1
|
Matur M, Uzun Y, Shi X, Hamamoto K, Qiu Y, Huang S. Noncoding RNA, ncRNA-a3, Epigenetically Regulates TAL1 Transcriptional Program During Erythropoiesis. Mol Cell Biol 2025; 45:169-184. [PMID: 40211453 PMCID: PMC12042867 DOI: 10.1080/10985549.2025.2482079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Hematopoietic transcription is a combinatorial control of transcription factors, chromatin modifiers, and non-coding RNAs. TAL1 is a critical regulator of normal and malignant hematopoiesis. However, mechanism underlying regulation of TAL1 activity during erythropoiesis versus leukemogenesis remains elusive. Here, we showed that an enhancer RNA, ncRNA-a3 transcribed from TAL1 + 51Kb-enhancer, is positively correlated with TAL1 locus chromatin accessibility and transcription, and required for TAL1 activation during EPO-induced erythropoiesis. Loss of ncRNA-a3 in CD34+ hematopoietic stem and progenitor cells leads to reduction of TAL1 transcription, followed by impaired terminal erythroid differentiation. The effect of ncRNA-a3 loss on erythroid differentiation is partially rescued by overexpression of Tal1 cDNA, suggesting an important role of ncRNA-a3/TAL1 regulatory axis in erythropoiesis. Mechanistically, ncRNA-a3 regulates long-range chromatin interactions between +51Kb erythroid-specific enhancer, promoter and other regulatory elements in the TAL1 locus to maintain the erythroid interaction hub. By facilitating the binding and recruitment of p300/BRG1 to the TAL1 locus, ncRNA-a3 promotes chromatin accessibility in the TAL1 locus and activates TAL1 transcription program, including subsequent epigenetic and transcriptional activation of erythroid-specific TAL1 target genes. Our study reveals a novel role for ncRNA-a3 in TAL1 dependent erythropoiesis and establishes a new mode of ncRNA-a3 action in TAL1 transcriptional activation.
Collapse
Affiliation(s)
- Meghana Matur
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yasin Uzun
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiangguo Shi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karina Hamamoto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Fagnan A, Aid Z, Baille M, Drakul A, Robert E, Lopez CK, Thirant C, Lecluse Y, Rivière J, Ignacimouttou C, Salmoiraghi S, Anguita E, Naimo A, Marzac C, Pflumio F, Malinge S, Wichmann C, Huang Y, Lobry C, Chaumeil J, Soler E, Bourquin J, Nerlov C, Bernard OA, Schwaller J, Mercher T. The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300-dependent stemness program. Hemasphere 2024; 8:e90. [PMID: 38903535 PMCID: PMC11187848 DOI: 10.1002/hem3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Zakia Aid
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Marie Baille
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Aneta Drakul
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Elie Robert
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile K. Lopez
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile Thirant
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Yann Lecluse
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Julie Rivière
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cathy Ignacimouttou
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Silvia Salmoiraghi
- Department of Oncology and HematologyAzienda Socio Sanitaria Territoriale Papa Giovanni XXIII, FROM Research Foundation, Papa Giovanni XXIII HospitalBergamoItaly
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (HCSC), IML, IdISSC, Department of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Audrey Naimo
- Gustave Roussy, Genomic PlatformUniversité Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Christophe Marzac
- Department of HematologyLeukemia Interception Program, Personalized Cancer Prevention Center, Gustave RoussyVillejuifFrance
| | - Françoise Pflumio
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Unité de Recherche (UMR)‐E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Université de Paris‐Université Paris‐SaclayFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| | - Sébastien Malinge
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Telethon Kids Institute, Perth Children's HospitalNedlandsAustralia
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and HaemostasisLudwig‐Maximilians‐University of MunichMunichGermany
| | - Yun Huang
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Camille Lobry
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- INSERM U944, CNRS UMR7212Institut de Recherche Saint Louis and Université de ParisParisFrance
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France & Université de Paris, Laboratory of Excellence GR‐ExParisFrance
| | - Jean‐Pierre Bourquin
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Juerg Schwaller
- Department of BiomedicineUniversity Children's Hospital Beider Basel (UKBB), University of BaselBaselSwitzerland
| | - Thomas Mercher
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| |
Collapse
|
3
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
4
|
Papa L, Martin TC, Djedaini M, Zangui M, Ozbek U, Parsons R, Hoffman R, Schaniel C. Ex vivo reprogramming of human hematopoietic stem cells is accompanied by increased transcripts of genes regulating metabolic integrity. Exp Hematol 2023:S0301-472X(23)00157-1. [PMID: 37001723 DOI: 10.1016/j.exphem.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The regenerative potential of human hematopoietic stem cells (HSCs) is functionally defined by their ability to provide life-long blood cell production and to repopulate myeloablated allogeneic transplant recipients. The expansion of HSC numbers is dependent not only on HSC divisions but also on a coordinated adaptation of HSCs to metabolic stress. These variables are especially critical during the ex vivo culture of HSCs with cytokine combinations, which frequently results in HSC exhaustion. We have previously reported that human CD34+ hematopoietic stem and progenitor cells (HSPCs) can be efficiently reprogrammed ex vivo and that the number of phenotypic HSCs with long-term repopulation capacity is expanded in the presence of a combination of cytokines and an epigenetic modifier. Here, we present evidence that ex vivo HSC reprogramming and maintenance is accompanied by increased transcripts of genes regulating metabolic integrity, including SIRT1 and SIRT3.
Collapse
|
5
|
Chapola H, de Bastiani MA, Duarte MM, Freitas MB, Schuster JS, de Vargas DM, Klamt F. A comparative study of COVID-19 transcriptional signatures between clinical samples and preclinical cell models in the search for disease master regulators and drug repositioning candidates. Virus Res 2023; 326:199053. [PMID: 36709793 PMCID: PMC9877318 DOI: 10.1016/j.virusres.2023.199053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute viral disease with millions of cases worldwide. Although the number of daily new cases and deaths has been dropping, there is still a need for therapeutic alternatives to deal with severe cases. A promising strategy to prospect new therapeutic candidates is to investigate the regulatory mechanisms involved in COVID-19 progression using integrated transcriptomics approaches. In this work, we aimed to identify COVID-19 Master Regulators (MRs) using a series of publicly available gene expression datasets of lung tissue from patients which developed the severe form of the disease. We were able to identify a set of six potential COVID-19 MRs related to its severe form, namely TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2. In addition, using the Connectivity Map drug repositioning approach, we identified 52 different drugs which could be used to revert the disease signature, thus being candidates for the design of novel clinical treatments. Furthermore, we compared the identified signature and drugs with the ones obtained from the analysis of nasopharyngeal swab samples from infected patients and preclinical cell models. This comparison showed significant similarities between them, although also revealing some limitations on the overlap between clinical and preclinical data in COVID-19, highlighting the need for careful selection of the best model for each disease stage.
Collapse
Affiliation(s)
- Henrique Chapola
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marco Antônio de Bastiani
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marcelo Mendes Duarte
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Matheus Becker Freitas
- Estacio College of Rio Grande do Sul (ESTACIO FARGS), Porto Alegre, RS 90020-060, Brazil
| | | | - Daiani Machado de Vargas
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; National Institutes of Science & Technology, Translational Medicine (INCT-TM), Porto Alegre, RS 90035-903, Brazil; IMMUNESHARE - MCTI Trial (CNPq/MCTI #137541939766794), Brazil
| |
Collapse
|
6
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
8
|
Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J. The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep 2020; 10:21438. [PMID: 33293632 PMCID: PMC7722897 DOI: 10.1038/s41598-020-78629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.
Collapse
Affiliation(s)
- Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nicole Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Julia Ringleb
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, 98195, USA
| | - Joern Lausen
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany. .,Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
9
|
Karia D, Gilbert RCG, Biasutto AJ, Porcher C, Mancini EJ. The histone H3K4 demethylase JARID1A directly interacts with haematopoietic transcription factor GATA1 in erythroid cells through its second PHD domain. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191048. [PMID: 32218938 PMCID: PMC7029945 DOI: 10.1098/rsos.191048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here, we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Dimple Karia
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert C. G. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antonio J. Biasutto
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, 3 S Parks Road, Oxford OX1 3QU, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Erika J. Mancini
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
10
|
Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019; 20:E5306. [PMID: 31653121 PMCID: PMC6862971 DOI: 10.3390/ijms20215306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The bHLH proteins are a family of eukaryotic transcription factors regulating expression of a wide range of genes involved in cell differentiation and development. They contain the Helix-Loop-Helix (HLH) domain, preceded by a stretch of basic residues, which are responsible for dimerization and binding to E-box sequences. In addition to the well-preserved DNA-binding bHLH domain, these proteins may contain various additional domains determining the specificity of performed transcriptional regulation. According to this, the family has been divided into distinct classes. Our aim was to emphasize the significance of existing disordered regions within the bHLH transcription factors for their functionality. Flexible, intrinsically disordered regions containing various motives and specific sequences allow for multiple interactions with transcription co-regulators. Also, based on in silico analysis and previous studies, we hypothesize that the bHLH proteins have a general ability to undergo spontaneous phase separation, forming or participating into liquid condensates which constitute functional centers involved in transcription regulation. We shortly introduce recent findings on the crucial role of the thermodynamically liquid-liquid driven phase separation in transcription regulation by disordered regions of regulatory proteins. We believe that further experimental studies should be performed in this field for better understanding of the mechanism of gene expression regulation (among others regarding oncogenes) by important and linked to many diseases the bHLH transcription factors.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
11
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
12
|
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2018; 234:2373-2385. [PMID: 30192008 DOI: 10.1002/jcp.27262] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Erythropoiesis is a multi-step process that involves the differentiation of hematopoietic stem cells into mature red blood cells (RBCs). This process is regulated by several signaling pathways, transcription factors and microRNAs (miRNAs). Many studies have shown that dysregulation of this process can lead to hematologic disorders. PI3K/AKT is one of the most important pathways that control many cellular processes including, cell division, autophagy, survival, and differentiation. In this review, we focus on the role of PI3K/AKT pathway in erythropoiesis and discuss the function of some of the most important genes, transcription factors, and miRNAs that regulate different stages of erythropoiesis which play roles in differentiation and maturation of RBCs, prevention of apoptosis, and autophagy induction. Understanding the role of the PI3K pathway in erythropoiesis may provide new insights into diagnosing erythrocyte disorders.
Collapse
Affiliation(s)
- Mahjoobeh Jafari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Dadkhah
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
13
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
14
|
Lu R, Mucaki EJ, Rogan PK. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 2017; 45:e27. [PMID: 27899659 PMCID: PMC5389469 DOI: 10.1093/nar/gkw1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.
Collapse
Affiliation(s)
- Ruipeng Lu
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada
| | - Peter K Rogan
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada.,Department of Oncology, Western University, London, Ontario, N6A 4L6, Canada.,Cytognomix Inc., London, Ontario, N5X 3X5, Canada
| |
Collapse
|
15
|
The proto-oncogenic protein TAL1 controls TGF-β1 signaling through interaction with SMAD3. BIOCHIMIE OPEN 2016; 2:69-78. [PMID: 29632840 PMCID: PMC5889486 DOI: 10.1016/j.biopen.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/07/2016] [Indexed: 01/13/2023]
Abstract
TGF-β1 is involved in many aspects of tissue development and homeostasis including hematopoiesis. The TAL1 transcription factor is also an important player of this latter process and is expressed very early in the myeloid and erythroid lineages. We previously established a link between TGF-β1 signaling and TAL1 by showing that the cytokine was able to induce its proteolytic degradation by the ubiquitin proteasome pathway. In this manuscript we show that TAL1 interacts with SMAD3 that acts in the pathway downstream of TGF-β1 association with its receptor. TAL1 expression strengthens the positive or negative effect of SMAD3 on various genes. Both transcription factors activate the inhibitory SMAD7 factor through the E box motif present in its transcriptional promoter. DNA precipitation assays showed that TAL1 present in Jurkat or K562 cells binds to this SMAD binding element in a SMAD3 dependent manner. SMAD3 and TAL1 also inhibit several genes including ID1, hTERT and TGF-β1 itself. In this latter case TAL1 and SMAD3 can impair the positive effect exerted by E47. Our results indicate that TAL1 expression can modulate TGF-β1 signaling by interacting with SMAD3 and by increasing its transcriptional properties. They also suggest the existence of a negative feedback loop between TAL1 expression and TGF-β1 signaling.
Collapse
|
16
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
18
|
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res 2014; 24:1945-62. [PMID: 25319994 PMCID: PMC4248312 DOI: 10.1101/gr.164830.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
19
|
Kolodziej S, Kuvardina ON, Oellerich T, Herglotz J, Backert I, Kohrs N, Buscató EL, Wittmann SK, Salinas-Riester G, Bonig H, Karas M, Serve H, Proschak E, Lausen J. PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation. Nat Commun 2014; 5:3995. [PMID: 24874575 PMCID: PMC4050257 DOI: 10.1038/ncomms4995] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023] Open
Abstract
The transcription factor Tal1 is a
critical activator or repressor of gene expression in hematopoiesis and leukaemia.
The mechanism by which Tal1
differentially influences transcription of distinct genes is not fully understood.
Here we show that Tal1 interacts
with the peptidylarginine deiminase
IV (PADI4). We
demonstrate that PADI4 can act as
an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by
PRMT6 is counteracted by
PADI4, which augments the
active H3K4me3 mark and thus increases IL6ST expression. In contrast, at the CTCF promoter PADI4 acts as a repressor. We propose that
the influence of PADI4 on
IL6ST transcription
plays a role in the control of IL6ST expression during lineage differentiation of
hematopoietic stem/progenitor cells. These results open the possibility to
pharmacologically influence Tal1
in leukaemia. Peptidylarginine deiminase 4 (PADI4) is a transcriptional
co-regulator that converts arginine residues at histone tails to citrulline. The authors
show that PADI4 interacts with the central haematopoietic transcription factor TAL1 to
regulate gene expression in an erythroleukemia cell line.
Collapse
Affiliation(s)
- Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Olga N Kuvardina
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Julia Herglotz
- 1] Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany [2]
| | - Ingo Backert
- 1] Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany [2]
| | - Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | - Estel la Buscató
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sandra K Wittmann
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Gabriela Salinas-Riester
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | - Halvard Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University, Sandhofstrasse 1, D-60528 Frankfurt am Main, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hubert Serve
- 1] Department of Medicine, Hematology/Oncology, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany [2] German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ewgenij Proschak
- 1] Institute of Pharmaceutical Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Cleveland SM, Smith S, Tripathi R, Mathias EM, Goodings C, Elliott N, Peng D, El-Rifai W, Yi D, Chen X, Li L, Mullighan C, Downing JR, Love P, Davé UP. Lmo2 induces hematopoietic stem cell-like features in T-cell progenitor cells prior to leukemia. Stem Cells 2014; 31:882-94. [PMID: 23378057 DOI: 10.1002/stem.1345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
LIM domain only 2 (Lmo2) is frequently deregulated in sporadic and gene therapy-induced acute T-cell lymphoblastic leukemia (T-ALL) where its overexpression is an important initiating mutational event. In transgenic and retroviral mouse models, Lmo2 expression can be enforced in multiple hematopoietic lineages but leukemia only arises from T cells. These data suggest that Lmo2 confers clonal growth advantage in T-cell progenitors. We analyzed proliferation, differentiation, and cell death in CD2-Lmo2 transgenic thymic progenitor cells to understand the cellular effects of enforced Lmo2 expression. Most impressively, Lmo2 transgenic T-cell progenitor cells were blocked in differentiation, quiescent, and immortalized in vitro on OP9-DL1 stromal cells. These cellular effects were concordant with a transcriptional signature in Lmo2 transgenic T-cell progenitor cells that is also present in hematopoietic stem cells (HSCs) and early T-cell precursor ALL. These results are significant in light of the crucial role of Lmo2 in the maintenance of the HSC. The cellular effects and transcriptional effects have implications for LMO2-dependent leukemogenesis and the treatment of LMO2-induced T-ALL.
Collapse
Affiliation(s)
- Susan M Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6307, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Trichostatin A Enhances Vascular Repair by Injected Human Endothelial Progenitors through Increasing the Expression of TAL1-Dependent Genes. Cell Stem Cell 2014; 14:644-57. [DOI: 10.1016/j.stem.2014.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
|
22
|
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CHM, von Boehmer H, Young RA, Look AT. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:1545-57. [PMID: 23857984 PMCID: PMC3727321 DOI: 10.1084/jem.20122516] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor. The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop 2012; 3:212-22. [PMID: 23362465 PMCID: PMC3557323 DOI: 10.5312/wjo.v3.i12.212] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts are the bone resorbing cells essential for bone remodeling. Osteoclasts are formed from hematopoietic progenitors in the monocyte/macrophage lineage. Osteoclastogenesis is composed of several steps including progenitor survival, differentiation to mono-nuclear pre-osteoclasts, fusion to multi-nuclear mature osteoclasts, and activation to bone resorbing osteoclasts. The regulation of osteoclastogenesis has been extensively studied, in which the receptor activator of NF-κB ligand (RANKL)-mediated signaling pathway and downstream transcription factors play essential roles. However, less is known about osteoclast fusion, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Several proteins that affect cell fusion have been identified. Among them, dendritic cell-specific transmembrane protein (DC-STAMP) is directly associated to osteoclast fusion in vivo. Cytokines and factors influence osteoclast fusion through regulation of DC-STAMP. Here we review the recently discovered new factors that regulate osteoclast fusion with specific focus on DC-STAMP. A better understanding of the mechanistic basis of osteoclast fusion will lead to the development of a new therapeutic strategy for bone disorders due to elevated osteoclast bone resorption. Cell-cell fusion is essential for a variety of cellular biological processes. In mammals, there is a limited number of cell types that fuse to form multinucleated cells, such as the fusion of myoblasts for the formation of skeletal muscle and the fusion of cells of the monocyte/macrophage lineage for the formation of multinucleated osteoclasts and giant cells. In most cases, cell-cell fusion is beneficial for cells by enhancing function. Myoblast fusion increases myofiber size and diameter and thereby increases contractile strength. Multinucleated osteoclasts have far more bone resorbing activity than their mono-nuclear counterparts. Multinucleated giant cells are much more efficient in the removal of implanted materials and bacteria due to chronic infection than macrophages. Therefore, they are also called foreign-body giant cells. Cell fusion is a complicated process involving cell migration, chemotaxis, cell-cell recognition and attachment, as well as changes into a fusion-competent status. All of these steps are regulated by multiple factors. In this review, we will discuss osteoclast fusion and regulation.
Collapse
|
24
|
Li Y, Deng C, Hu X, Patel B, Fu X, Qiu Y, Brand M, Zhao K, Huang S. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene 2012; 31:5007-18. [PMID: 22310283 PMCID: PMC3510314 DOI: 10.1038/onc.2012.8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/15/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
TAL1/SCL is a hematopoietic-specific oncogene and its activity is regulated by associated transcriptional co-activators and corepressors. Dysregulation of TAL1 activity has been associated with T-cell leukemogenesis. However, it remains unclear how the interactions between TAL1 and corepressors versus co-activators are properly regulated. Here, we reported that protein kinase A (PKA)-mediated phosphorylation regulates TAL1 interaction with the lysine-specific demethylase (LSD1) that removes methyl group from methylated Lys 4 on histone H3 tails. Phosphorylation of serine 172 in TAL1 specifically destabilizes the TAL1-LSD1 interaction leading to promoter H3K4 hypermethylation and activation of target genes that have been suppressed in normal and malignant hematopoiesis. Knockdown of TAL1 or LSD1 led to a derepression of the TAL1 target genes in T-cell acute lymphoblast leukemia (T-ALL) Jurkat cells, which is accompanied by elevating promoter H3K4 methylation. Similarly, treatment of PKA activator forskolin resulted in derepression of target genes by reducing its interaction with LSD1 while PKA inhibitor H89 represses them by suppressing H3K4 methylation levels. Consistent with the dual roles of TAL1 in transcription, TAL1-associated LSD1 is decreased while recruitment of hSET1 is increased at the TAL1 targets during erythroid differentiation. This process is accompanied by a dramatic increase in H3K4 methylation. Thus, our data revealed a novel interplay between PKA phosphorylation and TAL1-mediated epigenetic regulation that regulates hematopoietic transcription and differentiation programs during hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xin Hu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Bhavita Patel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun 130023, China
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Keji Zhao
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
25
|
Courtial N, Smink JJ, Kuvardina ON, Leutz A, Göthert JR, Lausen J. Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC-STAMP. FASEB J 2011; 26:523-32. [PMID: 21990371 DOI: 10.1096/fj.11-190850] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The balance between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to bone homeostasis, an equilibrium that is disturbed in many bone diseases. The transcription factor Tal1 is involved in the establishment of hematopoietic stem cells in the embryo and is a master regulator of hematopoietic gene expression in the adult. Here, we show that Tal1 is expressed in osteoclasts and that loss of Tal1 in osteoclast progenitors leads to altered expression of >1200 genes. We found that DC-STAMP, a key regulator of osteoclast cell fusion, is a direct target gene of Tal1 and show that Tal1 represses DC-STAMP expression by counteracting the activating function of the transcription factors PU.1 and MITF. The identification of Tal1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Xiao T, Wallace J, Felsenfeld G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 2011; 31:2174-83. [PMID: 21444719 PMCID: PMC3133248 DOI: 10.1128/mcb.05093-11] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/19/2011] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that the protein CTCF, which plays an important role in insulation and in large-scale organization of chromatin within the eukaryotic nucleus, depends for both activities on recruitment of the cohesin complex. We show here that the interaction of CTCF with the cohesin complex involves direct contacts between the cohesin subunit SA2 and specific regions of the C-terminal tail of CTCF. All other cohesin components are recruited through their interaction with SA2. Expression in vivo of CTCF mutants lacking the C-terminal domain, or with mutations at sites within it required for SA2 binding, disrupts the normal expression profile of the imprinted genes IGF2-H19 and also results in a loss of insulation activity. Taken together, our results demonstrate that specific sites on the C terminus of CTCF are essential for cohesin binding and insulator function. The only direct interaction between CTCF and cohesin involves contact with SA2, which is external to the cohesin ring. This suggests that in recruiting cohesin to CTCF, SA2 could bind first and the ring could assemble subsequently.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Julie Wallace
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
27
|
Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol 2011; 31:1332-43. [PMID: 21282467 DOI: 10.1128/mcb.01186-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helix-loop-helix (HLH) proteins play a profound role in the process of development and cellular differentiation. Among the HLH proteins expressed in differentiating erythroid cells are the ubiquitous proteins Myc, USF1, USF2, and TFII-I, as well as the hematopoiesis-specific transcription factor Tal1/SCL. All of these HLH proteins exhibit distinct functions during the differentiation of erythroid cells. For example, Myc stimulates the proliferation of erythroid progenitor cells, while the USF proteins and Tal1 regulate genes that specify the differentiated phenotype. This minireview summarizes the known activities of Myc, USF, TFII-I, and Tal11/SCL and discusses how they may function sequentially, cooperatively, or antagonistically in regulating expression programs during the differentiation of erythroid cells.
Collapse
|
28
|
Panepucci RA, Oliveira LHB, Zanette DL, Viu Carrara RDC, Araujo AG, Orellana MD, Bonini de Palma PV, Menezes CCBO, Covas DT, Zago MA. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells. Stem Cells Dev 2010; 19:321-32. [PMID: 19686049 DOI: 10.1089/scd.2008.0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Department of Clinical Medicine of the Faculty of Medicine of Ribeirao Preto-USP, Center for Cell Therapy and Regional Blood Center, Araraquara, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20:1064-83. [PMID: 20566737 DOI: 10.1101/gr.104935.110] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.
Collapse
|
30
|
Shimahara A, Yamakawa N, Nishikata I, Morishita K. Acetylation of lysine 564 adjacent to the C-terminal binding protein-binding motif in EVI1 is crucial for transcriptional activation of GATA2. J Biol Chem 2010; 285:16967-77. [PMID: 20363750 DOI: 10.1074/jbc.m110.102046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1) is an important transcription factor for leukemogenesis. EVI1 is a member of a group of transcription factors with C-terminal binding protein (CtBP)-binding motifs that act as transcriptional co-repressors; however, we recently found that EVI1 directly activates GATA2 transcription, which is an important gene for the maintenance of hematopoietic stem cells. We show here that EVI1-activated GATA2 transcripts derive from exon 1S of GATA2, which is specifically activated in neural and hematopoietic cells. EVI1 was acetylated by the histone acetyltransferase p300/CBP association factor (P/CAF) in myeloid leukemia cells and hematopoietic progenitor cells. Acetylation at Lys(564), which is adjacent to the CtBP-binding consensus sequence of EVI1, was found to be important for transcriptional activation of GATA2. Mutation of Lys(564) to alanine (K564A) markedly reduced the ability of EVI1 to bind DNA and activate transcription of GATA2. Furthermore, we confirmed that Lys(564) in EVI1 was specifically acetylated in leukemia and primary hematopoietic cells by using an antibody directed against an acetylated Lys(564) EVI1 peptide. Moreover, co-transfection of P/CAF with EVI1 overcame the suppressive effect of the CtBP co-repressor and resulted in GATA2 transcriptional activation; nonetheless, CtBP2 was still included in the protein complex with EVI1 and P/CAF on the EVI1-binding site in the GATA2 promoter region. Thus, acetylation of EVI1 at Lys(564) by P/CAF enhances the DNA binding capacity of EVI1 and thereby contributes to the activation of GATA2.
Collapse
Affiliation(s)
- Akiko Shimahara
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
31
|
The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 2010; 30:2181-92. [PMID: 20194619 DOI: 10.1128/mcb.01441-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocytopoiesis involves the stepwise differentiation in the bone marrow (BM) of common myeloid precursors (CMPs) to monocytes. The basic helix-loop-helix transcription factor TAL1/SCL plays a critical role in other hematopoietic lineages, and while it had been reported to be expressed by BM-derived macrophages, its role in monocytopoiesis had not been elucidated. Using cell explant models of monocyte/macrophage (MM) differentiation, one originating with CMPs and the other from more committed precursors, we characterized the phenotypic and molecular consequences of inactivation of Tal1 expression ex vivo. While Tal1 knockout had minimal effects on cell survival and slightly accelerated terminal differentiation, it profoundly inhibited cell proliferation and decreased entry into and traversal of the G(1) and S phases. In conjunction, steady-state levels of p16(Ink4a) mRNA were increased and those of Gata2 mRNA decreased. Chromatin immunoprecipitation analysis demonstrated the association of Tal1 and E47, one of its E protein DNA-binding partners, with an E box-GATA sequence element in intron 4 of the Gata2 gene and with three E boxes upstream of p16(Ink4a). Finally, wild-type Tal1, but not a DNA binding-defective mutant, rescued the proliferative defect in Tal1-null MM precursors. These results document the importance of this transcription factor in cell cycle progression and proliferation during monocytopoiesis and the requirement for direct DNA binding in these processes.
Collapse
|
32
|
Cheng Y, Wu W, Ashok Kumar S, Yu D, Deng W, Tripic T, King DC, Chen KB, Zhang Y, Drautz D, Giardine B, Schuster SC, Miller W, Chiaromonte F, Zhang Y, Blobel GA, Weiss MJ, Hardison RC. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 2009; 19:2172-84. [PMID: 19887574 PMCID: PMC2792182 DOI: 10.1101/gr.098921.109] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/05/2009] [Indexed: 11/24/2022]
Abstract
The transcription factor GATA1 regulates an extensive program of gene activation and repression during erythroid development. However, the associated mechanisms, including the contributions of distal versus proximal cis-regulatory modules, co-occupancy with other transcription factors, and the effects of histone modifications, are poorly understood. We studied these problems genome-wide in a Gata1 knockout erythroblast cell line that undergoes GATA1-dependent terminal maturation, identifying 2616 GATA1-responsive genes and 15,360 GATA1-occupied DNA segments after restoration of GATA1. Virtually all occupied DNA segments have high levels of H3K4 monomethylation and low levels of H3K27me3 around the canonical GATA binding motif, regardless of whether the nearby gene is induced or repressed. Induced genes tend to be bound by GATA1 close to the transcription start site (most frequently in the first intron), have multiple GATA1-occupied segments that are also bound by TAL1, and show evolutionary constraint on the GATA1-binding site motif. In contrast, repressed genes are further away from GATA1-occupied segments, and a subset shows reduced TAL1 occupancy and increased H3K27me3 at the transcription start site. Our data expand the repertoire of GATA1 action in erythropoiesis by defining a new cohort of target genes and determining the spatial distribution of cis-regulatory modules throughout the genome. In addition, we begin to establish functional criteria and mechanisms that distinguish GATA1 activation from repression at specific target genes. More broadly, these studies illustrate how a "master regulator" transcription factor coordinates tissue differentiation through a panoply of DNA and protein interactions.
Collapse
Affiliation(s)
- Yong Cheng
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Swathi Ashok Kumar
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Duonan Yu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Wulan Deng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Tamara Tripic
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - David C. King
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kuan-Bei Chen
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ying Zhang
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniela Drautz
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda Giardine
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Stephan C. Schuster
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Webb Miller
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Francesca Chiaromonte
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yu Zhang
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A. Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J. Weiss
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Ross C. Hardison
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
33
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
34
|
Abstract
Cyclic adenosine monophosphate response element binding (CREB)-binding protein (CBP) and p300 are multidomain transcriptional coactivators that help assemble large regulatory complexes at sites of active transcription. Nullizygosity of CBP or p300 results in pervasive defects in hematopoiesis. To systematically assess the structural domains of p300 required for normal hematopoiesis, we used recombinase-mediated cassette exchange to create an allelic series of coisogenic embryonic stem cells, each expressing a different mutant of p300 from the endogenous locus. We found that deletion of either the KIX or CH1 domain caused profound and pervasive defects in hematopoiesis, whereas the loss of most other domains had only lineage-restricted effects. When expressed from the p300 locus, an extra copy of CBP largely compensated for a lack of p300. Surprisingly, mutation of the p300 histone acetyltransferase (HAT) domain had minimal effects on hematopoiesis, and actually increased progenitor and stem cell numbers and proliferative potential. Our results suggest that, in distinct contrast to other organ systems, HAT activity does not provide a critical function for hematopoietic development and emphasizes the importance of enzyme-independent functions of p300.
Collapse
|
35
|
Cai Y, Xu Z, Xie J, Ham AJL, Koury MJ, Hiebert SW, Brandt SJ. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors. Biochem Biophys Res Commun 2009; 390:295-301. [PMID: 19799863 DOI: 10.1016/j.bbrc.2009.09.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/24/2009] [Indexed: 01/19/2023]
Abstract
The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed. Tal1 interaction with Eto2 and Mtgr1 was verified by coimmunoprecipitation analysis in Tal1, Eto2-, and Mtgr1-transfected COS-7 cells, MEL cells expressing V5 epitope-tagged Tal1 protein, and non-transfected MEL cells. Mapping analysis with Gal4 fusion proteins demonstrated a requirement for the bHLH domain of Tal1 and TAF110 domain of Eto2 for their interaction, and transient transfection and glutathione S-transferase pull-down analysis showed that Mtgr1 and Eto2 enhanced the other's association with Tal1. Enforced expression of Eto2 in differentiating MEL cells inhibited the promoter of the Protein 4.2 (P4.2) gene, a direct target of TAL1 in erythroid progenitors, and transduction of Eto2 and Mtgr1 augmented Tal1-mediated gene repression. Finally, chromatin immunoprecipitation analysis revealed that Eto2 occupancy of the P4.2 promoter in MEL cells decreased with differentiation, in parallel with a decline in Eto2 protein abundance. These results identify Eto2 and Mtgr1 as authentic interaction partners of Tal1 and suggest they act as heteromeric corepressors of this bHLH transcription factor during erythroid differentiation.
Collapse
Affiliation(s)
- Ying Cai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Freeman JL, Ceol C, Feng H, Langenau DM, Belair C, Stern HM, Song A, Paw BH, Look AT, Zhou Y, Zon LI, Lee C. Construction and application of a zebrafish array comparative genomic hybridization platform. Genes Chromosomes Cancer 2009; 48:155-70. [PMID: 18973135 DOI: 10.1002/gcc.20623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish is emerging as a prominent model system for studying the genetics of human development and disease. Genetic alterations that underlie each mutant model can exist in the form of single base changes, balanced chromosomal rearrangements, or genetic imbalances. To detect genetic imbalances in an unbiased genome-wide fashion, array comparative genomic hybridization (CGH) can be used. We have developed a 5-Mb resolution array CGH platform specifically for the zebrafish. This platform contains 286 bacterial artificial chromosome (BAC) clones, enriched for orthologous sequences of human oncogenes and tumor suppressor genes. Each BAC clone has been end-sequenced and cytogenetically assigned to a specific location within the zebrafish genome, allowing for ease of integration of array CGH data with the current version of the genome assembly. This platform has been applied to three zebrafish cancer models. Significant genomic imbalances were detected in each model, identifying different regions that may potentially play a role in tumorigenesis. Hence, this platform should be a useful resource for genetic dissection of additional zebrafish developmental and disease models as well as a benchmark for future array CGH platform development.
Collapse
Affiliation(s)
- Jennifer L Freeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
TGF-β induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation. Blood 2009; 113:6695-8. [DOI: 10.1182/blood-2008-07-166835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
T-cell acute lymphoblastic leukemia 1 (TAL1), also known as stem cell leukemia (SCL), plays important roles in differentiation of hematopoietic and endothelial cells and is deregulated in a high percentage of T-cell acute lymphoblastic leukemia (T-ALL). In this report we show that the intracellular concentration of TAL1 is regulated by transforming growth factor β (TGF-β), which triggers its polyubiquitylation and degradation by the proteasome. This effect is mediated by AKT1, which phosphorylates TAL1 at threonine 90. Immunoprecipitation experiments showed that this event increases association of TAL1 with the E3 ubiquitin ligase CHIP. The E47 heterodimerization partner of TAL1 hinders this association. Our observations indicate that activation of the TGF-β and phosphatidylinositol 3-kinase/AKT pathways might reverse overexpression of TAL1 in leukemic cells by inducing proteolysis of this important oncogene.
Collapse
|
39
|
Mathieu D. [The bHLH TAL1 protein: a key molecule in the hematopoietic and endothelial systems]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2009; 203:143-53. [PMID: 19527627 DOI: 10.1051/jbio/2009017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of blood cells and vascular networks occurs simultaneously during development, and both lineages remain in close association in all adult tissues. The functional setting of both systems within the embryo and their renewal during adult life are highly complex processes, and require the involvement of numerous molecular actors, the activities of which are often overlapping. Here, I review the activity of TAL-1, a basic-helix-loop-helix transcription factor, which plays a key role in the formation and functioning of both blood and endothelial systems, with a particular emphasis on recent data that associate TAL-1 with angiogenesis.
Collapse
Affiliation(s)
- Danièle Mathieu
- Institut de Génétique Moléculaire, CNRS-UMR 5535, Universités de Montpellier 1 et Montpellier 2, 1919 route de Mende, 34293 Montpellier Cedex 1, France.
| |
Collapse
|
40
|
LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci U S A 2009; 106:10141-6. [PMID: 19497860 DOI: 10.1073/pnas.0900437106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAL1 is a critical transcription factor required for hematopoiesis. However, perturbation of its activity often leads to T cell leukemia. Whether and how its transcriptional activities are regulated during hematopoiesis remains to be addressed. Here, we show that TAL1 is associated with histone demethylase complexes containing lysine-specific demethylase 1 (LSD1), RE1 silencing transcription factor corepressor (CoREST), histone deacetylase 1 (HDAC1), and histone deacetylase 2 in erythroleukemia and T cell leukemia cells. The enzymatic domain of LSD1 plays an important role in repressing the TAL1-directed transcription of GAL4 reporter linked to a thymidine kniase minimal promoter. Furthermore, we demonstrate that the TAL1-associated LSD1, HDAC1, and their enzymatic activities are coordinately down-regulated during the early phases of erythroid differentiation. Consistent with the rapid changes of TAL1-corepressor complex during differentiation, TAL1 recruits LSD1 to the silenced p4.2 promoter in undifferentiated, but not in differentiated, murine erythroleukemia (MEL) cells. Finally, shRNA-mediated knockdown of LSD1 in MEL cells resulted in derepression of the TAL1 target gene accompanied by increasing dimeH3K4 at the promoter region. Thus, our data revealed that histone lysine demethylase LSD1 may negatively regulate TAL1-mediated transcription and suggest that the dynamic regulation of TAL1-associated LSD1/HDAC1 complex may determine the onset of erythroid differentiation programs.
Collapse
|
41
|
SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2008; 113:2191-201. [PMID: 19011221 DOI: 10.1182/blood-2008-07-169417] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GATA-1 controls hematopoietic development by activating and repressing gene transcription, yet the in vivo mechanisms that specify these opposite activities are unknown. By examining the composition of GATA-1-associated protein complexes in a conditional erythroid rescue system as well as through the use of tiling arrays we detected the SCL/TAL1, LMO2, Ldb1, E2A complex at all positively acting GATA-1-bound elements examined. Similarly, the SCL complex is present at all activating GATA elements in megakaryocytes and mast cells. In striking contrast, at sites where GATA-1 functions as a repressor, the SCL complex is depleted. A DNA-binding defective form of SCL maintains association with a subset of active GATA elements indicating that GATA-1 is a key determinant for SCL recruitment. Knockdown of LMO2 selectively impairs activation but not repression by GATA-1. ETO-2, an SCL-associated protein with the potential for transcription repression, is also absent from GATA-1-repressed genes but, unlike SCL, fails to accumulate at GATA-1-activated genes. Together, these studies identify the SCL complex as a critical and consistent determinant of positive GATA-1 activity in multiple GATA-1-regulated hematopoietic cell lineages.
Collapse
|
42
|
Cross talk between expression of the human T-cell leukemia virus type 1 Tax transactivator and the oncogenic bHLH transcription factor TAL1. J Virol 2008; 82:7913-22. [PMID: 18495761 DOI: 10.1128/jvi.02414-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is known to induce or repress various cellular genes, several of them encoding transcription factors. As Tax is known to deregulate various basic bHLH factors, we looked more specifically at its effect on TAL1 (T-cell acute lymphoblastic leukemia 1), also known as SCL (stem cell leukemia). Indeed, TAL1 is deregulated in a high percentage of T-cell acute lymphoblastic leukemia cells, and its oncogenic properties are well-established. Here we show that Tax induces transcription of this proto-oncogene by stimulating the activity of the TAL1 gene promoter 1b, through both the CREB and NF-kappaB pathways. It was also observed that TAL1 upregulates HTLV-1 promoter activity, in either the presence or the absence of Tax. The viral promoter is inhibited in trans by expression of the E2A protein E47, and TAL1 is able to abrogate this inhibition. These data show the existence of a positive feedback loop between Tax and TAL1 expression and support the notion that this proto-oncogene participates in generation of adult T-cell leukemia/lymphoma by increasing the amount of the Tax oncoprotein but also possibly by its own transforming activities.
Collapse
|
43
|
Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26:6697-714. [PMID: 17934479 DOI: 10.1038/sj.onc.1210755] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular processes governing hematopoiesis involve the interplay between lineage-specific transcription factors and a series of epigenetic tags, including DNA methylation and covalent histone tail modifications, such as acetylation, methylation, phosphorylation, SUMOylation and ubiquitylation. These post-translational modifications, which collectively constitute the 'histone code', are capable of affecting chromatin structure and gene transcription and are catalysed by opposing families of enzymes, allowing the developmental potential of hematopoietic stem cells to be dynamically regulated. The essential role of these enzymes in regulating normal blood development is highlighted by the finding that members from all families of chromatin regulators are targets for dysregulation in many hematological malignancies, and that patterns of histone modification are globally affected in cancer as well as the regulatory regions of specific oncogenes and tumor suppressors. The discovery that these epigenetic marks can be reversed by compounds targeting aberrant transcription factor/co-activator/co-repressor interactions and histone-modifying activities, provides the basis for an exciting field in which the epigenome of cancer cells may be manipulated with potential therapeutic benefits.
Collapse
Affiliation(s)
- K L Rice
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
44
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 2007; 27:7991-8002. [PMID: 17846119 PMCID: PMC2169148 DOI: 10.1128/mcb.01326-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulator element at the 5' end of the chicken beta-globin locus acts as a barrier, protecting transgenes against silencing effects of adjacent heterochromatin. We showed earlier that the transcription factor USF1 binds within the insulator and that this site is important for generating in adjacent nucleosomes histone modifications associated with active chromatin and, by inference, with barrier function. To understand the mechanism of USF1 action, we have characterized USF1-containing complexes. USF1 interacts directly with the histone H4R3-specific methyltransferase PRMT1. USF1, PRMT1, and the histone acetyltransferases (HATs) PCAF and SRC-1 form a complex with both H4R3 histone methyltransferase and HAT activities. Small interfering RNA downregulation of USF1 results in localized loss of H4R3 methylation, and other histone modifications associated with euchromatin, at the insulator. A dominant negative peptide that interferes with USF1 binding to DNA causes silencing of an insulated reporter construct, indicating abolition of barrier function. These results show that USF1 plays a direct role in maintaining the barrier, supporting a model in which the insulator works as a barrier by maintaining a local environment of active chromatin.
Collapse
Affiliation(s)
- Suming Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA.
| | | | | | | | | |
Collapse
|
46
|
Deleuze V, Chalhoub E, El-Hajj R, Dohet C, Le Clech M, Couraud PO, Huber P, Mathieu D. TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol 2007; 27:2687-97. [PMID: 17242194 PMCID: PMC1899886 DOI: 10.1128/mcb.00493-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The basic helix-loop-helix TAL-1/SCL essential for hematopoietic development is also required during vascular development for embryonic angiogenesis. We reported that TAL-1 acts positively on postnatal angiogenesis by stimulating endothelial morphogenesis. Here, we investigated the functional consequences of TAL-1 silencing in human primary endothelial cells. We found that TAL-1 knockdown caused the inhibition of in vitro tubulomorphogenesis, which was associated with a dramatic reduction in vascular endothelial cadherin (VE-cadherin) at intercellular junctions. Consistently, silencing of TAL-1 as well as of its cofactors E47 and LMO2 down-regulated VE-cadherin at both the mRNA and the protein level. Endogenous VE-cadherin transcription could be activated in nonendothelial HEK-293 cells by the sole concomitant ectopic expression of TAL-1, E47, and LMO2. Transient transfections in human primary endothelial cells derived from umbilical vein (HUVECs) demonstrated that VE-cadherin promoter activity was dependent on the integrity of a specialized E-box associated with a GATA motif and was maximal with the coexpression of the different components of the TAL-1 complex. Finally, chromatin immunoprecipitation assays showed that TAL-1 and its cofactors occupied the VE-cadherin promoter in HUVECs. Together, these data identify VE-cadherin as a bona fide target gene of the TAL-1 complex in the endothelial lineage, providing a first clue to TAL-1 function in angiogenesis.
Collapse
Affiliation(s)
- Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier CNRS, UMR5535, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Riz I, Akimov SS, Eaker SS, Baxter KK, Lee HJ, Mariño-Ramírez L, Landsman D, Hawley TS, Hawley RG. TLX1/HOX11-induced hematopoietic differentiation blockade. Oncogene 2007; 26:4115-23. [PMID: 17213805 PMCID: PMC1955382 DOI: 10.1038/sj.onc.1210185] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant expression of the human homeobox-containing proto-oncogene TLX1/HOX11 inhibits hematopoietic differentiation programs in a number of murine model systems. Here, we report the establishment of a murine erythroid progenitor cell line, iEBHX1S-4, developmentally arrested by regulatable TLX1 expression. Extinction of TLX1 expression released the iEBHX1S-4 differentiation block, allowing erythropoietin-dependent acquisition of erythroid markers and hemoglobin synthesis. Coordinated activation of erythroid transcriptional networks integrated by the acetyltransferase co-activator CREB-binding protein (CBP) was suggested by bioinformatic analysis of the upstream regulatory regions of several conditionally induced iEBHX1S-4 gene sets. In accord with this notion, CBP-associated acetylation of GATA-1, an essential regulator of erythroid differentiation, increased concomitantly with TLX1 downregulation. Coimmunoprecipitation experiments and glutathione-S-transferase pull-down assays revealed that TLX1 directly binds to CBP, and confocal laser microscopy demonstrated that the two proteins partially colocalize at intranuclear sites in iEBHX1S-4 cells. Notably, the distribution of CBP in conditionally blocked iEBHX1S-4 cells partially overlapped with chromatin marked by a repressive histone methylation pattern, and downregulation of TLX1 coincided with exit of CBP from these heterochromatic regions. Thus, we propose that TLX1-mediated differentiation arrest may be achieved in part through a mechanism that involves redirection of CBP and/or its sequestration in repressive chromatin domains.
Collapse
Affiliation(s)
- I Riz
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
| | - SS Akimov
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
| | - SS Eaker
- NanoDetection Technology, Knoxville, TN, USA
| | - KK Baxter
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Molecular Medicine Program, The George Washington University Medical Center, Washington, DC, USA
| | - HJ Lee
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Genomics and Bioinformatics Program, The George Washington University Medical Center, Washington, DC, USA
| | - L Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - D Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - TS Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC, USA
| | - RG Hawley
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC, USA
- Molecular Medicine Program, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|
48
|
Shin JW, Kim JS, Kim MK. Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs. Tuberc Respir Dis (Seoul) 2007. [DOI: 10.4046/trd.2007.63.2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jong Wook Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jin Soo Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
49
|
Capron C, Lécluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D, Godin I, Albagli O, Poullion I, Svinartchouk F, Schanze E, Vainchenker W, Sablitzky F, Bennaceur-Griscelli A, Duménil D. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107:4678-86. [PMID: 16514064 DOI: 10.1182/blood-2005-08-3145] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractHematopoietic stem cells (HSCs) arise, self-renew, or give rise to all hematopoietic lineages through the effects of transcription factors activated by signaling cascades. Lyl-1 encodes a transcription factor containing a basic helix-hoop-helix (bHLH) motif closely related to scl/tal, which controls numerous decisions in embryonic and adult hematopoiesis. We report here that Lyl-1 null mice are viable and display normal blood cell counts, except for a reduced number of B cells resulting from a partial block after the pro-B stage. Nevertheless, the deletion of Lyl-1 results in a diminution in the frequency of immature progenitors (Lin–, CD34–, sca-1+, c-kit+ [LSK], and LSK-side population [LSK-SP]) and in S12 colony-forming unit (CFU-S12) and long-term culture-initiating cell (LTC-IC) content in embryonic day 14 fetal liver (E14 FL) and adult bone marrow (BM). More important, Lyl-1–/– E14 FL cells and BM are severely impaired in their competitive reconstituting abilities, especially with respect to B and T lineage reconstitution. Thus, ablation of Lyl-1 quantitatively and functionally affects HSCs, a cell population that transcribes Lyl-1 more actively than their differentiated progenies. Our results demonstrate for the first time that Lyl-1 functions are important for HSC properties and B-cell differentiation and that they are largely distinct from scl functions.
Collapse
Affiliation(s)
- Claude Capron
- Institut National de la Santé et de la Recherche Médicicale (INSERM) U362, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Linggi BE, Brandt SJ, Sun ZW, Hiebert SW. Translating the histone code into leukemia. J Cell Biochem 2006; 96:938-50. [PMID: 16167339 DOI: 10.1002/jcb.20604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The "histone code" is comprised of the covalent modifications of histone tails that function to regulate gene transcription. The post-translational modifications that occur in histones within the regulatory regions of genes include acetylation, methylation, phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation. These modifications serve to alter chromatin structure and accessibility, and to act as docking sites for transcription factors or other histone modifying enzymes. Several of the factors that are disrupted by chromosomal translocations associated with hematological malignancies can alter the histone code in a gene-specific manner. Here, we discuss how the histone code may be disrupted by chromosomal translocations, either directly by altering the activity of histone modifying enzymes, or indirectly by recruitment of this type of enzyme by oncogenic transcription factors. These alterations in the histone code may alter gene expression pattern to set the stage for leukemogenesis.
Collapse
Affiliation(s)
- Bryan E Linggi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|