1
|
Wang Y, Tian B, Li Y, Li W, Chen Z, Liu S, Li S. A Sustainable and Versatile Cellulose-based CO Surrogate for Carbonylative Reactions. CHEMSUSCHEM 2024; 17:e202301324. [PMID: 38199959 DOI: 10.1002/cssc.202301324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The highly toxic and flammable nature of CO lead to high handling demand for its use and storage, undoubtedly constricting its further academic exploration for carbonylative reactions in laboratory. Although many CO surrogates have been developed and applied in carbonylative reactions instead of CO gas, exploration of more versatile CO surrogates for diverse carbonylations is still highly desirable. Here we report a cellulose-based CO surrogate (cellulose-CO), which prepared from cheap and abundant cellulose through a simple and green process. The very mild and efficient CO release makes this reagent a highly competitive candidate for providing CO in carbonylation. This surrogate is compatible with a wide variety of functional groups in various carbonylative reactions due to the excellent compatibility of cellulose-CO. Moreover, the cellulose-CO exhibits excellent chemical stability which can be stored exposed to air for 12 months, making this CO surrogate a robust and general reagent in CO chemistry.
Collapse
Affiliation(s)
- You Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| |
Collapse
|
2
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Acute administration of the NMDA receptor antagonists ketamine and MK-801 reveals dysregulation of glutamatergic signalling and sensorimotor gating in the Sapap3 knockout mouse model of compulsive-like behaviour. Neuropharmacology 2023; 239:109689. [PMID: 37597609 DOI: 10.1016/j.neuropharm.2023.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by excessive intrusive thoughts that may cause an individual to engage in compulsive behaviours. Frontline pharmacological treatments (i.e., selective serotonin reuptake inhibitors (SSRIs)) leave approximately 40% of patients refractory to treatment. To investigate the possibility of novel pharmacological therapies for OCD, as well as the potential mechanisms underlying its pathology, we used the Sapap3 knockout (KO) mouse model of OCD, which exhibits increased anxiety and compulsive grooming behaviours. Firstly, we investigated whether administration of the NMDA receptor (NMDAR) antagonist ketamine (30 mg/kg), would reduce anxiety and grooming behaviour in Sapap3 KO mice. Anxiety-like behaviour was measured via time spent in the light component of the light-dark box test. Grooming behaviour was recorded and scored in freely moving mice. In line with previous works conducted in older animals (i.e. typically between 6 and 9 months of age), we confirmed here that Sapap3 KO mice exhibit an anxious, compulsive grooming, hypolocomotive and reduced body weight phenotype even at a younger age (i.e., 2-3 months of age). However, we found that acute administration of ketamine did not cause a reduction in anxiety or grooming behaviour. We then investigated in vivo glutamatergic function via the administration of a different NMDAR antagonist, MK-801 (0.25 mg/kg), prior to locomotion and prepulse inhibition assays. We found evidence of altered functional NMDAR activity, as well as sexually dimorphic prepulse inhibition, a measure of sensorimotor gating, in Sapap3 KO mice. These results are suggestive of in vivo glutamatergic dysfunction and their functional consequences, enabling future research to further investigate novel treatments for OCD.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Kadriu B, Musazzi L, Johnston JN, Kalynchuk LE, Caruncho HJ, Popoli M, Zarate CA. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26:2816-2838. [PMID: 34358693 DOI: 10.1016/j.drudis.2021.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Jenessa N Johnston
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Imbriglio T, Verhaeghe R, Antenucci N, Maccari S, Battaglia G, Nicoletti F, Cannella M. Developmental up-regulation of NMDA receptors in the prefrontal cortex and hippocampus of mGlu5 receptor knock-out mice. Mol Brain 2021; 14:77. [PMID: 33962661 PMCID: PMC8106212 DOI: 10.1186/s13041-021-00784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly expressed and functional in the early postnatal life, and are known to positively modulate NMDA receptor function. Here, we examined the expression of NMDA receptor subunits and interneuron-related genes in the prefrontal cortex and hippocampus of mGlu5-/- mice and wild-type littermates at three developmental time points (PND9, - 21, and - 75). We were surprised to find that expression of all NMDA receptor subunits was greatly enhanced in mGlu5-/- mice at PND21. In contrast, at PND9, expression of the GluN2B subunit was enhanced, whereas expression of GluN2A and GluN2D subunits was reduced in both regions. These modifications were transient and disappeared in the adult life (PND75). Changes in the transcripts of interneuron-related genes (encoding parvalbumin, somatostatin, vasoactive intestinal peptide, reelin, and the two isoforms of glutamate decarboxylase) were also observed in mGlu5-/- mice across postnatal development. For example, the transcript encoding parvalbumin was up-regulated in the prefrontal cortex of mGlu5-/- mice at PND9 and PND21, whereas it was significantly reduced at PND75. These findings suggest that in mGlu5-/- mice a transient overexpression of NMDA receptor subunits may compensate for the lack of the NMDA receptor partner, mGlu5. Interestingly, in mGlu5-/- mice the behavioral response to the NMDA channel blocker, MK-801, was significantly increased at PND21, and largely reduced at PND75. The impact of adaptive changes in the expression of NMDA receptor subunits should be taken into account when mGlu5-/- mice are used for developmental studies.
Collapse
Affiliation(s)
| | | | - Nico Antenucci
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Stefania Maccari
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | | |
Collapse
|
6
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Gubert C, Kong G, Uzungil V, Zeleznikow-Johnston AM, Burrows EL, Renoir T, Hannan AJ. Microbiome Profiling Reveals Gut Dysbiosis in the Metabotropic Glutamate Receptor 5 Knockout Mouse Model of Schizophrenia. Front Cell Dev Biol 2020; 8:582320. [PMID: 33195226 PMCID: PMC7658610 DOI: 10.3389/fcell.2020.582320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder that constitutes one of the top 10 global causes of disability. More recently, a potential pathogenic role for the gut microbial community (microbiota) has been highlighted, with numerous studies describing dysregulated microbial profiles in SZ patients when compared to healthy controls. However, no animal model of SZ has previously recapitulated the gut dysbiosis observed clinically. Since the metabotropic glutamate receptor 5 (mGlu5) knockout mice provide a preclinical model of SZ with strong face and predictive validity, in the present study we performed gut microbiome profiling of mGlu5 knockout (KO) and wild-type (WT) mice by 16S rRNA sequencing of bacterial genomic DNA from fecal samples, analyzing bacterial diversity and taxonomic composition, as well as gastrointestinal parameters as indicators of gut function. We found a significant genotype difference in microbial beta diversity. Analysis of composition of microbiomes (ANCOM) models were performed to evaluate microbiota compositions, which identified a decreased relative abundance of the Erysipelotrichaceae family and Allobaculum genus in this mouse model of SZ. We also identified a signature of bacteria discriminating between the genotypes (KO and WT), consisting of the Erysipelotrichales, Bacteroidales, and Clostridiales orders and macroscopic gut differences. We thus uncovered global differential community composition in the gut microbiota profile between mGlu5 KO and WT mice, outlining the first evidence for gut dysbiosis in a genetic animal model of SZ. Our findings suggest that this widely used preclinical model of SZ also has substantial utility for investigations of gut dysbiosis and associated signaling via the microbiota-gut-brain axis, as potential modulators of SZ pathogenesis. Our discovery opens up new avenues to explore gut dysbiosis and its proposed links to brain dysfunction in SZ, as well as novel therapeutic approaches to this devastating disorder.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Volkan Uzungil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Emma L. Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
9
|
Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, Yao H, Yang J, Liu H, Liu Y, Jia F, Qi C, Lynn-Jones T, Hu H, Fu Z, Feng G, Wang W, Wu S. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci 2019; 22:1223-1234. [DOI: 10.1038/s41593-019-0445-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
10
|
Rhine MA, Parrott JM, Schultz MN, Kazdoba TM, Crawley JN. Hypothesis-driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Res 2019; 12:401-421. [PMID: 30653853 PMCID: PMC6402976 DOI: 10.1002/aur.2066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome diagnosed primarily by persistent deficits in social interactions and communication, unusual sensory reactivity, motor stereotypies, repetitive behaviors, and restricted interests. No FDA‐approved medical treatments exist for the diagnostic symptoms of autism. Here we interrogate multiple pharmacological targets in two distinct mouse models that incorporate well‐replicated autism‐relevant behavioral phenotypes. Compounds that modify inhibitory or excitatory neurotransmission were selected to address hypotheses based on previously published biological abnormalities in each model. Shank3B is a genetic model of a mutation found in autism and Phelan‐McDermid syndrome, in which deficits in excitatory neurotransmission and synaptic plasticity have been reported. BTBR is an inbred strain model of forms of idiopathic autism in which reduced inhibitory neurotransmission and excessive mTOR signaling have been reported. The GABA‐A receptor agonist gaboxadol significantly reduced repetitive self‐grooming in three independent cohorts of BTBR. The TrkB receptor agonist 7,8‐DHF improved spatial learning in Shank3B mice, and reversed aspects of social deficits in BTBR. CX546, a positive allosteric modulator of the glutamatergic AMPA receptor, and d‐cycloserine, a partial agonist of the glycine site on the glutamatergic NMDA receptor, did not rescue aberrant behaviors in Shank3B mice. The mTOR inhibitor rapamycin did not ameliorate social deficits or repetitive behavior in BTBR mice. Comparison of positive and negative pharmacological outcomes, on multiple phenotypes, evaluated for replicability across independent cohorts, enhances the translational value of mouse models of autism for therapeutic discovery. GABA agonists present opportunities for personalized interventions to treat components of autism spectrum disorder. Autism Res 2019, 12: 401–421 © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Many of the risk genes for autism impair synapses, the connections between nerve cells in the brain. A drug that reverses the synaptic effects of a mutation could offer a precision therapy. Combining pharmacological and behavioral therapies could reduce symptoms and improve the quality of life for people with autism. Here we report reductions in repetitive behavior by a GABA‐A receptor agonist, gaboxadol, and improvements in social and cognitive behaviors by a TrkB receptor agonist, in mouse models of autism.
Collapse
Affiliation(s)
- Maya A Rhine
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jennifer M Parrott
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| |
Collapse
|
11
|
Iridium-catalyzed reductive Ugi-type reactions of tertiary amides. Nat Commun 2018; 9:2841. [PMID: 30026608 PMCID: PMC6053461 DOI: 10.1038/s41467-018-05192-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Abstract
Amides are ubiquitous in the fine chemical, agrochemical and pharmaceutical industries, but are rarely exploited as substrates for homologous amine synthesis. By virtue of their high chemical stability, they are essentially inert to all but the harshest of chemical reagents and to the majority of chemical transformations routinely used in organic synthesis. Accordingly, the development of chemoselective carbon−carbon bond-forming methodologies arising from the functionalization of the amide functionality should find widespread use across academia and industry. We herein present our findings on a series of Ugi-type reactions of tertiary amides enabled by an initial chemoselective iridium-catalyzed partial reduction, followed by reaction with isocyanide and (thio)acetic acid or trimethylsilyl azide, thus providing a multicomponent synthesis of α-amino (thio)amide or α-amino tetrazole derivatives. The reductive Ugi-type reactions are amenable to a broad range of amides and isocyanides, and are applicable to late-stage functionalization of various bioactive molecules and pharmaceutical compounds. Chemical transformation of amides is normally occurring under harsh conditions. Here, the authors report a mild iridium-catalyzed reductive Ugi-type coupling of tertiary amides, isocyanides and (thio)acetic acid or trimethylsilyl azide to give homologous, bioactive amine products.
Collapse
|
12
|
The role of N-methyl-d-aspartate receptors and metabotropic glutamate receptor 5 in the prepulse inhibition paradigms for studying schizophrenia: pharmacology, neurodevelopment, and genetics. Behav Pharmacol 2018; 29:13-27. [DOI: 10.1097/fbp.0000000000000352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Luoni A, Gass P, Brambilla P, Ruggeri M, Riva MA, Inta D. Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors. Eur Arch Psychiatry Clin Neurosci 2018; 268:77-87. [PMID: 27581816 DOI: 10.1007/s00406-016-0728-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
Abstract
The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany. .,Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
| |
Collapse
|
14
|
Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, Vigé X, Bergis OE, Sher R, Kosley R, Kongsamut S, Black MD, Varty GB. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci Rep 2016; 6:35320. [PMID: 27734956 PMCID: PMC5062470 DOI: 10.1038/srep35320] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo-/- mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi R&D, Strategy, Science Policy &External Innovation, Chilly-Mazarin, France
| | - Philippe Pichat
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | - Denis Boulay
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Lisa Potestio
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Henry Defex
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Xavier Vigé
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Rosy Sher
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Mark D Black
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | |
Collapse
|
15
|
Veryser C, Van Mileghem S, Egle B, Gilles P, De Borggraeve WM. Low-cost instant CO generation at room temperature using formic acid, mesyl chloride and triethylamine. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00006a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and robust method for instant carbon monoxide generation at room temperature using easily accessible standard lab chemicals: formic acid, mesyl chloride and triethylamine.
Collapse
Affiliation(s)
- Cedrick Veryser
- Department of Chemistry
- Molecular Design and Synthesis
- KU Leuven
- 3001 Leuven
- Belgium
| | - Seger Van Mileghem
- Department of Chemistry
- Molecular Design and Synthesis
- KU Leuven
- 3001 Leuven
- Belgium
| | - Brecht Egle
- Department of Chemistry
- Molecular Design and Synthesis
- KU Leuven
- 3001 Leuven
- Belgium
| | - Philippe Gilles
- Department of Chemistry
- Molecular Design and Synthesis
- KU Leuven
- 3001 Leuven
- Belgium
| | - Wim M. De Borggraeve
- Department of Chemistry
- Molecular Design and Synthesis
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
16
|
Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice. Neurosci Lett 2015; 609:159-64. [DOI: 10.1016/j.neulet.2015.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023]
|
17
|
Burrows EL, McOmish CE, Buret LS, Van den Buuse M, Hannan AJ. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5. Neuropsychopharmacology 2015; 40:1947-56. [PMID: 25666312 PMCID: PMC4839518 DOI: 10.1038/npp.2015.44] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/29/2022]
Abstract
Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.
Collapse
Affiliation(s)
- Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Caitlin E McOmish
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia,Department of Psychiatry, The Sackler Institute for Developmental Psychobiology, Columbia University, NY, USA
| | - Laetitia S Buret
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia,School of Psychological Science, La Trobe University, Bundoora, VIC, Australia
| | - Maarten Van den Buuse
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia,School of Psychological Science, La Trobe University, Bundoora, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia, Tel: +61 3 9035 6638, Fax: +61 3 9348 1707, E-mail:
| |
Collapse
|
18
|
Gockel SN, Hull KL. Chloroform as a Carbon Monoxide Precursor: In or Ex Situ Generation of CO for Pd-Catalyzed Aminocarbonylations. Org Lett 2015; 17:3236-9. [DOI: 10.1021/acs.orglett.5b01385] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel N. Gockel
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kami L. Hull
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes. PLoS One 2013; 8:e69883. [PMID: 23922840 PMCID: PMC3726734 DOI: 10.1371/journal.pone.0069883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1) knockout (KO) mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A) receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.
Collapse
|
20
|
Dang TT, Zhu Y, Ngiam JSY, Ghosh SC, Chen A, Seayad AM. Palladium Nanoparticles Supported on ZIF-8 As an Efficient Heterogeneous Catalyst for Aminocarbonylation. ACS Catal 2013. [DOI: 10.1021/cs400232b] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tuan T. Dang
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove,
#07-01 Neuros, Singapore 138665
| | - Yinghuai Zhu
- Polymer Chemistry, Institute of Chemical and Engineering Sciences, 1 Pesek Road, Singapore 627833
| | - Joyce S. Y. Ngiam
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove,
#07-01 Neuros, Singapore 138665
| | - Subhash C. Ghosh
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove,
#07-01 Neuros, Singapore 138665
| | - Anqi Chen
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove,
#07-01 Neuros, Singapore 138665
| | - Abdul M. Seayad
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove,
#07-01 Neuros, Singapore 138665
| |
Collapse
|
21
|
Pirotte B, Francotte P, Goffin E, de Tullio P. AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 2013; 23:615-28. [DOI: 10.1517/13543776.2013.770840] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 2013; 64:268-82. [PMID: 22801296 PMCID: PMC3445667 DOI: 10.1016/j.neuropharm.2012.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
Autism is a neurodevelopmental disorder in which the first diagnostic symptom is unusual reciprocal social interactions. Approximately half of the children diagnosed with an autism spectrum disorder also have intellectual impairments. General cognitive abilities may be fundamental to many aspects of social cognition. Cognitive enhancers could conceivably be of significant benefit to children and adults with autism. AMPAKINE compounds are a novel class of pharmacological agents that act as positive modulators of AMPA receptors to enhance excitatory glutamatergic neurotransmission. This class of compounds was reported to improve learning and memory in several rodent and non-human primate tasks, and to normalize respiratory abnormalities in a mouse model of Rett syndrome. Here we evaluate the actions of AMPA compounds in adult male and female BTBR mice, a well characterized mouse model of autism. Acute treatment with CX1837 and CX1739 reversed the deficit in sociability in BTBR mice on the most sensitive parameter, time spent sniffing a novel mouse as compared to time spent sniffing a novel object. The less sensitive parameter, time in the chamber containing the novel mouse versus time in the chamber containing the novel object, was not rescued by CX1837 or CX1739 treatment. Preliminary data with CX546, in which β-cyclodextrin was the vehicle, revealed behavioral effects of the acute intraperitoneal and oral administration of vehicle alone. To circumvent the artifacts introduced by the vehicle administration, we employed a novel treatment regimen using pellets of peanut butter for drug delivery. Absence of vehicle treatment effects when CX1837 and CX1739 were given in the peanut butter pellets, to multiple cohorts of BTBR and B6 control mice, confirmed that the pharmacologically-induced improvements in sociability in BTBR were not confounded by the administration procedures. The highest dose of CX1837 improved the cognitive deficit in novel object recognition in BTBR. No drug effects were detected on the high levels of repetitive self-grooming in BTBR. In open field tests, CX1837 and CX1739 did not induce hyperactivity or sedation in either strain. It is interesting to speculate that the ability of CX1837 and CX1739 to restore aspects of sociability in BTBR mice could utilize synaptic mechanisms regulating social cognition, suggesting a potential pharmacological target for interventions to treat symptoms of autism. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
MESH Headings
- Animals
- Autistic Disorder/drug therapy
- Autistic Disorder/physiopathology
- Behavior, Animal/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Dioxoles/administration & dosage
- Dioxoles/adverse effects
- Dioxoles/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Drugs, Investigational/therapeutic use
- Excitatory Amino Acid Agonists/administration & dosage
- Excitatory Amino Acid Agonists/adverse effects
- Excitatory Amino Acid Agonists/therapeutic use
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Targeted Therapy
- Nootropic Agents/administration & dosage
- Nootropic Agents/adverse effects
- Nootropic Agents/therapeutic use
- Piperidines/administration & dosage
- Piperidines/adverse effects
- Piperidines/therapeutic use
- Random Allocation
- Receptors, AMPA/agonists
- Recognition, Psychology/drug effects
- Social Behavior
- Social Behavior Disorders/etiology
- Social Behavior Disorders/prevention & control
Collapse
Affiliation(s)
- J L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| | | | | | | | | |
Collapse
|
23
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a "schizophrenia-like brain" over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.
Collapse
|
25
|
Lipina TV, Rasquinha R, Roder JC. Parametric and pharmacological modulations of latent inhibition in mouse inbred strains. Pharmacol Biochem Behav 2011; 100:244-52. [PMID: 21903127 DOI: 10.1016/j.pbb.2011.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/05/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Latent inhibition (LI) is a cross species selective attention phenomenon, which is disrupted by amphetamine and enhanced by antipsychotic drugs (APDs). Accumulating data of LI in gene-modified mice as well as in mouse inbred strains suggest genetic component of LI. Here we study modulation of LI in mouse inbred strains with spontaneously disrupted LI by parametric manipulations (number of pre-exposures and conditioning trials) and pharmacological treatments with antipsychotics and NMDA modulator, D-serine. C3H/He and CBA/J inbred mice showed disrupted LI under conditions with 40 pre-exposures (PE) and 2 trials of the conditioned stimulus-unconditioned stimulus (CS-US) due to either loss of the pre-exposure effect or a ceiling effect of poor learning, respectively. The increased number of pre-exposures and/or number of conditioning trials corrected expression of LI in these inbred mice. The disrupted LI was also reversed by haloperidol in both inbred strains at 1.2 mg/kg but not at 0.4 mg/kg, as well as by clozapine (at 3 mg/kg in C3H/He and at 9 mg/kg in CBA/J mice). D-serine potentiated LI in C3H/He mice at 600 mg/kg, but not in the CBA/J at both studied doses (600 and 1800 mg/kg). Desipramine (10 mg/kg) had no effect on LI in both inbred mouse strains. Our findings demonstrated some resemblance between the effects of parametric and pharmacological manipulations on LI, suggesting that APDs may affect the capacity of the brain processes environmental stimuli in LI. Taken together, LI may offer a translational strategy that allows prediction of drug efficacy for cognitive impairments in schizophrenia.
Collapse
|
26
|
Corti C, Xuereb JH, Crepaldi L, Corsi M, Michielin F, Ferraguti F. Altered levels of glutamatergic receptors and Na+/K+ ATPase-α1 in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 2011; 128:7-14. [PMID: 21353485 DOI: 10.1016/j.schres.2011.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 01/24/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Evidence has accumulated over the past years that dysregulation of glutamatergic neurotransmission maybe implicated in the pathophysiology of schizophrenia. Glutamate acts on two major classes of receptors: ionotropic receptors, which are ligand-gated ion channels, and metabotropic receptors (mGluRs), coupled to heterotrimeric G-proteins. Although several pharmacological evidences point to abnormal glutamatergic transmission in schizophrenia, changes in the expression of glutamatergic receptors in the prefrontal cortex of patients with schizophrenia remains equivocal. In the present work, we have investigated glutamatergic neurotransmission in schizophrenia by assessing the expression in Brodmann Area 10 of mGluR5, the AMPA receptor subunits GluR1 and GluR2, and Na(+)/K(+) ATPase-α1, a potential modulator of glutamate uptake in the brain. Semiquantitative analysis of the expression of these proteins from postmortem brains revealed a particularly prominent reduction of GluR1 and GluR2 expression in patients with schizophrenia vs the control group. Conversely, we observed an up-regulation in the levels of Na(+)/K(+) ATPase-α1 expression. Finally, no change in the protein levels of mGluR5 was observed in schizophrenia. Our findings support and expand the hypothesis of glutamatergic dysfunction in prefrontal cortex in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Corrado Corti
- Dept. Biology, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J Am Chem Soc 2011; 133:6061-71. [PMID: 21446732 DOI: 10.1021/ja200818w] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.
Collapse
Affiliation(s)
- Philippe Hermange
- The Center for Insoluble Protein Structures (inSPIN), Department of Chemistry and the Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Shao F, Han X, Li N, Wang W. Adolescent chronic apomorphine treatment impairs latent inhibition and reduces prefrontal cortex mGluR5 receptor expression in adult rats. Eur J Pharmacol 2010; 649:202-5. [DOI: 10.1016/j.ejphar.2010.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 11/16/2022]
|
29
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
30
|
Chen HH, Stoker A, Markou A. The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice. Psychopharmacology (Berl) 2010; 209:343-50. [PMID: 20217053 PMCID: PMC2855017 DOI: 10.1007/s00213-010-1802-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/11/2010] [Indexed: 11/11/2022]
Abstract
RATIONALE Mice lacking metabotropic glutamate receptors 5 (mGluR5) exhibit reduced glutamatergic function and behavioral abnormalities, including deficits in prepulse inhibition (PPI) of the startle response that may be relevant to schizophrenia. Thus, these mice are an animal model that may be used for preclinical evaluation of potentially new classes of antipsychotic compounds. Recent clinical studies have suggested several compounds that modulate glutamatergic transmission through distinct mechanisms, such as potentiation of the N-methyl-D: -aspartate (NMDA) receptor glycine site, activation of group II mGluR, and activation of glutamate-cysteine antiporters, as being efficacious in the treatment of schizophrenia. OBJECTIVES The aim of this work is to evaluate the effects of sarcosine (a selective inhibitor of the glycine transporter 1 [GlyT1]), LY379268 (a group II mGluR agonist), and N-acetylcysteine (a cysteine prodrug that indirectly activates cystine-glutamate antiporters to increase glutamate levels in the extrasynaptic space) on PPI deficits in mGluR5 knockout mice. RESULTS Sarcosine and N-acetylcysteine, but not LY379268, ameliorated PPI deficits in mGluR5 knockout mice. The ability of N-acetylcysteine to restore PPI deficits was not blocked by the group II mGluR antagonist LY341495, indicating that the effects of N-acetylcysteine were not attributable to activation of group II mGluRs by glutamate. CONCLUSIONS These findings provide evidence that the interactions between mGluR5 and NMDA receptors are involved in the regulation of PPI and suggest that activation of glutamate receptors, other than group II receptors, by increased endogenous glutamate transmission, may ameliorate the behavioral abnormalities associated with mGluR5 deficiency.
Collapse
Affiliation(s)
- Hwei-Hsien Chen
- Institute of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 970, Taiwan.
| | - Astrid Stoker
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA ,Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA
| |
Collapse
|
31
|
Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 2009; 204:282-94. [PMID: 19397931 PMCID: PMC2735602 DOI: 10.1016/j.bbr.2009.04.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 12/26/2022]
Abstract
Mutant mouse models related to schizophrenia have been based primarily on the pathophysiology of schizophrenia, the known effects of antipsychotic drugs, and candidate genes for schizophrenia. Sensorimotor gating deficits in schizophrenia patients, as indexed by measures of prepulse inhibition of startle (PPI), have been well characterized and suggested to meet the criteria as a useful endophenotype in human genetic studies. PPI refers to the ability of a non-startling "prepulse" to inhibit responding to the subsequent startling stimulus or "pulse." Because of the cross-species nature of PPI, it has been used primarily in pharmacological animal models to screen putative antipsychotic medications. As techniques in molecular genetics have progressed over the past 15 years, PPI has emerged as a phenotype used in assessing genetic mouse models of relevance to schizophrenia. In this review, we provide a selected overview of the use of PPI in mouse models of schizophrenia and discuss the contribution and usefulness of PPI as a phenotype in the context of genetic mouse models. To that end, we discuss mutant mice generated to address hypotheses regarding the pathophysiology of schizophrenia and candidate genes (i.e., hypothesis driven). We also briefly discuss the usefulness of PPI in phenotype-driven approaches in which a PPI phenotype could lead to "bottom up" approaches of identifying novel genes of relevance to PPI (i.e., hypothesis generating).
Collapse
Affiliation(s)
- Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
32
|
Labrie V, Wang W, Barger SW, Baker GB, Roder JC. Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. GENES BRAIN AND BEHAVIOR 2009; 9:11-25. [PMID: 19751394 DOI: 10.1111/j.1601-183x.2009.00529.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced function of the N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a glycine binding site in its NR1 subunit that may be a useful target for the treatment of schizophrenia. In this study, we assessed the therapeutic potential of long-term increases in the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO) in mice. The effects of eliminating DAO function were investigated in mice that display schizophrenia-related behavioral deficits due to a mutation (Grin 1(D481N)) in the NR1 subunit that results in a reduction in NMDAR glycine affinity. Grin 1(D481N) mice show deficits in sociability, prolonged latent inhibition, enhanced startle reactivity and impaired spatial memory. The hypofunctional Dao 1(G181R) mutation elevated brain levels of D-serine, but alone it did not affect performance in the behavioral measures. Compared to animals with only the Grin 1(D481N) mutation, mice with both the Dao1(G181R) and Grin 1(D481N) mutations displayed an improvement in social approach and spatial memory retention, as well as a reversal of abnormally persistent latent inhibition and a partial normalization of startle responses. Thus, an increased level of D-serine resulting from decreased catalysis corrected the performance of mice with deficient NMDAR glycine site activation in behavioral tasks relevant to the negative and cognitive symptoms of schizophrenia. Diminished DAO activity and elevations in D-serine may serve as an effective therapeutic intervention for the treatment of psychiatric symptoms.
Collapse
Affiliation(s)
- V Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
33
|
Bellesi M, Melone M, Gubbini A, Battistacci S, Conti F. GLT-1 upregulation impairs prepulse inhibition of the startle reflex in adult rats. Glia 2009; 57:703-13. [PMID: 18985735 DOI: 10.1002/glia.20798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We tested the hypothesis that glutamate transporter GLT-1 (also known as EAAT2) plays a role in the regulation of prepulse inhibition (PPI) of the acoustic startle reflex, a simple form of information processing which is reduced in schizophrenia. To do this, we studied PPI in rats treated with ceftriaxone (200 mg/kg/day for 8 days), an antibiotic that selectively enhances GLT-1 expression and activity. We showed that ceftriaxone-induced GLT-1 upregulation is associated with impaired PPI of the startle, that this effect is reversed by dihydrokainate, a GLT-1 antagonist, that GLT-1 expression correlates negatively with PPI, and that PPI normalizes when GLT-1a levels return to baseline. Our data indicate that GLT-1 regulates PPI of the startle reflex.
Collapse
Affiliation(s)
- Michele Bellesi
- Dipartimento di Neuroscienze, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
34
|
Arad M, Weiner I. Fluctuation of latent inhibition along the estrous cycle in the rat: modeling the cyclicity of symptoms in schizophrenic women? Psychoneuroendocrinology 2008; 33:1401-10. [PMID: 18819755 DOI: 10.1016/j.psyneuen.2008.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/03/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Latent inhibition (LI) is a cross-species selective attention phenomenon manifested as poorer conditioning of stimuli that had been experienced as irrelevant prior to conditioning. Disruption of LI by pro-psychotic agents such as amphetamine and its restoration by antipsychotic drugs (APDs) is a well-established model of psychotic symptoms of schizophrenia. There is evidence that in schizophrenic women symptom severity and treatment response fluctuate along the menstrual cycle. Here we tested whether hormonal fluctuation along the estrous cycle in female rats (as determined indirectly via the cellular composition of the vaginal smears) would modulate the expression of LI and its response to APDs. The results showed that LI was seen if rats were in estrus during pre-exposure stage and in metestrus during the conditioning stage of the LI procedure (estrus-metestrus) but not along the remaining sequential phases of the cycle (metestrus-diestrus, diestrus-proestrus and proestrus-estrus). Additionally, the efficacy of typical and atypical APDs, haloperidol and clozapine, respectively, in restoring LI depended on estrous condition. Only LI disruption in proestrus-estrus exhibited sensitivity to both APDs, whereas LI disruption in the other two phases was alleviated by clozapine but not haloperidol. Our results show for the first time that both the expression of LI and its sensitivity to APDs are modulated along the estrous cycle, consistent with fluctuations in psychotic symptoms and response to APDs seen along women's menstrual cycle. Importantly, the results indicate that although both low and high levels of hormones may give rise to psychotic-like behavior as manifested in LI loss, the pro-psychotic state associated with low hormonal level is more severe due to reduced sensitivity to typical APDs. The latter constellation may mimic states of increased vulnerability to psychosis coupled with reduced treatment response documented in schizophrenic women during periods associated with low levels of hormones.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
35
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
36
|
Mice lacking the transcription factor Ikaros display behavioral alterations of an anti-depressive phenotype. Exp Neurol 2008; 211:107-14. [DOI: 10.1016/j.expneurol.2008.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/11/2008] [Indexed: 11/23/2022]
|
37
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|