1
|
Costas-Ferreira C, Durán R, Faro LRF. Evaluation of the potential role of glutamatergic, cholinergic, and nitrergic systems in the dopamine release induced by the pesticide glyphosate in rat striatum. J Appl Toxicol 2024; 44:1489-1503. [PMID: 38828527 DOI: 10.1002/jat.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Glyphosate (GLY) is a pesticide that severely alters nigrostriatal dopaminergic neurotransmission, inducing great increases in dopamine release from rat dorsal striatum. This GLY-induced striatal dopamine overflow occurs through mechanisms not yet fully understood, hence the interest in evaluating the role of other neurotransmitter systems in such effects. So, the main objective of this mechanistic study was to evaluate the possible mediation of the glutamatergic, cholinergic, and nitrergic systems in the GLY-induced in vivo dopamine release from rat dorsal striatum. The extracellular dopamine levels were measured by cerebral microdialysis and HPLC with electrochemical detection. Intrastriatal administration of GLY (5 mmol/L) significantly increased the dopamine release (1102%). Pretreatment with MK-801 (50 or 400 μmol/L), a non-competitive antagonist of NMDA receptors, significantly decreased the effect of GLY (by 70% and 74%, respectively), whereas AP-5 (400 μmol/L), a competitive antagonist of NMDA receptors, or CNQX (500 μmol/L), an AMPA/kainate receptor antagonist, had no significant effect. Administration of the nitric oxide synthase inhibitors, L-nitroarginine (L-NAME, 100 μmol/L) or 7-nitroindazole (7-NI, 100 μmol/L), also did not alter the effect of GLY on dopamine release. Finally, pretreatment of the animals with mecamylamine, an antagonist of nicotinic receptors, decreased the effect of GLY on dopamine release by 49%, whereas atropine, a muscarinic antagonist, had no significant effect. These results indicate that GLY-induced dopamine release largely depends on the activation of NMDA and nicotinic receptors in rat dorsal striatum. Future research is needed to determine the effects of this pesticide at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Lilian R F Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| |
Collapse
|
2
|
Lorenc-Koci E, Kamińska K, Lenda T, Konieczny J. The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats. Molecules 2024; 29:4318. [PMID: 39339313 PMCID: PMC11434559 DOI: 10.3390/molecules29184318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (K.K.); (T.L.); (J.K.)
| | | | | | | |
Collapse
|
3
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Choudhary AG, Awathale SN, Dudhabhate BB, Pawar N, Jadhav G, Upadhya MA, Khedkar T, Gadhikar YA, Sakharkar AJ, Subhedar NK, Kokare DM. Response of nitrergic system in the brain of rat conditioned to intracranial self-stimulation. J Neurochem 2024; 168:1402-1419. [PMID: 38445395 DOI: 10.1111/jnc.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.
Collapse
Affiliation(s)
- Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sanjay N Awathale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Namrata Pawar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Manoj A Upadhya
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Trupti Khedkar
- Department of Zoology, Nabira Mahavidyalay, Katol, India
| | - Yashashree A Gadhikar
- Department of Zoology, Government Vidarbha Institute of Science and Humanities, Amravati, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
5
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
6
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
7
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
8
|
Faro LRF, Justo L, Gómez R, Durán R. Participation of glutamatergic and nitrergic systems in the striatal dopamine release induced by isatin, a MAO inhibitor. Eur J Neurosci 2021; 54:4729-4739. [PMID: 34022091 DOI: 10.1111/ejn.15319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Isatin is a biofactor with different biochemical and pharmacological properties whose effects attract much attention because it is an endogenous inhibitor of the monoamine oxidase in the brain. When exogenously administrated, isatin increases dopamine levels in intact and denervated striatum of rats, an effect that could indicate its potential as a therapeutic agent in Parkinson disease. However, the neurochemical mechanisms by which isatin increases dopamine in the striatum are poorly understood. In the present study, we evaluate the role of the glutamatergic and nitrergic systems in the isatin-induced dopamine release from rat striatum. Our findings show that the intrastriatal administration of 10 mM isatin significantly increases the in vivo release of dopamine (1,104.7% ± 97.1%), and the amino acids glutamate (428.7% ± 127%) and taurine (221% ± 22%) from rat striatum measured by brain microdialysis. The pretreatment with MK-801 (500 µM) or AP5 (650 µM) (glutamatergic NMDA receptors antagonists) significantly reduces the effect of isatin on dopamine release by 52% and 70.5%, respectively. The administration of the nitric oxide synthase inhibitors, L-NAME (100 µM) or 7-NI (100 µM) also decreases the isatin-induced dopamine release by 77% and 42%, respectively. These results show that isatin, in addition to increasing dopamine release, also increases glutamate levels, and possibly activates NMDA receptors and nitric oxide production, which can promote a further increase in the dopamine release.
Collapse
Affiliation(s)
- Lilian R F Faro
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Lorenzo Justo
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Raquel Gómez
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| |
Collapse
|
9
|
Siemsen BM, McFaddin JA, Haigh K, Brock AG, Nan Leath M, Hooker KN, McGonegal LK, Scofield MD. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J Neurochem 2020; 153:599-616. [PMID: 31901130 PMCID: PMC7593647 DOI: 10.1111/jnc.14952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
Cue-induced reinstatement of cocaine seeking after self-administration (SA) and extinction relies on glutamate release in the nucleus accumbens core (NAcore), which activates neuronal nitric oxide synthase interneurons. Nitric oxide (NO) is required for structural plasticity in NAcore medium spiny neurons, as well as cued cocaine seeking. However, NO release in the NAcore during reinstatement has yet to be directly measured. Furthermore, the temporal relationship between glutamate release and the induction of an NO response also remains unknown. Using wireless amperometric recordings in awake behaving rats, we quantified the magnitude and temporal dynamics of novel context- and cue-induced reinstatement-evoked glutamate and NO release in the NAcore. We found that re-exposure to cocaine-conditioned stimuli following SA and extinction increased extracellular glutamate, leading to release of NO in the NAcore. In contrast, exposing drug-naïve rats to a novel context led to a lower magnitude rise in glutamate in the NAcore relative to cue-induced reinstatement. Interestingly, novel context exposure evoked a higher magnitude NO response relative to cue-induced reinstatement. Despite differences in magnitude, novel context evoked-NO release in the NAcore was also temporally delayed when compared to glutamate. These results demonstrate a dissociation between the magnitude of cocaine cue- and novel context-evoked glutamate and NO release in the NAcore, yet similarity in the temporal dynamics of their release. Together, these data contribute to a greater understanding of the relationship between glutamate and NO, two neurotransmitters implicated in encoding the valence of distinct contextual stimuli.
Collapse
Affiliation(s)
- Benjamin M Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John A McFaddin
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Keiana Haigh
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley G Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Nan Leath
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N Hooker
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lilly K McGonegal
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Front Cell Neurosci 2019; 13:331. [PMID: 31396053 PMCID: PMC6664007 DOI: 10.3389/fncel.2019.00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5′-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM’s effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Dopaminergic modulation of striatal function and Parkinson's disease. J Neural Transm (Vienna) 2019; 126:411-422. [PMID: 30937538 DOI: 10.1007/s00702-019-01997-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023]
Abstract
The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson's disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.
Collapse
|
12
|
Padovan-Neto FE, Jurkowski L, Murray C, Stutzmann GE, Kwan M, Ghavami A, Beaumont V, Park LC, West AR. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease. Nitric Oxide 2018; 83:40-50. [PMID: 30528913 DOI: 10.1016/j.niox.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Lauren Jurkowski
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Conor Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
13
|
Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C, Wang J. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med 2018; 124:504-516. [PMID: 29966698 PMCID: PMC6286712 DOI: 10.1016/j.freeradbiomed.2018.06.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023]
Abstract
Salvianolic acid B (SalB), a natural polyphenolic compound extracted from the herb of Salvia miltiorrhiza, possesses antioxidant and neuroprotective properties and has been shown to be beneficial for diseases that affect vasculature and cognitive function. Here we investigated the protective effects of SalB against subarachnoid hemorrhage (SAH)-induced oxidative damage, and the involvement of underlying molecular mechanisms. In a rat model of SAH, SalB inhibited SAH-induced oxidative damage. The reduction in oxidative damage was associated with suppressed reactive oxygen species generation; decreased lipid peroxidation; and increased glutathione peroxidase, glutathione, and superoxide dismutase activities. Concomitant with the suppressed oxidative stress, SalB significantly reduced neurologic impairment, brain edema, and neural cell apoptosis after SAH. Moreover, SalB dramatically induced nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased expression of heme oxygenase-1 and NADPH: quinine oxidoreductase-1. In a mouse model of SAH, Nrf2 knockout significantly reversed the antioxidant effects of SalB against SAH. Additionally, SalB activated sirtuin 1 (SIRT1) expression, whereas SIRT1-specific inhibitor sirtinol pretreatment significantly suppressed SalB-induced SIRT1 activation and Nrf2 expression. Sirtinol pretreatment also reversed the antioxidant and neuroprotective effects of SalB. In primary cultured cortical neurons, SalB suppressed oxidative damage, alleviated neuronal degeneration, and improved cell viability. These beneficial effects were associated with activation of the SIRT1 and Nrf2 signaling pathway and were reversed by sirtinol treatment. Taken together, these in vivo and in vitro findings suggest that SalB provides protection against SAH-triggered oxidative damage by upregulating the Nrf2 antioxidant signaling pathway, which may be modulated by SIRT1 activation.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China; Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
15
|
Hoque KE, Blume SR, Sammut S, West AR. Electrical stimulation of the hippocampal fimbria facilitates neuronal nitric oxide synthase activity in the medial shell of the rat nucleus accumbens: Modulation by dopamine D1 and D2 receptor activation. Neuropharmacology 2017; 126:151-157. [PMID: 28887183 DOI: 10.1016/j.neuropharm.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022]
Abstract
The medial shell region of the nucleus accumbens (msNAc) is a key center for the regulation of goal-directed behavior and is likely to be dysfunctional in neuropsychiatric disorders such as addiction, depression and schizophrenia. Nitric oxide (NO)-producing interneurons in the msNAc are potently modulated by dopamine (DA) and may play an important role in synaptic integration in msNAc networks. In this study, neuronal NO synthase (nNOS) activity was measured in anesthetized rats using amperometric microsensors implanted into the msNAc or via histochemical techniques. In amperometric studies, NO oxidation current was recorded prior to and during electrical stimulation of the ipsilateral fimbria. Fimbria stimulation elicited a frequency and intensity-dependent increase in msNAc NO efflux which was attenuated by systemic administration of the nNOS inhibitor NG-propyl-l-arginine. Parallel studies using NADPH-diaphorase histochemistry to assay nNOS activity produced highly complementary outcomes. Moreover, systemic administration of either a DA D1 receptor agonist or a DA D2 receptor antagonist potentiated nNOS activity in the msNAc elicited by fimbria stimulation. These observations demonstrate for the first time that NO synthesis in nNOS expressing interneurons in the msNAc is facilitated by robust activation of hippocampal afferents in a manner that is differentially modulated by DA D1 and D2 receptor activation.
Collapse
Affiliation(s)
- Kristina E Hoque
- Department of Neuroscience, Rosalind Franklin University, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Shannon R Blume
- Department of Neuroscience, Rosalind Franklin University, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Stephen Sammut
- Department of Neuroscience, Rosalind Franklin University, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
16
|
Hung HH, Kao LS, Liu PS, Huang CC, Yang DM, Pan CY. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade. Mol Cell Neurosci 2017; 82:35-45. [DOI: 10.1016/j.mcn.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/16/2017] [Accepted: 04/14/2017] [Indexed: 01/11/2023] Open
|
17
|
Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions. J Neurosci 2017; 37:5051-5064. [PMID: 28411274 DOI: 10.1523/jneurosci.3940-16.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/16/2023] Open
Abstract
The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder.
Collapse
|
18
|
Phosphodiesterase-10A Inverse Changes in Striatopallidal and Striatoentopeduncular Pathways of a Transgenic Mouse Model of DYT1 Dystonia. J Neurosci 2017; 37:2112-2124. [PMID: 28115486 DOI: 10.1523/jneurosci.3207-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
We report that changes of phosphodiesterase-10A (PDE10A) can map widespread functional imbalance of basal ganglia circuits in a mouse model of DYT1 dystonia overexpressing mutant torsinA. PDE10A is a key enzyme in the catabolism of second messenger cAMP and cGMP, whose synthesis is stimulated by D1 receptors and inhibited by D2 receptors preferentially expressed in striatoentopeducuncular/substantia nigra or striatopallidal pathways, respectively. PDE10A was studied in control mice (NT) and in mice carrying human wild-type torsinA (hWT) or mutant torsinA (hMT). Quantitative analysis of PDE10A expression was assessed in different brain areas by rabbit anti-PDE10A antibody immunohistochemistry and Western blotting. PDE10A-dependent cAMP hydrolyzing activity and PDE10A mRNA were also assessed. Striatopallidal neurons were identified by rabbit anti-enkephalin antibody.In NT mice, PDE10A is equally expressed in medium spiny striatal neurons and in their projections to entopeduncular nucleus/substantia nigra and to external globus pallidus. In hMT mice, PDE10A content selectively increases in enkephalin-positive striatal neuronal bodies; moreover, PDE10A expression and activity in hMT mice, compared with NT mice, significantly increase in globus pallidus but decrease in entopeduncular nucleus/substantia nigra. Similar changes of PDE10A occur in hWT mice, but such changes are not always significant. However, PDE10A mRNA expression appears comparable among NT, hWT, and hMT mice.In DYT1 transgenic mice, the inverse changes of PDE10A in striatoentopeduncular and striatopallidal projections might result over time in an imbalance between direct and indirect pathways for properly focusing movement. The decrease of PDE10A in the striatoentopeduncular/nigral projections might lead to increased intensity and duration of D1-stimulated cAMP/cGMP signaling; conversely, the increase of PDE10A in the striatopallidal projections might lead to increased intensity and duration of D2-inhibited cAMP/cGMP signaling.SIGNIFICANCE STATEMENT In DYT1 transgenic mouse model of dystonia, PDE10A, a key enzyme in cAMP and cGMP catabolism, is downregulated in striatal projections to entopeduncular nucleus/substantia nigra, preferentially expressing D1 receptors that stimulate cAMP/cGMP synthesis. Conversely, in DYT1 mice, PDE10A is upregulated in striatal projections to globus pallidus, preferentially expressing D2 receptors that inhibit cAMP/cGMP synthesis. The inverse changes to PDE10A in striatoentopeduncular/substantia nigra and striatopallidal pathways might tightly interact downstream to dopamine receptors, likely resulting over time to increased intensity and duration respectively of D1-stimulated and D2-inhibited cAMP/cGMP signals. Therefore, PDE10A changes in the DYT1 model of dystonia can upset the functional balance of basal ganglia circuits, affecting direct and indirect pathways simultaneously.
Collapse
|
19
|
Lorenc-Koci E, Czarnecka A, Kamińska K, Knutelska J, Zygmunt M, Dudek M. Contribution of the nitric oxide donor molsidomine and the antiparkinsonian drug l-DOPA to the modulation of the blood pressure in unilaterally 6-OHDA-lesioned rats. Pharmacol Rep 2016; 69:29-35. [PMID: 27764702 DOI: 10.1016/j.pharep.2016.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Interaction between dopaminergic and nitrergic neurotransmission in the brain plays a crucial role in the control of motor function and in the regulation of blood pressure (BP). In Parkinson's disease (PD), dopaminergic denervation of the striatum leads to disturbances in the nitrergic system in the basal ganglia. Recently, it has been demonstrated that addition of a low dose of the nitric oxide donor molsidomine to l-DOPA therapy improves dopaminergic neurotransmission in the denervated nigrostriatal system and weakens dyskinesias in rodent models of the disease. METHODS The aim of the present study was to examine the impact of chronic administration of molsidomine (2mg/kg) and l-DOPA (25mg/kg), alone and in combination, on systolic (SBP) and diastolic (DBP) blood pressure in the anesthetized, unilaterally 6-OHDA-lesioned rats. The measurement of SBP and DBP was performed 24h after the penultimate and immediately after the last drug doses. RESULTS In 6-OHDA-lesioned rats receiving saline, spontaneous, small decreases in SBP and DBP were observed during the measurements lasting 60min. Administration of molsidomine alone or in combination with l-DOPA distinctly decreased the BP in 6-OHDA-lesioned rats already after 10min compared to those treated with saline or l-DOPA alone, respectively. In both groups, the molsidomine-mediated declines in BP persisted till the end of measurement but they disappeared after 24h. CONCLUSIONS Our results indicate that in this PD model molsidomine evokes a short-lasting decrease in BP in contrast to conventional antihypertensive drugs that maintain long-term effect and worsen orthostatic hypotension in parkinsonian patients.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343 Kraków, Smętna street 12, Poland.
| | - Anna Czarnecka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343 Kraków, Smętna street 12, Poland
| | - Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343 Kraków, Smętna street 12, Poland
| | - Joanna Knutelska
- Jagiellonian University Medical College, Department of Pharmacological Screening, Chair of Pharmacodynamic, Kraków, Poland
| | - Małgorzata Zygmunt
- Jagiellonian University Medical College, Department of Pharmacological Screening, Chair of Pharmacodynamic, Kraków, Poland
| | - Magdalena Dudek
- Jagiellonian University Medical College, Department of Pharmacological Screening, Chair of Pharmacodynamic, Kraków, Poland
| |
Collapse
|
20
|
The preferential nNOS inhibitor 7-nitroindazole and the non-selective one N(G)-nitro-L-arginine methyl ester administered alone or jointly with L-DOPA differentially affect motor behavior and monoamine metabolism in sham-operated and 6-OHDA-lesioned rats. Brain Res 2015; 1625:218-37. [PMID: 26319690 DOI: 10.1016/j.brainres.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022]
Abstract
Reciprocal interactions between nitrergic and dopaminergic systems play a key role in the control of motor behavior. In the present study, we performed a comparative analysis of motor behavior (locomotor activity, catalepsy, rotational behavior) and monoamine metabolism in the striatum and substantia nigra of unilaterally sham-operated and 6-OHDA-lesioned rats treated with the preferential neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI) or the non-selective one N(G)-nitro-L-arginine methyl ester (L-NAME), alone or in combination with L-DOPA. Each NOS inhibitor given alone (50mg/kg) induced a distinct catalepsy 30 min after injection but only 7-NI impaired spontaneous locomotion after 10 min. In 6-OHDA-lesioned rats, chronic L-DOPA (25mg/kg) induced 2.5-h long contralateral rotations. 7-NI (30 and 50mg/kg) markedly reduced the intensity of L-DOPA-induced contralateral rotations while extending their duration until 4.5h whereas L-NAME (50 and 100mg/kg) only tended to attenuate their intensity without affecting the duration. 7-NI but not L-NAME significantly increased endogenous tissue DA levels in the nigrostriatal system of both sham-operated and 6-OHDA-lesioned rats. In L-DOPA-treated group, 7-NI significantly enhanced the L-DOPA-derived tissue DA content in this system and decreased the level of the intracellular DA metabolite DOPAC produced by monoamine oxidase (MAO). In contrast to 7-NI, L-NAME decreased markedly DA content and did not affect DOPAC level in the ipsilateral striatum. It means that the differences in 7-NI and L-NAME-mediated modulation of L-DOPA-induced behavioral and biochemical effects resulted not only from the inhibition of NOS activity but also from differences in their ability to inhibit MAO.
Collapse
|
21
|
Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, Shaughnessy E, Ben-Jonathan N. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2015; 35:3103-13. [PMID: 26477316 DOI: 10.1038/onc.2015.369] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.
Collapse
Affiliation(s)
- D C Borcherding
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - W Tong
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - E R Hugo
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - D F Barnard
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - S Fox
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - K LaSance
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - E Shaughnessy
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - N Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
22
|
Prast H, Hornick A, Kraus MM, Philippu A. Origin of endogenous nitric oxide released in the nucleus accumbens under real-time in vivo conditions. Life Sci 2015; 134:79-84. [PMID: 26006039 DOI: 10.1016/j.lfs.2015.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
AIMS Nitric oxide (NO), is a simple but multifarious molecule. It is implicated in physiological and pathological processes within the striatum, mainly in the nucleus accumbens (NAc). The aim of the present study was to determine the origin of NO in the NAc of anaesthetized rats by applying various compounds known to modulate the release of NO when applied either systemically or locally. MAIN METHODS Real-time monitoring of NO was carried out by introducing an amperometric NO sensor into the outer tubing of a push-pull cannula. For local application of substances, the push-pull superfusion technique was used. KEY FINDINGS An overdose of urethane (i.p.) or superfusion of the NAc with tetrodotoxin (TTX) led to a fall of NO release in the NAc. The NO synthase (NOS) inhibitors 7-nitroindazolmonosodiumsalt (7-NINA, neuronal NOS selective) and N-nitro-L-arginine (L-NNA, NOS selective) decreased release of NO when applied i.p. or locally. Superfusion of the NAc with N-methyl-D-aspartate (NMDA) elicited a dose dependent increase of NO release. SIGNIFICANCE Combination of an amperometric NO sensor for real-time monitoring of NO release with the push-pull superfusion technique showed that NO released in the NAc is, at least to a great extent, of neuronal origin. The enhanced release of NO elicited by locally applied NMDA demonstrates that activation of NMDA receptors facilitates NO synthesis, thus underlining the functionality of NO targets within the NAc.
Collapse
Affiliation(s)
- Helmut Prast
- Department of Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | - Ariane Hornick
- Department of Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | - Michaela M Kraus
- 2nd Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Tripathy D, Chakraborty J, Mohanakumar KP. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease. Free Radic Res 2015; 49:1129-39. [DOI: 10.3109/10715762.2015.1045505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Levodopa-induced dyskinesias are associated with transient down-regulation of cAMP and cGMP in the caudate-putamen of hemiparkinsonian rats: reduced synthesis or increased catabolism? Neurochem Int 2014; 79:44-56. [PMID: 25452081 DOI: 10.1016/j.neuint.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023]
Abstract
Second messenger cAMP and cGMP represent a key step in the action of dopamine that modulates directly or indirectly their synthesis. We aimed to verify whether levodopa-induced dyskinesias are associated with changes of the time course of levodopa/dopamine stimulated cAMP and cGMP levels, and/or with changes of their catabolism by phosphodiesterase activity in rats with experimental hemiparkinsonism. Microdialysis and tissue homogenates of the striatal tissues demonstrated that extracellular and intracellular cAMP/cGMP levels were lower in dyskinetic animals during the increasing phase of dyskinesias compared to eukinetic animals, but cAMP/cGMP levels increased in dyskinetic animals during the phase of decreasing and extinction of dyskinesias. Dyskinesias and the abnormal lowering of striatal cGMP and cAMP after levodopa were prevented by pretreatment with the multipotent drug amantadine, outlining the inverse relationship of cAMP/cGMP to dyskinesias. Moreover, dyskinetic animals showed higher striatal hydrolyzing cGMP-phosphodiesterase but not hydrolyzing cAMP-phosphodiesterase activity, suggesting that low cGMP but not cAMP levels could be due to increased catabolism. However, expressions of isozyme phosphodiesterase-1B and -10A highly and specifically located in the basal ganglia were not changed after levodopa in dyskinetic and eukinetic animals: accordingly, selective inhibitors of phosphodiesterase-1B and -10A were ineffective on levodopa dyskinesias. Therefore, the isozyme(s) expressing higher cGMP-phosphodiesterase activity in the striatum of dyskinetic animal should be determined. These observations suggest that dopamine-mediated processes of synthesis and/or degradation of cAMP/cGMP could be acutely impaired in levodopa dyskinesias, opening new ways to understanding physiopathology and treatment.
Collapse
|
25
|
Solís O, Espadas I, Del-Bel EA, Moratalla R. Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 2014; 73:49-59. [PMID: 25281315 DOI: 10.1016/j.nbd.2014.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/12/2014] [Accepted: 09/21/2014] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO), a gaseous messenger molecule synthesized by nitric oxide synthase (NOS), plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). To study the role of the nitrergic system in l-DOPA-induced dyskinesia (LID), we assessed the effect of the pharmacological manipulation of NO levels and NO/cyclic guanosine monophosphate (cGMP) signaling on LID in the Pitx3(-/-) aphakia mouse, a genetic model of PD. To evaluate the effect of decreased NO signaling on the development of LID, Pitx3(-/-) mice were chronically treated with l-DOPA and 7-nitroindazole (7-NI, a neuronal NOS inhibitor). To evaluate its effect on the expression of established LID, 7-NI was administered acutely to dyskinetic mice. The chronic 7-NI treatment attenuated the development of LID in the Pitx3(-/-) mice, and the sub-acute 7-NI treatment attenuated established dyskinesia without affecting the beneficial therapeutic effect of l-DOPA. Moreover, 7-NI significantly reduced FosB and pAcH3 expression in the acutely and chronically l-DOPA-treated mice. We also examined how increasing NO/cGMP signaling affects LID expression by acutely administering molsidomine (an NO donor) or zaprinast (a cGMP phosphodiesterase 5-PDE5 inhibitor) before l-DOPA in mice with established dyskinesia. Paradoxically, the administration of either of these drugs also significantly diminished the expression of established LID; however, the effect occurred at the expense of the antiparkinsonian l-DOPA properties. We demonstrate that targeting the NO/cGMP signaling pathway reduces dyskinetic behaviors and molecular markers, but only the 7-NI treatment preserved the antiparkinsonian effect of l-DOPA, indicating that NOS inhibitors represent a potential therapy to reduce LID.
Collapse
Affiliation(s)
- Oscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Espadas
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Elaine A Del-Bel
- Department of Morphology, Physiology and Pathology, School of Odontology, University of Sao Paulo, Campus Ribeirao Preto, Brazil
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Role of nitric oxide in the regulation of motor function. An overview of behavioral, biochemical and histological studies in animal models. Pharmacol Rep 2014; 65:1043-55. [PMID: 24399702 DOI: 10.1016/s1734-1140(13)71464-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/27/2013] [Indexed: 12/17/2022]
Abstract
A compelling body of evidence suggests that nitric oxide (NO), a unique gaseous neurotransmitter and neuromodulator plays a key role in the regulation of motor function. Recently, the interest of researchers concentrates on the NO - soluble guanylyl cyclase (sGC) - cyclic GMP (cGMP) signaling pathway in the striatum as a new target for the treatment of Parkinson's disease (PD). The aim of the study is to review the available literature referring to the role of NO in the integration of basal ganglia functions. First, attention has been focused on behavioral effects of NO donors and neuronal nitric oxide synthase (nNOS) inhibitors in the modulation of motor behavior. Then, disturbances in the nitrergic neurotransmission in PD and its 6-OHDA animal model have been presented. Moreover, the most current data demonstrating the contribution of both dopamine and glutamate to the regulation of NO biosynthesis in the striatum have been analyzed. Finally, the role of NO in the tonic and phasic dopamine release as well as in the regulation of striatal output pathways also has been discussed.
Collapse
|
27
|
Ding S, Huang W, Ye Y, Yang J, Hu J, Wang X, Liu L, Lu Q, Lin Y. Elevated intracranial dopamine impairs the glutamate‑nitric oxide‑cyclic guanosine monophosphate pathway in cortical astrocytes in rats with minimal hepatic encephalopathy. Mol Med Rep 2014; 10:1215-24. [PMID: 25059564 PMCID: PMC4121426 DOI: 10.3892/mmr.2014.2386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/16/2014] [Indexed: 01/28/2023] Open
Abstract
In a previous study by our group memory impairment in rats with minimal hepatic encephalopathy (MHE) was associated with the inhibition of the glutamate-nitric oxide-cyclic guanosine monophosphate (Glu-NO-cGMP) pathway due to elevated dopamine (DA). However, the effects of DA on the Glu-NO-cGMP pathway localized in primary cortical astrocytes (PCAs) had not been elucidated in rats with MHE. In the present study, it was identified that when the levels of DA in the cerebral cortex of rats with MHE and high-dose DA (3 mg/kg)-treated rats were increased, the co-localization of N-methyl-d-aspartate receptors subunit 1 (NMDAR1), calmodulin (CaM), nitric oxide synthase (nNOS), soluble guanylyl cyclase (sGC) and cyclic guanine monophosphate (cGMP) with the glial fibrillary acidic protein (GFAP), a marker protein of astrocytes, all significantly decreased, in both the MHE and high-dose DA-treated rats (P<0.01). Furthermore, NMDA-induced augmentation of the expression of NMDAR1, CaM, nNOS, sGC and cGMP localized in PCAs was decreased in MHE and DA-treated rats, as compared with the controls. Chronic exposure of cultured cerebral cortex PCAs to DA treatment induced a dose-dependent decrease in the concentration of intracellular calcium, nitrites and nitrates, the formation of cGMP and the expression of NMDAR1, CaM, nNOS and sGC/cGMP. High doses of DA (50 μM) significantly reduced NMDA-induced augmentation of the formation of cGMP and the contents of NMDAR1, CaM, nNOS, sGC and cGMP (P<0.01). These results suggest that the suppression of DA on the Glu-NO-cGMP pathway localized in PCAs contributes to memory impairment in rats with MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weilong Huang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yiru Ye
- Department of Computer, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianjing Yang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangnan Hu
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaobin Wang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qin Lu
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuanshao Lin
- First Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
28
|
Czarnecka A, Lenda T, Domin H, Konieczny J, Śmiałowska M, Lorenc-Koci E. Alterations in the expression of nNOS in the substantia nigra and subthalamic nucleus of 6-OHDA-lesioned rats: The effects of chronic treatment with l-DOPA and the nitric oxide donor, molsidomine. Brain Res 2013; 1541:92-105. [DOI: 10.1016/j.brainres.2013.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/02/2023]
|
29
|
Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 2013; 7:190. [PMID: 24198758 PMCID: PMC3813972 DOI: 10.3389/fncel.2013.00190] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.
Collapse
Affiliation(s)
| | | | - Kevin Fox
- School of Biosciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
30
|
Tukey DS, Ziff EB. Ca2+-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and dopamine D1 receptors regulate GluA1 trafficking in striatal neurons. J Biol Chem 2013; 288:35297-306. [PMID: 24133208 DOI: 10.1074/jbc.m113.516690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of striatal medium spiny neuron synapses underlies forms of motivated behavior and pathological drug seeking. A primary mechanism for increasing synaptic strength is the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynapse, a process mediated by GluA1 AMPAR subunit phosphorylation. We have examined the role of converging glutamate and dopamine inputs in regulating biochemical cascades upstream of GluA1 phosphorylation. We focused on the role of Ca(2+)-permeable AMPARs (CPARs), which lack the GluA2 AMPAR subunit. Under conditions that prevented depolarization, stimulation of CPARs activated neuronal nitric oxide synthase and production of cGMP. CPAR-dependent cGMP production was sufficient to induce synaptic insertion of GluA1, detected by confocal microscopy, through a mechanism dependent on GluA1 Ser-845 phosphorylation. Dopamine D1 receptors, in contrast, stimulate GluA1 extra synaptic insertion. Simultaneous activation of dopamine D1 receptors and CPARs induced additive increases in GluA1 membrane insertion, but only CPAR stimulation augmented CPAR-dependent GluA1 synaptic insertion. This incorporation into the synapse proceeded through a sequential two-step mechanism; that is, cGMP-dependent protein kinase II facilitated membrane insertion and/or retention, and protein kinase C activity was necessary for synaptic insertion. These data suggest a feed-forward mechanism for synaptic priming whereby an initial stimulus acting independently of voltage-gated conductance increases striatal neuron excitability, facilitating greater neuronal excitation by a subsequent stimulus.
Collapse
Affiliation(s)
- David S Tukey
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | | |
Collapse
|
31
|
Lorenc-Koci E, Czarnecka A, Lenda T, Kamińska K, Konieczny J. Molsidomine, a nitric oxide donor, modulates rotational behavior and monoamine metabolism in 6-OHDA lesioned rats treated chronically with L-DOPA. Neurochem Int 2013; 63:790-804. [PMID: 24090640 DOI: 10.1016/j.neuint.2013.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
Abstract
Some biochemical and histological studies of Parkinson's disease patients' brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)- soluble guanylyl cyclase-cyclic GMP signaling is considered to be a new target for the treatment of Parkinson's disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4mg/kg) and L-DOPA (12.5 and 25mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats. Chronic administration of molsidomine at a dose of 2mg/kg jointly with 25mg/kg of L-DOPA significantly decreased the number of contralateral rotations when compared to L-DOPA alone. Other combinations of the examined drug doses were less effective. The tissue DA levels in the ipsilateral STR and SN after the last chronic doses of molsidomine (2mg/kg) and L-DOPA (12.5 or 25mg/kg), were significantly higher than after L-DOPA alone. Chronic L-DOPA treatment alone or jointly with a lower dose of molsidomine decreased 5-HT levels and accelerated its catabolism in the examined structures. However, combination of a higher dose of molsidomine with L-DOPA (25mg/kg) did not reduce 5-HT content while its catabolism was less intensive. The obtained results show that low doses of molsidomine can modulate rotational behavior and tissue DA and 5-HT concentrations in the STR and SN of 6-OHDA-lesioned rats treated chronically with L-DOPA.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., PL-31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
32
|
Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration? Neurotox Res 2013; 25:153-60. [PMID: 23918001 DOI: 10.1007/s12640-013-9415-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO). Unfortunately, many of the studies attempting to clarify the role of NO in METH-induced neurotoxicity have been confounded by issues such as the disruption of METH-induced hyperthermia, preventing the formation of strong conclusions. As a result, there is a body of work suggesting that NO is sufficient for METH-induced neurotoxicity, while other studies suggest that NO does not play a role in METH-induced degeneration of DA nerve terminals. This review summarizes the existing studies investigating the role of NO in METH-induced neurotoxicity, and argues that while NO may be necessary for METH-induced neurotoxicity, it is not sufficient. Finally, important areas of future investigation are highlighted and discussed.
Collapse
|
33
|
Evaluating the role of neuronal nitric oxide synthase-containing striatal interneurons in methamphetamine-induced dopamine neurotoxicity. Neurotox Res 2013; 24:288-97. [PMID: 23575992 DOI: 10.1007/s12640-013-9391-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Production of nitric oxide (NO) has been implicated in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The source of this NO has not been clearly delineated, but recent evidence suggests that it arises from activation of neuronal nitric oxide synthase (nNOS), which is selectively expressed in a subpopulation of striatal interneurons. Our objective was to determine whether inhibiting activation of nNOS-containing interneurons in the striatum blocks METH-induced neurotoxicity. These interneurons selectively express the neurokinin-1 (NK-1) receptor, which is activated by substance P. One particular toxin, a conjugate of substance P to the ribosome-inactivating protein saporin (SSP-SAP), selectively destroys neurons expressing the NK-1 receptor. Thus, we examined the extent to which depletion of the nNOS-containing interneurons alters production of NO and attenuates METH-induced neurotoxicity. The SSP-SAP lesions resulted in significant loss of nNOS-containing interneurons throughout striatum. Surprisingly, this marked deletion did not confer resistance to METH-induced DA neurotoxicity, even in areas devoid of nNOS-positive cells. Furthermore, these lesions did not attenuate NO production, even in areas lacking nNOS. These data suggest that nNOS-containing interneurons either are not necessary for METH-induced DA neurotoxicity or produce NO that can diffuse extensively through striatal tissue and thereby still mediate neurotoxicity.
Collapse
|
34
|
Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, Del Bel E. Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/DeltaFosB expression. Neurosci Lett 2013; 541:126-31. [DOI: 10.1016/j.neulet.2013.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
|
35
|
Dopamine from cirrhotic liver contributes to the impaired learning and memory ability of hippocampus in minimal hepatic encephalopathy. Hepatol Int 2013. [PMID: 26201931 DOI: 10.1007/s12072-013-9431-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Defective learning/memory ability is a feature of MHE. However, the exact pathophysiological mechanisms leading to the impairment of learning/memory ability in MHE remain not clearly understood. Methods MHE rat modeling by intraperitoneal injection of TAA was successfully established using a Morris water maze, BAEP, and EEG tests. COMT inhibitor, a protein involved in the accumulation of dopamine (DA), was found to be up-regulated in cirrhotic livers in MHE by 2-DE/MS. Results The levels of DA in cirrhotic livers, serums and hippocampuses in the MHE group were more significantly increased than in the control group. In the hippocampuses of MHE rats, NMDA-induced formation of cGMP was reduced by 40 % as determined by in vivo brain microdialysis. Activation of sGC by NO was reduced by 38 %. The expression of NMDAR1, CaM, nNOS and sGC in the hippocampus in the MHE group were more significantly decreased than in controls. Chronic exposure of cultured hippocampus neurons to DA (50 μM) reduced by 53 % the NMDA-induced formation of cGMP. Activation of sGC by NO in these neurons was reduced by 44 %. Down-regulated NMDAR1, CaM, nNOS and sGC were also detected in neurons treated with dopamine, in contrast with the controls. Conclusions This study suggests that when the glutamate-NO-cGMP pathway in the hippocampus is inhibited by the elevation of DA from cirrhotic livers, this in turn may lead to the impairment of learning and memory ability of MHE.
Collapse
|
36
|
Arcangeli S, Tozzi A, Tantucci M, Spaccatini C, de Iure A, Costa C, Di Filippo M, Picconi B, Giampà C, Fusco FR, Amoroso S, Calabresi P. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J Cereb Blood Flow Metab 2013; 33:278-86. [PMID: 23149555 PMCID: PMC3564198 DOI: 10.1038/jcbfm.2012.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.
Collapse
Affiliation(s)
- Sara Arcangeli
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Friend DM, Son JH, Keefe KA, Fricks-Gleason AN. Expression and activity of nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine toxicity. J Pharmacol Exp Ther 2013; 344:511-21. [PMID: 23230214 PMCID: PMC3558820 DOI: 10.1124/jpet.112.199745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury.
Collapse
Affiliation(s)
- Danielle M Friend
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
38
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev 2013; 65:171-222. [PMID: 23319549 DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) remains the most effective symptomatic treatment of Parkinson's disease (PD). However, long-term administration of L-DOPA is marred by the emergence of abnormal involuntary movements, i.e., L-DOPA-induced dyskinesia (LID). Years of intensive research have yielded significant progress in the quest to elucidate the mechanisms leading to the development and expression of dyskinesia and maintenance of the dyskinetic state, but the search for a complete understanding is still ongoing. Herein, we summarize the current knowledge of the pharmacology of LID in PD. Specifically, we review evidence gathered from postmortem and pharmacological studies, both preclinical and clinical, and discuss the involvement of dopaminergic and nondopaminergic systems, including glutamatergic, opioid, serotonergic, γ-aminobutyric acid (GABA)-ergic, adenosine, cannabinoid, adrenergic, histaminergic, and cholinergic systems. Moreover, we discuss changes occurring in transcription factors, intracellular signaling, and gene expression in the dyskinetic phenotype. Inasmuch as a multitude of neurotransmitters and receptors play a role in the etiology of dyskinesia, we propose that to optimally alleviate this motor complication, it may be necessary to develop combined treatment approaches that will target simultaneously more than one neurotransmitter system. This could be achieved via three ways as follows: 1) by developing compounds that will interact simultaneously to a multitude of receptors with the required agonist/antagonist effect at each target, 2) by targeting intracellular signaling cascades where the signals mediated by multiple receptors converge, and/or 3) to regulate gene expression in a manner that has effects on signaling by multiple pathways.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Moustafa AA, Herzallah MM, Gluck MA. Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson's disease. NEURODEGENER DIS 2012; 11:102-11. [PMID: 23128796 DOI: 10.1159/000341999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Levodopa and dopamine agonists have different effects on the motor, cognitive, and psychiatric aspects of Parkinson's disease (PD). METHODS Using a computational model of basal ganglia (BG) and prefrontal cortex (PFC) dopamine, we provide a theoretical synthesis of the dissociable effects of these dopaminergic medications on brain and cognition. Our model incorporates the findings that levodopa is converted by dopamine cells into dopamine, and thus activates prefrontal and striatal D(1) and D(2) dopamine receptors, whereas antiparkinsonian dopamine agonists directly stimulate D(2) receptors in the BG and PFC (although some have weak affinity to D(1) receptors). RESULTS In agreement with prior neuropsychological studies, our model explains how levodopa enhances, but dopamine agonists impair or have no effect on, stimulus-response learning and working memory. CONCLUSION Our model explains how levodopa and dopamine agonists have differential effects on motor and cognitive processes in PD.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Marcs Institute for Brain and Behaviour and Foundational Processes of Behaviour, School of Social Sciences and Psychology, University of Western Sydney, Sydney, N.S.W., Australia.
| | | | | |
Collapse
|
40
|
Shioda K, Nisijima K, Kasai M, Yoshino T, Kato S. Risperidone attenuates the increase of extracellular nitric oxide and glutamate levels in serotonin syndrome animal models. Neurosci Lett 2012; 528:22-6. [PMID: 22985508 DOI: 10.1016/j.neulet.2012.08.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/03/2012] [Accepted: 08/14/2012] [Indexed: 11/20/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) syndrome is a potentially life-threatening neurotoxic condition provoked by pharmacologically induced excess serotonergic activity. Several studies report that nitric oxide (NO) and glutamate play a role in psychostimulant-induced hyperthermia related to neurotoxicity. In the present study, the involvement of NO and glutamate, as well as the effect of risperidone, a potent 5-HT(2A) and D(2) (and a less potent D(1)) receptor antagonist, were investigated in animal models of 5-HT syndrome. Two 5-HT syndrome animal models were utilized. The first model was induced by administration of tranylcypromine, a nonselective monoamine oxidase (MAO) inhibitor, and fluoxetine, a selective 5-HT reuptake inhibitor. The second model was induced by the administration of clorgyline, an MAO-A inhibitor, and 5-hydroxy-l-tryptophan, a precursor of 5-HT. Changes in the level of NO metabolites and glutamate in the anterior hypothalamus were measured using microdialysis. In both models, NO metabolite levels significantly increased, and this increase was significantly attenuated by risperidone pretreatment. Extracellular levels of glutamate were increased only in the tranylcypromine and fluoxetine model, and this increase was significantly attenuated by risperidone pretreatment. These results indicate that NO and glutamate may be involved in the development of 5-HT syndrome and that risperidone may be effective against neurotransmitter abnormalities in 5-HT syndrome.
Collapse
|
41
|
7-Nitroindazole down-regulates dopamine/DARPP-32 signaling in neostriatal neurons in a rat model of Parkinson's disease. Neuropharmacology 2012; 63:1258-67. [PMID: 22877786 DOI: 10.1016/j.neuropharm.2012.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/08/2012] [Accepted: 07/15/2012] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is involved in the regulation of diverse intracellular messenger systems in the brain. Nitric Oxide (NO) contributes to inducing signaling cascades that involve a complex pattern of phosphorylation of DARPP-32 (in Thr-34), which controls the phosphoproteins involved in neuronal activation. However, the role of NO in the pathophysiology of Parkinson's disease (PD) and its effect in striatal neurons have been scarcely explored. In the present work, we investigate the effects of a nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI) in the nigrostriatal pathway of striatal 6-hydroxydopamine (6-OHDA) lesioned rats. Our quantitative histological findings show that treatment with 7-NI significantly reduced 6-OHDA-induced dopaminergic damage in the dorsolateral striatum and Substantia Nigra pars compacta (SNpc). Moreover, 6-OHDA lesioned rats show a significant increase of nNOS(+) and Phospho-Thr34-DARPP-32(+) cells, accompanied by a consequent decrease of total DARPP-32(+) cells, which suggests an imbalance of NO activity in the DA-depleted striatum, which is also reflected in behavioral studies. Importantly, these effects are reverted in the group treated with 7-NI. These results show a clear link between the state of phosphorylation of DARPP-32 and parkinsonism, which is regulated by nNOS. This new evidence suggests a prominent role for nitric oxide in the neurotransmitter balance within the basal ganglia in the pathophysiology of experimental parkinsonism.
Collapse
|
42
|
Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T. Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesia in hemi-Parkinsonian rats. Eur J Pharmacol 2012; 683:166-73. [PMID: 22449381 DOI: 10.1016/j.ejphar.2012.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/28/2012] [Accepted: 03/04/2012] [Indexed: 01/05/2023]
Abstract
Long-term treatment with the dopamine precursor levodopa (l-DOPA) frequently induces dyskinesia in Parkinson's disease patients, which is a major complication of this therapy. Previous studies using animal models show that repeated administration of l-DOPA results in alterations of some signaling molecules, including ΔFosB, phospho-DARPP32 and phosoho-GluA1 (also referred to as GluR1 or GluR-A) AMPA receptor subunits. Moreover, an in vivo microdialysis study showed that l-DOPA increases nitric oxide (NO) production in the striatum. However, it is not known whether NO is involved in the development of dyskinesia. The present study examined the effects of NOS inhibitors on the development of l-DOPA-induced dyskinesia in the rats. Dyskinesia symptoms were triggered by daily administration of l-DOPA for 3-4weeks in unilateral 6-hydroxydopamine lesioned rats. Repeated treatments, 30min prior l-DOPA administration, of the nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester, and the nNOS inhibitor 7-nitroindazole, but not the inducible NOS inhibitor aminoguanidine, attenuated the development of l-DOPA-induced dyskinesia. In agreement with the behavioral analysis, 7-nitroindazole reduced the l-DOPA-induced increases in ΔFosB, phospho-DARPP32 and phospho-GluA1 AMPA receptor subunit levels in the striatum of 6-hydroxydopamine-lesioned rats. Furthermore, aminoguanidine did not affect ΔFosB or phospho-GluA1 AMPA receptor subunit levels. These findings suggest that nNOS-derived NO is involved in the development of l-DOPA-induced dyskinesia through a post-synaptic mechanism.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Hoque KE, West AR. Dopaminergic modulation of nitric oxide synthase activity in subregions of the rat nucleus accumbens. Synapse 2011; 66:220-31. [DOI: 10.1002/syn.21503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022]
|
44
|
Nasif FJ, Hu XT, Ramirez OA, Perez MF. Inhibition of neuronal nitric oxide synthase prevents alterations in medial prefrontal cortex excitability induced by repeated cocaine administration. Psychopharmacology (Berl) 2011; 218:323-30. [PMID: 21125397 DOI: 10.1007/s00213-010-2105-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/18/2010] [Indexed: 01/06/2023]
Abstract
RATIONALE The medial prefrontal cortex (mPFC), a forebrain region that regulates cognitive function and reward-motivated behaviors, has been implicated in the neuropathological mechanisms of drug addiction and withdrawal. In cocaine-abstinent human addicts, neuronal activity of the mPFC is increased in response to cocaine re-exposure or drug-associated cues. Additionally, repeated cocaine exposure alters the membrane properties and ion channel function of mPFC pyramidal neurons in drug-withdrawn rats, leading to an increased firing in response to excitatory stimuli. Nitric oxide (NO), a diffusible neuromodulator of neuronal excitability, may play a role in initiating and maintaining behavioral effects of psychostimulants. However, the role of NO in the mechanisms by which cocaine affects membrane excitability is not well clarified. OBJECTIVES In this study, we attempted to determine whether inhibition of neuronal nitric oxide synthase (nNOS) altered the changes induced by repeated cocaine exposure and withdrawal. METHODS Visualized whole-cell current clamp recordings in brain slices containing the mPFC of rats administered (once per day for 5 days) with either vehicle (10% Cremophor EL in saline 0.9%), cocaine (15 mg/kg, i.p.), or cocaine and the nNOS inhibitor 7-NI (50 mg/kg, i.p.) were employed. RESULTS We found that nNOS inhibition prevented cocaine sensitization and the increased membrane excitability of pyramidal cells, evidenced by an increased number of evoked spikes and reductions in inward rectification observed after short-term withdrawal from cocaine. CONCLUSIONS These findings suggest that NO plays an important role in chronic cocaine-induced deregulation of the mPFC activity that may contribute to the development of behavioral sensitization and cocaine withdrawal.
Collapse
Affiliation(s)
- Fernando J Nasif
- Departamento de Farmacología, Facultad de Ciencias Químicas, UNC, IFEC, CONICET, Haya de la Torre y Medina Allende s/n, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
45
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
46
|
Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011; 36:1811-22. [PMID: 21508928 PMCID: PMC3154099 DOI: 10.1038/npp.2011.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.
Collapse
Affiliation(s)
- Henrike Hartung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [2] Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK [3] Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
47
|
Hu L, Yang C, Zhao T, Xu M, Tang Q, Yang B, Rong R, Zhu T. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 2011; 176:260-6. [PMID: 21816412 DOI: 10.1016/j.jss.2011.06.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tubulointerstitial inflammation is the characteristics of renal ischemia reperfusion injury (IRI) that is inevitable in kidney transplantation. Erythropoietin (EPO) has recently been shown to have protective effects on renal IRI by anti-apoptosis and anti-oxidation. Here, the effect and mechanism of EPO on renal IRI were further investigated, with a focus on tubulointerstitial inflammation. MATERIALS AND METHODS Male Sprague-Dawley rats were administrated with saline or EPO prior to IRI induced by bilateral renal pedicle clamping. Twenty-four hours following reperfusion, the effects of EPO on renal IRI were assessed by renal function and structure, tubulointerstitial myeloperoxidase (MPO) positive neutrophils, and proinflammatory mediator gene expression. The translocation and activity of NF-κB in renal tissues were also evaluated. RESULTS Compared with control groups, the EPO treated group exhibited lower serum urea and creatinine levels, limited tubular necrosis with a lower score of renal histological lesion. MPO positive cells in the tubulointerstitial area were greatly increased by IRI, but significantly reduced by the treatment of EPO. The gene expression of proinflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) and chemokine (MCP-1) was also significantly decreased by EPO. In addition, less activation and nuclear-translocation of NF-κB was observed in the kidney treated by EPO as well. CONCLUSION EPO improved renal function and structure in IRI rats via reducing neutrophils in the tubulointerstitium, the production of proinflammatory cytokines and chemokine, as well as the activation and nuclear-translocation of NF-κB. EPO may have potential clinical applications as an anti-inflammation agent clinically for a wide range of injury.
Collapse
Affiliation(s)
- Linkun Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee DK, Ahn SM, Shim YB, Koh WCA, Shim I, Choe ES. Interactions of Dopamine D1 and N-methyl-D-Aspartate Receptors are Required for Acute Cocaine-Evoked Nitric Oxide Efflux in the Dorsal Striatum. Exp Neurobiol 2011; 20:116-22. [PMID: 22110369 PMCID: PMC3213699 DOI: 10.5607/en.2011.20.2.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022] Open
Abstract
Alterations in nitric oxide (NO) release in response to psychostimulants in the striatum cause a plastic change contributing to the development and expression of addiction. In this study, regulation of NO efflux evoked by acute cocaine in the dorsal striatum was investigated using real-time detection of NO in vivo. We found that acute systemic injection of cocaine (20 mg/kg) increased NO efflux, which was reduced by the intrastriatal infusion of the dopamine D1 receptor antagonist, SCH23390 (7.5 nmol), and the dopamine D2 receptor agonist, quinpirole (5 nmol). Increased levels of NO efflux by acute cocaine were also reduced by the intrastriatal infusion of the N-methyl-D-aspartate (NMDA) receptor antagonists, MK801 (2 nmol) and AP5 (2 nmol). These findings suggest that interactions of dopamine D1 receptors and NMDA receptors after acute exposure to cocaine participate in the upregulation of NO efflux in the dorsal striatum.
Collapse
Affiliation(s)
- Dong Kun Lee
- Department of Biological Sciences, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|
49
|
West AR, Tseng KY. Nitric Oxide-Soluble Guanylyl Cyclase-Cyclic GMP Signaling in the Striatum: New Targets for the Treatment of Parkinson's Disease? Front Syst Neurosci 2011; 5:55. [PMID: 21747761 PMCID: PMC3129139 DOI: 10.3389/fnsys.2011.00055] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/16/2011] [Indexed: 11/13/2022] Open
Abstract
Striatal nitric oxide (NO)-producing interneurons play an important role in the regulation of corticostriatal synaptic transmission and motor behavior. Striatal NO synthesis is driven by concurrent activation of NMDA and dopamine (DA) D1 receptors. NO diffuses into the dendrites of medium-sized spiny neurons which contain high levels of NO receptors called soluble guanylyl cyclases (sGC). NO-mediated activation of sGC leads to the synthesis of the second messenger cGMP. In the intact striatum, transient elevations in intracellular cGMP primarily act to increase neuronal excitability and to facilitate glutamatergic corticostriatal transmission. NO–cGMP signaling also functionally opposes the inhibitory effects of DA D2 receptor activation on corticostriatal transmission. Not surprisingly, abnormal striatal NO–sGC–cGMP signaling becomes apparent following striatal DA depletion, an alteration thought to contribute to pathophysiological changes observed in basal ganglia circuits in Parkinson's disease (PD). Here, we discuss recent developments in the field which have shed light on the role of NO–sGC–cGMP signaling pathways in basal ganglia dysfunction and motor symptoms associated with PD and l-DOPA-induced dyskinesias.
Collapse
Affiliation(s)
- Anthony R West
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | | |
Collapse
|
50
|
Choe ES, Ahn SM, Yang JH, Go BS, Wang JQ. Linking cocaine to endoplasmic reticulum in striatal neurons: role of glutamate receptors. ACTA ACUST UNITED AC 2011; 1:59-63. [PMID: 21808746 DOI: 10.1016/j.baga.2011.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endoplasmic reticulum (ER) controls protein folding. Accumulation of unfolded and misfolded proteins in the ER triggers an ER stress response to accelerate normal protein folding or if failed to cause apoptosis. The ER stress response is a conserved cellular response in mammalian cells and is sensitive to various physiological or pathophysiological stimuli. Recent studies unravel that this response in striatal neurons is subject to the tight modulation by psychostimulants. Cocaine and amphetamines markedly increased expression of multiple ER stress reporter proteins in the dorsal striatum (caudate putamen) and other basal ganglia sites. This evoked ER stress response is mediated by activation of group I metabotropic glutamate receptors and N-methyl-D-aspartate receptors. Converging Ca(2+) signals derived from activation of these receptors activate the c-Jun N-terminal kinase pathway to evoke ER stress responses. The discovery of robust ER stress responses to stimulant exposure establishes a previously unrecognized stimulant-ER coupling. This inducible coupling seems to contribute to neurotoxicity of stimulants related to various neuropsychiatric and neurodegenerative illnesses. Elucidating cellular mechanisms linking cocaine and other stimulants to ER is therefore important for the development of therapeutic agents for treating neurological disorders resulted from stimulant toxicity.
Collapse
Affiliation(s)
- Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | |
Collapse
|