At a dose of 20 mg/kg, kainic acid induced lethal seizures in 100% of the NR1(neo/neo) mice tested but produced no lethal seizures in the wild type mice. The NR1(neo/neo) mice also exhibited enhanced behavioral responses to kainic acid at a dose of 15 mg/kg but no lethal seizures were produced by this dose. A greater induction of Fos was observed in neocortical and limbic cortical regions of the NR1(neo/neo) compared to NR1(+/+) mice after administration of 15 mg/kg kainic acid. In contrast, there were no differences between the genotypes in kainic acid induced Fos in the amygdala, hippocampus, lateral septum, and nucleus accumbens. In order to determine if altered behavioral phenotypes of the NR1(neo/neo) mice could be related to increased sensitivity of kainate receptors to endogenous glutamate, effects of the highly selective kainate antagonist LY382884 were examined. The kainate antagonist reduced the exaggerated acoustic startle responses, deficits in prepulse inhibition of acoustic startle, and motor hyperactivity in the NR1(neo/neo) mice. These findings suggest that selective kainate receptor antagonists could be novel therapeutic candidates for schizophrenia.
Collapse
|
38
|
Sensitivity to MK-801 in phospholipase C-β1 knockout mice reveals a specific NMDA receptor deficit. Int J Neuropsychopharmacol 2009; 12:917-28. [PMID: 19236734 DOI: 10.1017/s1461145709009961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipase C-β1 (PLC-β1) is a critical component of multiple signalling pathways downstream of neurotransmitter receptors. Mice lacking this enzyme display a striking behavioural phenotype with relevance to human psychiatric disease. Glutamatergic dysfunction is strongly associated with several abnormal behavioural states and may underlie part of the phenotype of the phospholipase C-β1 knockout (KO) mouse. A heightened response to glutamatergic psychotomimetic drugs is a critical psychosis-related endophenotype, and in this study it was employed as a correlate of glutamatergic dysfunction. Control (n=8) and PLC-β1 KO mice (n=6) were treated with MK-801, a NMDA receptor (NMDAR) antagonist, following either standard housing or environmental enrichment, and the motor function and locomotor activity thus evoked was assessed. In addition, MK-801 binding to the NMDAR was evaluated through radioligand autoradiography in post-mortem tissue (on a drug-naive cohort). We have demonstrated a significantly increased sensitivity to the effects of the NMDA antagonist MK-801 in the PLC-β1 KO mouse. In addition, we found that this mouse line displays reduced hippocampal NMDAR expression, as measured by radioligand binding. We previously documented a reversal of specific phenotypes in this mouse line following housing in an enriched environment. Enrichment did not alter this heightened MK-801 response, nor NMDAR expression, indicating that this therapeutic intervention works on specific pathways only. These findings demonstrate the critical role of the glutamatergic system in the phenotype of the PLC-β1 KO mouse and highlight the role of these interconnected signalling pathways in schizophrenia-like behavioural disruption. These results also shed further light on the capacity of environmental factors to modulate subsets of these phenotypes.
Collapse
|
39
|
Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 2009; 12:45-60. [PMID: 18593507 DOI: 10.1017/s1461145708009085] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abnormalities in glutamatergic signalling are proposed in schizophrenia in light of the schizophreniform psychosis elicited by NMDA antagonists. The metabotropic glutamate receptor 5 (mGluR5) interacts closely with the NMDA receptor and is implicated in several behavioural endophenotypes of schizophrenia. We have demonstrated that mice lacking mGluR5 have increased sensitivity to the hyperlocomotive effects of the NMDA antagonist MK-801. Mice lacking mGluR5 also show abnormal locomotor patterns, reduced prepulse inhibition (PPI), and deficits on performance of a short-term spatial memory task on the Y-maze. Chronic administration of the antipsychotic drug clozapine ameliorated the locomotor disruption and reversed the PPI deficit, but did not improve Y-maze performance. Chronic clozapine increased NMDA receptor binding ([3H]MK-801) but did not alter dopamine D2 ([3H]YM-09151), 5-HT2A ([3H]ketanserin), or muscarinic M1/M4 receptor ([3H]pirenzepine), binding in these mice. These results demonstrate behavioural abnormalities that are relevant to schizophrenia in the mGluR5 knockout mouse and a reversal of behaviours with clozapine treatment. These results highlight both the interactions between mGluR5 and NMDA receptors in the determination of schizophreniform behaviours and the potential for the effects of clozapine to be mediated by NMDA receptor regulation.
Collapse
|
40
|
Dean B, Karl T, Pavey G, Boer S, Duffy L, Scarr E. Increased levels of serotonin 2A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 2008; 99:341-9. [PMID: 18054201 DOI: 10.1016/j.schres.2007.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/25/2007] [Accepted: 10/18/2007] [Indexed: 01/29/2023]
Abstract
Changes in neuregulin 1 expression have been reported in the CNS from subjects with schizophrenia. As neuregulin 1 is important in cortical development we postulated that changes in neuregulin 1 expression may contribute towards changes in cholinergic, glutamatergic and serotonergic markers that are well documented in the CNS of subjects with that disorder. To begin to test this hypothesis, we used in situ radioligand binding to measure levels of muscarinic M1/M4 receptors, the kainate receptor, the NMDA receptor, the serotonin 2A receptor, the serotonin 1A receptor and the serotonin transporter in the CNS from heterozygous transmembrane domain neuregulin 1 mutant mice. The major outcomes from these studies was the demonstration of an overall increase in levels of the serotonin 2A receptor (F=11.3, d.f.=3,1,72, p=0.0012) and serotonin transporter (F=5.00, d.f.=1,3,72, p<0.05) in the mutant mice. Levels of the other receptors did not vary in the mutant mice compared to their wild type-like litter mates. These data are the first evidence to suggest that NRG1 gene expression may be involved in regulating the development of the serotonergic system in the mammalian CNS.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Woo TUW, Shrestha K, Amstrong C, Minns MM, Walsh JP, Benes FM. Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res 2007; 96:46-61. [PMID: 17698324 PMCID: PMC2712609 DOI: 10.1016/j.schres.2007.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine whether glutamatergic inputs onto GABA interneurons via the kainate receptor in the anterior cingulate cortex may be altered in schizophrenia and bipolar disorder. Hence, in a cohort of 60 post-mortem human brains from schizophrenia, bipolar disorder, and normal control subjects, we simultaneously labeled the mRNA for the GluR5 or GluR6 subunit of the kainate receptor with [(35)S] and the mRNA for the 67 kD isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD)(67) with digoxigenin using an immunoperoxidase method. The density of the GAD(67) mRNA-containing neurons that co-expressed GluR5 mRNA was decreased by 43% and 40% in layer 2 of the anterior cingulate cortex in schizophrenia and bipolar disorder, respectively. In contrast, the density of the GAD(67) mRNA-containing cells that expressed GluR6 mRNA was unaltered in either condition. Furthermore, the amount of GluR5 or GluR6 mRNA in the GAD(67) mRNA-expressing cells that contained a detectable level of these transcripts was also unchanged. Finally, the density of cells that did not contain GAD(67) mRNA, which presumably included all pyramidal neurons, but expressed the mRNA for the GluR5 or GluR6 subunit was not altered. Thus, glutamatergic modulation of inhibitory interneurons, but not pyramidal neurons, via kainate receptors containing the GluR5 subunit appears to be selectively altered in the anterior cingulate cortex in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Tsung-Ung W Woo
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| | | | | | | | | | | |
Collapse
|
42
|
Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 32:1888-902. [PMID: 17299517 DOI: 10.1038/sj.npp.1301312] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamate neurotransmission may be associated with the pathophysiology of schizophrenia and mood disorders. Medial temporal lobe structural alterations have been implicated in schizophrenia and to a lesser extent in mood disorders. To comprehensively examine the ionotropic glutamate receptors in these illnesses, we used in situ hybridization to determine transcript expression of N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate receptor subunits in the medial temporal lobe of subjects with schizophrenia, bipolar disorder (BD), or major depression (MDD). We used receptor autoradiography to assess changes in glutamate receptor binding in the same subjects. Our results indicate that there are region- and disorder-specific abnormalities in the expression of ionotropic glutamate receptor subunits in schizophrenia and mood disorders. We did not find any changes in transcript expression in the hippocampus. In the entorhinal cortex, most changes in glutamate receptor expression were associated with BD, with decreased GluR2, GluR3, and GluR6 mRNA expression. In the perirhinal cortex we detected decreased expression of GluR5 in all three diagnoses, of GluR1, GluR3, NR2B in both BD and MDD, and decreased NR1 and NR2A in BD and MDD, respectively. Receptor binding showed NMDA receptor subsites particularly affected in the hippocampus, where MK801 binding was reduced in schizophrenia and BD, and MDL105,519 and CGP39653 binding were increased in BD and MDD, respectively. In the hippocampus AMPA and kainate binding were not changed. We found no changes in the entorhinal and perirhinal cortices. These data suggest that glutamate receptor expression is altered in the medial temporal lobe in schizophrenia and the mood disorders. We propose that disturbances in glutamate-mediated synaptic transmission in the medial temporal lobe are important factors in the pathophysiology of these severe psychiatric illnesses.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, 3801 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
43
|
Schmitt A, Bauer M, Heinsen H, Feiden W, Consortium of Brainnet Europe II, Falkai P, Alafuzoff I, Arzberger T, Al-Sarraj S, Bell JE, Bogdanovic N, Brück W, Budka H, Ferrer I, Giaccone G, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Ravid R, Reynolds R, Riederer P, Roggendorf W, Schwalber A, Seilhean D, Kretzschmar H. How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. J Neural Transm (Vienna) 2006; 114:527-37. [PMID: 17165101 DOI: 10.1007/s00702-006-0601-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 01/02/2023]
Abstract
The development of new molecular and neurobiological methods, computer-assisted quantification techniques and neurobiological investigation methods which can be applied to the human brain, all have evoked an increased demand for post-mortem tissue in research. Psychiatric disorders are considered to be of neurobiological origin. Thus far, however, the etiology and pathophysiology of schizophrenia, depression and dementias are not well understood at the cellular and molecular level. The following will outline the consensus of the working group for neuropsychiatric brain banking organized in the Brainnet Europe II, on ethical guidelines for brain banking, clinical diagnostic criteria, the minimal clinical data set of retrospectively analyzed cases as well as neuropathological standard investigations to perform stageing for neurodegenerative disorders in brain tissue. We will list regions of interest for assessments in psychiatric disorder, propose a dissection scheme and describe preservation and storage conditions of tissue. These guidelines may be of value for future implementations of additional neuropsychiatric brain banks world-wide.
Collapse
Affiliation(s)
- A Schmitt
- Department of Psychiatry, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Beas-Zárate C, Ureña-Guerrero ME, Flores-Soto M, Armendariz-Borunda J, Ortuño-Sahagún D. The expression and binding of kainate receptors is modified in different brain regions by glutamate neurotoxicity during postnatal rat development. Int J Dev Neurosci 2006; 25:53-61. [PMID: 17141463 DOI: 10.1016/j.ijdevneu.2006.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022] Open
Abstract
Kainic acid receptor (KA-R) subunits are differentially expressed during brain development, and they modulate both neural growth and survival. High concentrations of glutamate in the brain can induce neuronal injury through these receptors, altering normal development. However, it is unclear whether KAR subunit expression itself is also modified by neonatal exposure to high glutamate. To analyze this, monosodium glutamate (4mg/g of body weight) was subcutaneously administered on postnatal days 1, 3, 5 and 7, and the expression of GluR5, GluR6, KA1 and KA2, as well as [(3)H]-kainic acid (KA-R) binding, was evaluated on postnatal days 14, 21, 30 and 60 in different regions of rat brain. As a result, high levels of GluR5 expression associated with strong [(3)H]-kainic acid binding were observed on postnatal days 30 and 60 in the cerebral cortex of rats exposed to glutamate. Similarly, the changes induced by glutamate administration in the expression of the KA1 and KA2 subunits were paralleled by those of [(3)H]-kainic acid binding in the striatum at postnatal days 21 and 30. In contrast, while KAR subunits were over expressed in the hippocampus, no changes were observed in [(3)H]-kainic acid binding in adult rats that had been exposed to glutamate. Therefore, glutamate modifies both the expression of kainic acid receptor subunits and kainic acid binding in a determined spatial and temporal manner, which may be indicative of a regional susceptibility to glutamate neurotoxicity.
Collapse
Affiliation(s)
- C Beas-Zárate
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, CIBO, IMSS, Mexico.
| | | | | | | | | |
Collapse
|
45
|
Dev KK, Henley JM. The schizophrenic faces of PICK1. Trends Pharmacol Sci 2006; 27:574-9. [PMID: 17011050 PMCID: PMC3314511 DOI: 10.1016/j.tips.2006.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/25/2006] [Accepted: 09/14/2006] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a grave psychiatric disorder with psychotic symptoms and an enigmatic etiology. Family studies have strongly indicated that genetic risk factors have a role in this disease. Recent findings, together with previously established evidence, highlight the PDZ-domain-containing protein interacting with C-kinase 1 (PICK1) as a promising candidate for a schizophrenia susceptibility gene. Here, we outline possible molecular mechanisms, discuss clinical case-studies that indicate an unexpected role of PICK1 in schizophrenia and discuss potential avenues for pharmacological manipulation of PICK1.
Collapse
Affiliation(s)
- Kumlesh K Dev
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma, WSJ 386-7-43, Lichtstrasse 35, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
46
|
Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C. Possible Mechanisms of Neurodegeneration in Schizophrenia. Neurochem Res 2006; 31:1279-94. [PMID: 17006758 DOI: 10.1007/s11064-006-9162-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/31/2006] [Indexed: 12/21/2022]
Abstract
Brain morphological alterations in schizophrenic patients have led to the neurodevelopmental hypothesis of schizophrenia. On the other hand, a progressive neurodegenerative process has also been suggested and some follow-up studies have shown progressive morphological changes in schizophrenic patients. Several neurotransmitter systems have been suggested to be involved in this disorder and some of them could lead to neuronal death under certain conditions. This review discusses some of the biochemical pathways that could lead to neurodegeneration in schizophrenia showing that neuronal death may have a role in the etiology or natural course of this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Tlalpan, 14269, Mexico City, Mexico
| | | | | | | |
Collapse
|
47
|
Huerta I, McCullumsmith RE, Haroutunian V, Giménez-Amaya JM, Meador-Woodruff JH. Expression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia. Synapse 2006; 59:394-402. [PMID: 16485262 DOI: 10.1002/syn.20250] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The excitatory amino acid transporters (EAATs) are a family of plasma membrane proteins that maintain synaptic glutamate concentration by removing glutamate from the synaptic cleft. EAATs are expressed by glia (EAAT1 and EAAT2) and neurons (EAAT3 and EAAT4) throughout the brain. Glutamate reuptake is regulated, in part, by EAAT-interacting proteins that modulate subcellular localization and glutamate transport activity of the EAATs. Several lines of investigation support the hypothesis of glutamatergic abnormalities in schizophrenia. Previous work in our laboratory demonstrated increased expression of EAAT1 and EAAT2 transcripts in the thalamus, suggesting that alterations in synaptic glutamate levels may contribute to the pathophysiology of schizophrenia. Since EAAT-interacting proteins regulate EAAT function, directly impacting glutamatergic neurotransmission, we hypothesized that expression of EAAT-interacting proteins may also be altered in schizophrenia. Using in situ hybridization in subjects with schizophrenia and a comparison group, we detected increased expression of JWA and KIAA0302, molecules that regulate EAAT3 and EAAT4, respectively, in the thalamus in schizophrenia. In contrast, we did not find changes in the expression of transcripts for the EAAT2 and EAAT4 regulatory proteins GPS-1 and ARHGEF11. To address prior antipsychotic treatment in our schizophrenic subjects, we treated rats with haloperidol and clozapine for 4 weeks, and found changes in transcript expression of the EAAT-interacting proteins in clozapine-, but not haloperidol-, treated rats. These findings suggest that proteins associated with the regulation of glutamate reuptake may be abnormal in this illness, supporting the hypothesis of altered thalamic glutamatergic neurotransmission in schizophrenia.
Collapse
Affiliation(s)
- Ibone Huerta
- Molecular and Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
48
|
Balcar VJ, Nanitsos EK. Autoradiography of [3H]aspartate and glutamate transport in schizophrenia. Neuropsychopharmacology 2006; 31:685-6; author reply 687-8. [PMID: 16484993 DOI: 10.1038/sj.npp.1300976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Beneyto M, Kristiansen LV, McCullumsmith RE, Meador-Woodruff JH. Glutamatergic mechanisms in schizophrenia: Current concepts. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bf02629411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|