1
|
Wang Z, Liu Y, Zhang Y, Shi J, Xie S, Yi M, Zhang X, Tao D, Yang Y. TSPYL5-driven G3BP1 nuclear membrane translocation facilitates p53 cytoplasm sequestration via accelerating RanBP2-mediated p53 sumoylation and nuclear export in neuroblastoma. Cell Death Dis 2025; 16:358. [PMID: 40319028 PMCID: PMC12049415 DOI: 10.1038/s41419-025-07694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Cytoplasmic sequestration of wild-type p53, representing a nonmutational event of p53 activity suppression, is a characteristic phenotype of undifferentiated neuroblastoma (NB); however, the underlying mechanism is yet to be defined. In the present study, we observed that TSPYL5 effectively tethers p53 in the cytoplasm and greatly inhibits its function as a transcription factor. Mechanistically, the binding of TSPYL5 with G3BP1 enhances G3BP1 Ser149 phosphorylation to drive G3BP1 nuclear membrane translocation, which recruits more p53 for nucleoporin RanBP2 by the formation of the RanBP2-G3BP1-p53 complex. Thus, the accelerating p53 sumoylation promotes its nuclear export. With this signal pathway, TSPYL5 augments the malignant characteristics of neuroblastoma cells. Our findings unravel a detailed TSPYL5-driven molecular axis that sheds light on the regulating system of the p53 sumoylation-based cytoplasmic sequestration in NB cells, paving the way for the novel therapeutic opportunities for NB cancers by antagonizing TSPYL5 function.
Collapse
Affiliation(s)
- Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaying Shi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Berkholz J, Karle W. Unravelling the molecular interplay: SUMOylation, PML nuclear bodies and vascular cell activity in health and disease. Cell Signal 2024; 119:111156. [PMID: 38574938 DOI: 10.1016/j.cellsig.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.
Collapse
Affiliation(s)
- Janine Berkholz
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| | - Weronika Karle
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
3
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
4
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
5
|
Liebl MC, Hofmann TG. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers (Basel) 2022; 14:4549. [PMID: 36230470 PMCID: PMC9558958 DOI: 10.3390/cancers14194549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.
Collapse
Affiliation(s)
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
6
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
7
|
Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53. J Mol Cell Biol 2021; 13:774-785. [PMID: 34289043 PMCID: PMC8782589 DOI: 10.1093/jmcb/mjab047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
The genome guardian p53 functions as a transcription factor that senses numerous cellular stresses and orchestrates the corresponding transcriptional events involved in determining various cellular outcomes, including cell cycle arrest, apoptosis, senescence, DNA repair, and metabolic regulation. In response to diverse stresses, p53 undergoes multiple posttranslational modifications (PTMs) that coordinate with intimate interdependencies to precisely modulate its diverse properties in given biological contexts. Notably, PTMs can recruit ‘reader’ proteins that exclusively recognize specific modifications and facilitate the functional readout of p53. Targeting PTM–reader interplay has been developing into a promising cancer therapeutic strategy. In this review, we summarize the advances in deciphering the ‘PTM codes’ of p53, focusing particularly on the mechanisms by which the specific reader proteins functionally decipher the information harbored within these PTMs of p53. We also highlight the potential applications of intervention with p53 PTM–reader interactions in cancer therapy and discuss perspectives on the ‘PTMomic’ study of p53 and other proteins.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
8
|
Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang JW, Luo Z, Gong XD, Fu JL, Wang Y, Zheng SY, Xiao Y, Gan YW, Gao Q, Bai YY, Wang JM, Zhang L, Tang XC, Hu X, Gong L, Liu Y, Li DWC. The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Front Cell Dev Biol 2021; 9:660494. [PMID: 34195189 PMCID: PMC8237824 DOI: 10.3389/fcell.2021.660494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Cheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Sanina N, Kozub G, Kondrat’eva T, Stupina T, Balakina A, Terent’ev A, Sulimenkov I, Ovanesyan N, Dorovatovskii P, Khrustalev V, Aldoshin S. Structure, nitric oxide (NO) generation and antitumor activity of binuclear tetranitrosyl iron complex with 4-aminothiophenolyl as nitrosyl ferredoxins mimic. J COORD CHEM 2021. [DOI: 10.1080/00958972.2020.1869222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N.A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - G.I. Kozub
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - T.A. Kondrat’eva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - T.S. Stupina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - A.A. Balakina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - A.A. Terent’ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - I.V. Sulimenkov
- Chernogolovka Branch of the N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Chernogolovkа, Russia
| | - N.S. Ovanesyan
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | | | - V.N. Khrustalev
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - S.M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
11
|
Chauhan KM, Chen Y, Chen Y, Liu AT, Sun XX, Dai MS. The SUMO-specific protease SENP1 deSUMOylates p53 and regulates its activity. J Cell Biochem 2020; 122:189-197. [PMID: 32786121 DOI: 10.1002/jcb.29838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
The stability and activity of the p53 tumor suppressor protein are tightly regulated by various posttranslational modifications, including SUMOylation. p53 can be modified by both SUMO1 and SUMO2, although how SUMOylation regulates p53 activity is still obscure. Whether p53 activity is directly regulated by deSUMOylation is also unclear. Here, we show that SENP1, a SUMO-specific protease implicated in pro-oncogenic roles, is a p53 deSUMOylating enzyme. SENP1 interacts with p53 and deSUMOylates p53 in cells and in vitro. Knockdown of SENP1 markedly induced p53 transactivation activity. We further show that SENP1 depletion synergizes with DNA damage-inducing agent etoposide to induce p53 activation and the expression of p21, leading to synergistic growth inhibition of cancer cells. Our results reveal that SENP1 is a critical p53 deSUMOylating enzyme and a promising therapeutic target in wild-type p53 containing cancer cells.
Collapse
Affiliation(s)
- Krishna M Chauhan
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yingxiao Chen
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yiyi Chen
- Biostatistics Program, School of Public Health, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Andrew T Liu
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
12
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
13
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
14
|
Huang Z, Barker D, Gibbins JM, Dash PR. Talin is a substrate for SUMOylation in migrating cancer cells. Exp Cell Res 2018; 370:417-425. [PMID: 30003879 PMCID: PMC6117455 DOI: 10.1016/j.yexcr.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
Focal adhesions (FAs) play an important role in cancer cell migration and metastasis by linking the actin cytoskeleton to the extracellular matrix, allowing the cell to generate traction. SUMOylation is a post-translational modification of proteins on lysine residues that can affect protein localisation, turnover and protein-protein interactions. In this study, we demonstrate that talin, a key component of FAs, can be post-translationally modified by SUMOylation in MDA-MB-231 breast cancer cells and U2OS osteosarcoma cells. Furthermore we demonstrate that SUMOylation regulates the dynamic activities of FAs including their number, size and turnover rate. Inhibiting SUMOylation significantly reduced the speed of cell migration. The identification of talin as a SUMO target provides insight into the mechanisms regulating focal adhesion formation and turnover and potentially identifies a novel mechanism underlying cell migration.
Collapse
Affiliation(s)
- Zhiyao Huang
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UR, United Kingdom
| | - Diana Barker
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UR, United Kingdom
| | - Jonathan M Gibbins
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UR, United Kingdom
| | - Philip R Dash
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UR, United Kingdom.
| |
Collapse
|
15
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
16
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
17
|
Scurr LL, Haferkamp S, Rizos H. The Role of Sumoylation in Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:215-226. [PMID: 28197915 DOI: 10.1007/978-3-319-50044-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a program initiated by many stress signals including aberrant activation of oncogenes, DNA damage, oxidative lesions and telomere attrition. Once engaged senescence irreversibly limits cellular proliferation and potently prevents tumor formation in vivo. The precise mechanisms driving the onset of senescence are still not completely defined, although the pRb and p53 tumor suppressor pathways converge with the SUMO cascade to regulate cellular senescence. Sumoylation translocates p53 to PML nuclear bodies where it can co-operate with many sumoylated co-factors in a program that activates pRb and favors senescence. Once activated pRb integrates various proteins, many of them sumoylated, into a repressor complex that inhibits the transcription of proliferation-promoting genes and initiates chromatin condensation. Sumoylation is required for heterochromatin formation during senescence and may act as a scaffold to stabilize the pRb repressor complex. Thus, SUMO is a critical component of a tumor-suppressor network that limits aberrant cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Lyndee L Scurr
- Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, 2109, Australia
| | - Sebastian Haferkamp
- UKR - Universitätsklinikum Regensburg, Klinik und Poliklinik für Dermatologie, Franz-Josef-Strauss-Allee 11, D-93053, Regensburg, Germany
| | - Helen Rizos
- Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, 2109, Australia.
| |
Collapse
|
18
|
PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci U S A 2015; 112:14278-83. [PMID: 26578773 DOI: 10.1073/pnas.1507540112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.
Collapse
|
19
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Inhibition of p53 deSUMOylation exacerbates puromycin aminonucleoside-induced apoptosis in podocytes. Int J Mol Sci 2014; 15:21314-30. [PMID: 25411797 PMCID: PMC4264227 DOI: 10.3390/ijms151121314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1), on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN)-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.
Collapse
|
21
|
Yang Y, Zhang CY. Visualizing and quantifying protein polySUMOylation at the single-molecule level. Anal Chem 2014; 86:967-72. [PMID: 24383460 DOI: 10.1021/ac403753r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein polySUMOylation, the attachment of small ubiquitin-like modifier (SUMO) chains to the target protein, is associated with a variety of physiological processes. However, the analysis of protein polySUMOylation is often complicated by the heterogeneity of SUMO-target conjugates. Here, we develop a new strategy to visualize and quantify polySUMOylation at the single-molecule level by integrating the tetracysteine (TC) tag labeling technology and total internal reflection fluorescence (TIRF)-based single-molecule imaging. As a proof-of-concept, we employ the human SUMO-2 as the model. The addition of TC tag to SUMO-2 can specifically translate the SUMO-mediated modification into visible fluorescence signal without disturbing the function of SUMO-2. The SUMO monomers display homogeneous fluorescence spots at the single-molecule level, whereas the mixed SUMO chains exhibit nonuniform fluorescence spots with a wide range of intensities. Analysis of the number and the brightness of fluorescence spots enable quantitative measurement of the polySUMOylation degree inside the cells under different physiological conditions. Due to the frequent occurrence of posttranslational modification by polymeric chains in cells, this single-molecule strategy has the potential to be broadly applied for studying protein posttranslational modification in normal cellular physiology and disease etiology.
Collapse
Affiliation(s)
- Yong Yang
- Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, China
| | | |
Collapse
|
22
|
Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:137-49. [DOI: 10.1016/j.bbamcr.2013.05.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 05/23/2013] [Indexed: 01/09/2023]
|
23
|
Marcos-Villar L, Pérez-Girón JV, Vilas JM, Soto A, de la Cruz-Hererra CF, Lang V, Collado M, Vidal A, Rodríguez MS, Muñoz-Fontela C, Rivas C. SUMOylation of p53 mediates interferon activities. Cell Cycle 2013; 12:2809-16. [PMID: 23966171 DOI: 10.4161/cc.25868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Departamento Biología Molecular y Celular; Centro Nacional de Biotecnología-CSIC; Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Singh S, Pradhan AK, Chakraborty S. SUMO1 negatively regulates the transcriptional activity of EVI1 and significantly increases its co-localization with EVI1 after treatment with arsenic trioxide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2357-68. [PMID: 23770046 DOI: 10.1016/j.bbamcr.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022]
Abstract
Aberrant expression of the proto-oncogene EVI1 (ecotropic virus integration site1) has been implicated not only in myeloid or lymphoid malignancies but also in colon, ovarian and breast cancers. Despite its importance in oncogenesis, the regulatory factors and mechanisms that potentiate the function of EVI1 and its consequences are partially known. Here we demonstrated that EVI1 is post-translationally modified by SUMO1 at lysine residues 533, 698 and 874. Although both EVI1 and SUMO1 were found to co-localize in nuclear speckles, the sumoylation mutant of EVI1 failed to co-localize with SUMO1. Sumoylation abrogated the DNA binding efficiency of EVI1 and also affected EVI1 mediated transactivation. The SUMO ligase PIASy was found to play a bi-directional role on EVI1, PIASy enhanced EVI1 sumoylation and augmented sumoylated EVI1 mediated repression. PIASy was also found to interact with EVI1 and impaired EVI1 transcriptional activity independent of its ligase activity. Arsenic trioxide (ATO) known to act as an antileukemic agent for acute promyelocytic leukemia (APL) not only enhanced EVI1 sumoylation but also enhanced the co-localization of EVI1 and SUMO1 in nuclear bodies distinct from PML nuclear bodies. ATO treatment also affected the Bcl-xL protein expression in EVI1 positive cell line. Thus, the results showed that arsenic treatment enhanced EVI1 sumoylation, deregulated Bcl-xL, which eventually may induce apoptosis in EVI1 positive cancer cells. The study for the first time explores and reports sumoylation of EVI1, which plays an essential role in regulating its function.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, Orissa, India
| | | | | |
Collapse
|
25
|
Liu XM, Yang FF, Yuan YF, Zhai R, Huo LJ. SUMOylation of mouse p53b by SUMO-1 promotes its pro-apoptotic function in ovarian granulosa cells. PLoS One 2013; 8:e63680. [PMID: 23696846 PMCID: PMC3656040 DOI: 10.1371/journal.pone.0063680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/05/2013] [Indexed: 12/11/2022] Open
Abstract
Follicular atresia is a process of spontaneous degradation of follicles, hindering growth and development in the mammalian ovary. Previous studies showed that follicular atresia was caused by apoptosis of granulosa cells, for which a number of apoptosis-related genes have already been identified. The roles of p53 in apoptosis of mouse granulosa cells and its post-translational modification are still unclear. The main objective of this study was to explore the roles of p53 in mouse granulosa cells. We found that mouse p53b, but not p53a, could be SUMOylated by SUMO-1 at lysine 375, which was essential for the protein stability of p53b in a dose-dependent manner. Immunofluorescent staining showed that wild p53b was located in the nucleus of granulosa cells, while its mutation of SUMOylated site (K375R) was localized in both nucleus and cytoplasm, implying that SUMOylation was necessary for the nuclear localization of p53b in granulosa cells. Overexpression of wild-type p53b, but not the mutation of SUMOylation site (K375R), significantly induced the expression of apoptosis-related gene, Bax, and increased the level of apoptosis in granulosa cells. This suggested that SUMO-1 modification of p53b was essential for inducing apoptosis in granulosa cells. Our results provide strong evidences that modification of p53b by SUMO-1 at lysine 375 was necessary for its activity to induce apoptosis in mouse granulosa cells, and it was involved in the regulation of p53b protein stability and nuclear localization. This implies that modification of p53b by SUMO-1 might regulate follicular atresia by inducing the apoptosis of ovarian granulosa cells in mice.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Fei-Fei Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yi-Feng Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Rui Zhai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Plourde MB, Morchid A, Iranezereza L, Berthoux L. The Bcl-2/Bcl-xL inhibitor BH3I-2′ affects the dynamics and subcellular localization of sumoylated proteins. Int J Biochem Cell Biol 2013; 45:826-35. [DOI: 10.1016/j.biocel.2013.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
|
27
|
Okino Y, Inayoshi Y, Kojima Y, Kidani S, Kaneoka H, Honkawa A, Higuchi H, Nishijima KI, Miyake K, Iijima S. Moloney murine leukemia virus integrase and reverse transcriptase interact with PML proteins. J Biochem 2012; 152:161-9. [PMID: 22685230 DOI: 10.1093/jb/mvs063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pull-down assay and co-immunoprecipitation of cell extracts in which the integrase or reverse transcriptase of Moloney murine leukemia virus was transiently expressed showed that both enzymes interacted with PML proteins. In infected cells, interaction between the integrase and PML was also observed. Transient expression of PIASy and SUMO proteins facilitated SUMOylation of the integrase but had no apparent effects on the interaction with PML. A FLAG-tagged integrase co-localized with PML protein possibly in the PML body. Knockdown of PML by small interfering RNA resulted in reduced viral cDNA levels and integration efficiency. This suggested that PML proteins activated reverse transcription.
Collapse
Affiliation(s)
- Yuuki Okino
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang Y, Zhang CY. Sensitive Detection of Intracellular Sumoylation via SNAP Tag-Mediated Translation and RNA Polymerase-Based Amplification. Anal Chem 2012; 84:1229-34. [DOI: 10.1021/ac2032113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Yang
- Single-molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- Single-molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
29
|
Bennett RL, Pan Y, Christian J, Hui T, May WS. The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G₁ arrest. Cell Cycle 2012; 11:407-17. [PMID: 22214662 DOI: 10.4161/cc.11.2.18999] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25-35% increase of cells in G₁. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G₁ arrest. Furthermore, co-expression of p53, RAX/PACT and the dominantnegative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G₁ growth arrest and expression of RAX/PACT in pkr(+/+) but not pkr(-/-) MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/ PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G₁ cell cycle arrest.
Collapse
Affiliation(s)
- Richard L Bennett
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
30
|
Pardi N, Vámos E, Ujfaludi Z, Komonyi O, Bodai L, Boros IM. In vivo effects of abolishing the single canonical sumoylation site in the C-terminal region of Drosophila p53. ACTA BIOLOGICA HUNGARICA 2011; 62:397-412. [PMID: 22119869 DOI: 10.1556/abiol.62.2011.4.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using yeast two-hybrid screens we determined that Drosophila (Dm)p53 interacts with proteins involved in sumoylation (UBA2, UBC9 and PIAS) through different regions of its C-terminal domain. A K302R point mutation within a single canonical sumoylation site of Dmp53 did not abolish the observed interactions. These observations prompted us to analyze whether Dmp53 sumoylation at this site has any functional role in vivo. Genetic assays showed that deleting one copy of genes involved in sumoylation (lwr, Su(var)2-10 or smt3 heterozygosity) enhanced slightly the mutator phenotype of Dmp53. We compared the in vivo effects of wild type and K302R Dmp53 overproduced from transgenes and determined that similar levels of expression of the mutant and wild type proteins resulted in similar phenotype, and the two proteins showed similar cellular localization. The half life and the trans-activator activity of K302R mutant and wild type Dmp53 were also comparable. Lastly, by analyzing wild type and K302R Dmp53 expressed at different levels in animals and in S2 cells we detected no differences between the mobility of the mutant and wild-type protein. From these data we conclude that under normal developmental conditions the loss of SUMO modification at K302 does not affect Dmp53 function significantly.
Collapse
Affiliation(s)
- N Pardi
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62 H-6726 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|
32
|
Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 2011; 10:3176-88. [PMID: 21900752 PMCID: PMC3218624 DOI: 10.4161/cc.10.18.17436] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023] Open
Abstract
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.
Collapse
|
33
|
Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe JI. PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. ACTA ACUST UNITED AC 2011; 193:867-84. [PMID: 21624955 PMCID: PMC3105539 DOI: 10.1083/jcb.201010051] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disturbed flow-mediated PKCζ–PIASy association is critical for p53 SUMOylation and induces p53 nuclear export and endothelial cell apoptosis. Atherosclerosis is readily observed in regions of blood vessels where disturbed blood flow (d-flow) is known to occur. A positive correlation between protein kinase C ζ (PKCζ) activation and d-flow has been reported, but the exact role of d-flow–mediated PKCζ activation in atherosclerosis remains unclear. We tested the hypothesis that PKCζ activation by d-flow induces endothelial cell (EC) apoptosis by regulating p53. We found that d-flow–mediated peroxynitrite (ONOO−) increased PKCζ activation, which subsequently induced p53 SUMOylation, p53–Bcl-2 binding, and EC apoptosis. Both d-flow and ONOO− increased the association of PKCζ with protein inhibitor of activated STATy (PIASy) via the Siz/PIAS-RING domain (amino acids 301–410) of PIASy, and overexpression of this domain of PIASy disrupted the PKCζ–PIASy interaction and PKCζ-mediated p53 SUMOylation. En face confocal microscopy revealed increases in nonnuclear p53 expression, nitrotyrosine staining, and apoptosis in aortic EC located in d-flow areas in wild-type mice, but these effects were significantly decreased in p53−/− mice. We propose a novel mechanism for p53 SUMOylation mediated by the PKCζ–PIASy interaction during d-flow–mediated EC apoptosis, which has potential relevance to early events of atherosclerosis.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 2011; 31:145-58. [PMID: 21198351 DOI: 10.1089/jir.2010.0111] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several pathways have been implicated in the establishment of antiviral state in response to interferon (IFN), one of which implicates the promyelocytic leukemia (PML) protein. The PML gene has been discovered 20 years ago and has led to new insights into oncogenesis, apoptosis, cell senescence, and antiviral defense. PML is induced by IFN, leading to a marked increase of expression of PML isoforms and the number of PML nuclear bodies (NBs). PML is the organizer of the NBs that contains at least 2 permanent NB-associated proteins, the IFN-stimulated gene product Speckled protein of 100 kDa (Sp100) and death-associated dead protein (Daxx), as well as numerous other transient proteins recruited in these structures in response to different stimuli. Accumulating reports have implicated PML in host antiviral defense and revealed various strategies developed by viruses to disrupt PML NBs. This review will focus on the regulation of PML and the implication of PML NBs in conferring resistance to DNA and RNA viruses. The role of PML in mediating an IFN-induced antiviral state will also be discussed.
Collapse
|
35
|
Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20:299-309. [PMID: 20172729 DOI: 10.1016/j.tcb.2010.01.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/22/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
The activities of p53 cover diverse aspects of cell biology, including cell cycle control, apoptosis, metabolism, fertility, differentiation and cellular reprogramming. Although loss of p53 function engenders tumor susceptibility, hyperactivation of p53 is lethal. Therefore, p53 activity must be strictly regulated to maintain normal tissue homeostasis. Critical for the control of p53 function are its two main negative regulators: Mdm2 and Mdmx. Recent reports have provided insight into the complex mechanisms that regulate these two proteins and have revealed novel functions for each. Here, we review and evaluate models of Mdm2- and Mdmx-dependent regulation of p53 activity. Both Mdm2 and Mdmx receive input from numerous signaling pathways and interact with many proteins in addition to p53. Therefore, we also consider roles for Mdm2 and Mdmx in additional cancer-related networks, including Notch signaling and the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Mark Wade
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
36
|
Wu SY, Chiang CM. p53 sumoylation: mechanistic insights from reconstitution studies. Epigenetics 2009; 4:445-51. [PMID: 19838051 DOI: 10.4161/epi.4.7.10030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sumoylation represents a cascade of enzymatic reactions mediated by SUMO-activating enzyme (SAE1/SAE2 heterodimer), SUMO-conjugating enzyme Ubc9, and SUMO E3 ligases that include five protein inhibitors of activated STATs (PIAS1, PIAS3, PIASy, PIASxalpha and PIASxbeta), and culminates in the formation of an isopeptide bond between the C-terminal glycine of a small ubiquitin-related modifier (SUMO) and the lysine residue of a protein substrate. Conjugation of a SUMO moiety, ranging from 92 (for SUMO-2) to 97 (for SUMO-1) amino acids, not only increases the molecular size but also alters the property and function of the modified protein. Although sumoylation has been observed with many cellular proteins and the majority of transcription factors including the p53 tumor suppressor, this covalent modification is normally detectable only in a small population, often less than 5%, of a given substrate in vivo. This low abundance of SUMO-modified proteins, due to the presence of sentrin/SUMO-specific proteases (SENPs) that actively cleave the reversible SUMO linkage, has posed a challenge to define the biological effect of SUMO in living cells. Nevertheless, the recent development of reconstituted modification and chromatin-dependent transcription assays has provided unique insights into the molecular action of SUMO in modifying protein function. The availability of these reconstitution systems has unraveled the interplay between sumoylation and acetylation in regulating the DNA binding and transcriptional activity of p53 tetramers and further allow the identification of transcriptional corepressors, such as mSin3A, CoREST1/LSD1 and Mi-2/NuRD implicated in SUMO-dependent gene silencing events.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
37
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
38
|
Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009; 28:1246-59. [PMID: 19339993 DOI: 10.1038/emboj.2009.83] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 03/09/2009] [Indexed: 12/15/2022] Open
Abstract
Covalent modification by small ubiquitin-related modifiers (SUMO) regulates p53 transcription activity through an undefined mechanism. Using reconstituted sumoylation components, we purified SUMO-1-conjugated p53 (Su-p53) to near homogeneity. Su-p53 exists in solution as a tetramer and interacts with p300 histone acetyltransferase as efficiently as the unmodified protein. Nevertheless, it fails to activate p53-dependent chromatin transcription because of its inability to bind DNA. With sequential modification assays, we found that sumoylation of p53 at K386 blocks subsequent acetylation by p300, whereas p300-acetylated p53 remains permissive for ensuing sumoylation at K386 and alleviates sumoylation-inhibited DNA binding. While preventing the free form of p53 from accessing its cognate sites, sumoylation fails to disengage prebound p53 from DNA. The sumoylation-deficient K386R protein, when expressed in p53-null cells, exhibits higher transcription activity and binds better to the endogenous p21 gene compared with the wild-type protein. These studies unravel a molecular mechanism underlying sumoylation-regulated p53 function and further uncover a new role of acetylation in antagonizing the inhibitory effect of sumoylation on p53 binding to DNA.
Collapse
|
39
|
Zimnik S, Gaestel M, Niedenthal R. Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation. Nucleic Acids Res 2009; 37:e30. [PMID: 19174562 PMCID: PMC2651805 DOI: 10.1093/nar/gkp020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Post-translational modifications control the physiological activity of the signal transducer and activator of transcription STAT1. While phosphorylation at tyrosine Y701 is a prerequisite for STAT1 dimerization, its SUMOylation represses the transcriptional activity. Recently, we have demonstrated that SUMOylation at lysine K703 inhibits the phosphorylation of nearby localized Y701 of STAT1. Here, we analysed the influence of phosphorylation of Y701 on SUMOylation of K703 in vivo. For that reason, an Ubc9/substrate dimerization-dependent SUMOylation (USDDS) system was developed, which consists of fusions of the SUMOylation substrate and of the SUMO-conjugating enzyme Ubc9 to the chemically activatable heterodimerization domains FKBP and FRB, respectively. When FKBP fusion proteins of STAT1, p53, CRSP9, FOS, CSNK2B, HES1, TCF21 and MYF6 are coexpressed with Ubc9-FRB, treatment of HEK293 cells with the rapamycin-related dimerizer compound AP21967 induces SUMOylation of these proteins in vivo. For STAT1-FKBP and p53-FKBP we show that this SUMOylation takes place at their specific SUMOylation sites in vivo. Using USDDS, we then demonstrate that STAT1 phosphorylation at Y701 induced by interferon-β treatment inhibits SUMOylation of K703 in vivo. Thus, pY701 and SUMO-K703 of STAT1 represent mutually exclusive modifications, which prevent signal integration at this molecule and probably ensure the existence of differentially modified subpopulations of STAT1 necessary for its regulated nuclear cytoplasmic activation/inactivation cycle.
Collapse
Affiliation(s)
- Susan Zimnik
- Institute for Physiological Chemistry/Biochemistry, Medical School Hannover, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
40
|
Wu Q, Hu H, Lan J, Emenari C, Wang Z, Chang KS, Huang H, Yao X. PML3 Orchestrates the Nuclear Dynamics and Function of TIP60. J Biol Chem 2009; 284:8747-59. [PMID: 19150978 DOI: 10.1074/jbc.m807590200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is a major component to govern the PML nuclear body (NB) assembly and function. Although it is well defined that PML NB is a site recruiting sumoylated proteins, the mechanism by which PML protein regulates the process remains unclear. Here we show that PML3, a specific PML isoform, interacts with and recruits TIP60 to PML NBs. Our biochemical characterization demonstrates that PML3 physically interacts with TIP60 via its N-terminal 364 amino acids. Importantly, this portion of TIP60 is sufficient to target to the PML NBs, suggesting that PML3-TIP60 interaction is sufficient for targeting TIP60 to the NBs. The PML3-TIP60 interaction is specific, since the region of TIP60 binding is not conserved in other PML isoforms. The physical interaction between PML3 and TIP60 protects TIP60 from Mdm2-mediated degradation, suggesting that PML3 competes with MDM2 for binding to TIP60. Fluorescence recovery after photobleaching analysis indicates that the PML3-TIP60 interaction modulates the nuclear body distribution and mobility of TIP60. Conversely, the distribution and mobility of TIP60 are perturbed in PML3-deficient cells, accompanied by aberrations in DNA damage-repairing response. Thus, PML3 orchestrates the distribution, dynamics, and function of TIP60. Our findings suggest a novel regulatory mechanism by which the PML3 and TIP60 tumor suppressors cooperate to ensure genomic stability.
Collapse
Affiliation(s)
- Quan Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim KI, Baek SH. Small ubiquitin-like modifiers in cellular malignancy and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:265-311. [PMID: 19215907 DOI: 10.1016/s1937-6448(08)01807-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) mediate a variety of cellular functions of protein targets mainly in the nucleus but in other cellular compartments as well, and thereby participate in maintaining cellular homeostasis. SUMO system plays important roles in transcriptional regulation, DNA damage responses, maintaining genome integrity, and signaling pathways. Thus, in some cases, loss of regulated control on SUMOylation/deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development and progression. Furthermore, recent studies have revealed that SUMO system is involved in cancer metastasis. In this review, we will summarize the possible role of SUMO system in cancer development, progression, and metastasis and discuss future directions.
Collapse
Affiliation(s)
- Keun Il Kim
- Department of Biological Sciences, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Korea
| | | |
Collapse
|
42
|
Hayakawa F, Abe A, Kitabayashi I, Pandolfi PP, Naoe T. Acetylation of PML is involved in histone deacetylase inhibitor-mediated apoptosis. J Biol Chem 2008; 283:24420-5. [PMID: 18621739 DOI: 10.1074/jbc.m802217200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PML is a potent tumor suppressor and proapoptotic factor and is functionally regulated by post-translational modifications such as phosphorylation, sumoylation, and ubiquitination. Histone deacetylase (HDAC) inhibitors are a promising class of targeted anticancer agents and induce apoptosis in cancer cells by largely unknown mechanisms. We report here a novel post-transcriptional modification, acetylation, of PML. PML exists as an acetylated protein in HeLa cells, and its acetylation is enhanced by coexpression of p300 or treatment with a HDAC inhibitor, trichostatin A. Increased PML acetylation is associated with increased sumoylation of PML in vitro and in vivo. PML is involved in trichostatin A-induced apoptosis and PML with an acetylation-defective mutation shows an inability to mediate apoptosis, suggesting the importance of PML acetylation. Our work provides new insights into PML regulation by post-translational modification and new information about the therapeutic mechanism of HDAC inhibitors.
Collapse
Affiliation(s)
- Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
43
|
Mauri F, McNamee LM, Lunardi A, Chiacchiera F, Del Sal G, Brodsky MH, Collavin L. Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. J Biol Chem 2008; 283:20848-56. [PMID: 18492669 DOI: 10.1074/jbc.m710186200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Conjugation to SUMO is a reversible post-translational modification that regulates several transcription factors involved in cell proliferation, differentiation, and disease. The p53 tumor suppressor can be modified by SUMO-1 in mammalian cells, but the functional consequences of this modification are unclear. Here, we demonstrate that the Drosophila homolog of human p53 can be efficiently sumoylated in insect cells. We identify two lysine residues involved in SUMO attachment, one at the C terminus, between the DNA binding and oligomerization domains, and one at the N terminus of the protein. We find that sumoylation helps recruit Drosophila p53 to nuclear dot-like structures that can be marked by human PML and the Drosophila homologue of Daxx. We demonstrate that mutation of both sumoylation sites dramatically reduces the transcriptional activity of p53 and its ability to induce apoptosis in transgenic flies, providing in vivo evidence that sumoylation is critical for Drosophila p53 function.
Collapse
Affiliation(s)
- Federico Mauri
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, AREA Science Park, Padriciano 99, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Spatial interplay between PIASy and FIP200 in the regulation of signal transduction and transcriptional activity. Mol Cell Biol 2008; 28:2771-81. [PMID: 18285457 DOI: 10.1128/mcb.01210-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the protein inhibitor of activated STAT (PIAS) family of proteins are implicated in fundamental cellular processes, including transcriptional regulation, either through action as E3 SUMO ligases or through SUMO-independent effects. We report here the identification of FIP200 (focal adhesion kinase family-interacting protein of 200 kDa) as a new PIASy-interacting protein. We show that the interaction depends on the integrity of the RING finger of PIASy and the carboxy terminus of FIP200. Both in vitro and in vivo sumoylation assays failed to reveal any sumoylation of FIP200, suggesting that FIP200 is not a bona fide SUMO substrate. Immunofluorescence microscopy and subcellular fractionation, either upon forced PIASy expression or in the absence of PIASy, revealed that interaction with PIASy redistributes FIP200 from the cytoplasm to the nucleus, correlating with abrogation of FIP200 regulation of TSC/S6K signaling. Conversely, FIP200 enhances the transcriptional activation of the p21 promoter by PIASy whereas PIASy transcription activity is severely reduced upon FIP200 depletion by RNA interference. Chromatin immunoprecipitation analysis demonstrates that endogenous PIASy and FIP200 are corecruited to the p21 promoter. Altogether, these results provide the first evidence for the existence of a close-spatially controlled-mode of regulation of FIP200 and PIASy nucleocytoplasmic functions.
Collapse
|
45
|
Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 2008; 107:195-210. [PMID: 17377839 DOI: 10.1007/s10549-007-9552-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include--albeit not limited to--subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
46
|
Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27:6756-69. [PMID: 17646389 PMCID: PMC2099237 DOI: 10.1128/mcb.00460-07] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
p53, an important tumor suppressor protein, exerts its function mostly as a sequence-specific transcription factor and is subjected to multiple posttranslational modifications in response to genotoxic stress. Recently, we discovered that lysine methylation of p53 at K372 by Set7/9 (also known as SET7 and Set9) is important for transcriptional activation and stabilization of p53. In this report we provide a molecular mechanism for the effect of p53 methylation on transcription. We demonstrate that Set7/9 activity toward p53, but not the nucleosomal histones, is modulated by DNA damage. Significantly, we show that lysine methylation of p53 is important for its subsequent acetylation, resulting in stabilization of the p53 protein. These p53 modification events can be observed on the promoter of p21 gene, a known transcriptional target of p53. Finally, we show that methylation-acetylation interplay in p53 augments acetylation of histone H4 in the promoter of p21 gene, resulting in its subsequent transcriptional activation and, hence, cell cycle arrest. Collectively, these results suggest that the cross talk between lysine methylation and acetylation is critical for p53 activation in response to DNA damage and that Set7/9 may play an important role in tumor suppression.
Collapse
Affiliation(s)
- Gleb S Ivanov
- Molecular Oncology Research Institute, NEMC-Tufts, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The network of transcription factors in mast cells has not been investigated as widely as it has been in other differentiated hematopoietic cells. There are still many mechanisms of transcriptional regulation that need to be fully elucidated to understand how mast cell external stimuli lead to the appropriate physiological responses. Such information could be used to determine potential therapeutic targets for the control of mast cell activation in inflammatory diseases, allergy, and asthma. The aim of this article is to review hallmark studies in the field of transcription factor regulation in mast cells. We elaborate especially on several transcription factors studied in our laboratory in the past decade, including activator protein-1, microphthalmia-associated transcription factor, upstream stimulating factor-2, and signal transducer and activator of transcription 3.
Collapse
|
48
|
Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007; 14:1561-75. [PMID: 17627286 DOI: 10.1038/sj.cdd.4402196] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of elegant studies exploring the consequences of expression of various mutant forms of p53 in mice have been published over the last years. The results and conclusions drawn from these studies often contradict results previously obtained in biochemical assays and cell biology studies, questioning their relevance for p53 function in vivo. Owing to the multitude of post-translational modifications imposed on p53, however, the in vivo validation of their relevance for proper protein function and tumour suppression is constantly lagging behind new biochemical discoveries. Nevertheless, mouse genetics presents again its enormous power. Despite being relatively slow and tedious, it has become indispensable for researchers to sort out the wheat from the chaff in an endless sea of publications on p53.
Collapse
Affiliation(s)
- A Olsson
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
49
|
Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007; 89:819-30. [PMID: 17343971 DOI: 10.1016/j.biochi.2007.01.004] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/19/2007] [Indexed: 12/13/2022]
Abstract
The establishment of an intracellular antiviral state is the defining activity of interferons (IFNs) as well as the property that permitted their discovery. Several pathways have been implicated in resistance to viral infection in IFN-treated cells, one of which implicates the ProMyelocytic Leukaemia (PML) protein and PML nuclear bodies (NBs, also known as ND10). PML NBs are dynamic intranuclear structures that require PML for their formation and which harbour numerous other transiently or permanently localised proteins. PML is expressed as a family of isoforms (PML I-VII) as a result of alternative splicing, most of which are found in the nucleus. IFN treatment directly induces transcription of the genes encoding both PML and Sp100, (another major component of PML NBs), resulting in higher levels of expression of these proteins and increases in both the size and number of PML NBs. These and other observations have encouraged the hypothesis that PML, PML NBs and a number of other constituents of these structures are involved in host antiviral defences. For example, exogenous expression of PML III or PML VI can impede infection by a number of RNA and DNA viruses, and certain viral proteins accumulate in PML NBs then cause their disruption by a variety of mechanisms. Although there are many other functions of PML NBs in a wide range of cellular pathways, there is accumulating evidence that they represent preferential targets for viral infections and that PML plays a role in the mechanism of the antiviral action of IFN. This article reviews the potential antiviral activities of PML NB constituent proteins, how RNA and DNA viruses overcome these defences, and the connections between these events and IFN pathways.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, UK
| | | |
Collapse
|
50
|
Deng Z, Wan M, Sui G. PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 2007; 27:3780-92. [PMID: 17353273 PMCID: PMC1899983 DOI: 10.1128/mcb.01761-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
As a multifunctional protein, Yin Yang 1 (YY1) has been demonstrated to regulate both gene expression and protein posttranslational modifications. However, gaps still exist in our knowledge of how YY1 can be modified and what the consequences of its modifications are. Here we report that YY1 protein can be sumoylated both in vivo and in vitro. We have identified lysine 288 as the major sumoylation site of YY1. We also discovered that PIASy, a SUMO E3 ligase, is a novel YY1-interacting protein and can stimulate the sumoylation of YY1 both in vitro and in vivo. Importantly, the effects of PIASy mutants on in vivo YY1 sumoylation correlate with the YY1-PIASy interaction but do not depend on the RING finger domain of PIASy. This regulation is unique to YY1 sumoylation because PIASy-mediated p53 sumoylation still relies on the integrity of PIASy, which is also true of all of the previously identified substrates of PIASy. In addition, PIASy colocalizes with YY1 in the nucleus, stabilizes YY1 in vivo, and differentially regulates YY1 transcriptional activity on different target promoters. This study demonstrates that YY1 is a target of SUMOs and reveals a novel feature of a SUMO E3 ligase in the PIAS family that selectively stimulates protein sumoylation independent of the RING finger domain.
Collapse
Affiliation(s)
- Zhiyong Deng
- Department of Cancer Biology, Wake Forest University School of Medicine, Hanes 4052, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|