1
|
Petroll R, Varshney D, Hiltemann S, Finke H, Schreiber M, de Vries J, Rensing SA. Enhanced sensitivity of TAPscan v4 enables comprehensive analysis of streptophyte transcription factor evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17184. [PMID: 39666589 PMCID: PMC11712027 DOI: 10.1111/tpj.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Transcription-associated proteins (TAPs) fulfill multiple functions in regulatory and developmental processes and display lineage-specific evolution. TAPscan is a comprehensive and highly reliable tool for genome-wide TAP annotation via domain profiles. Here, we present TAPscan v4, including an updated web interface (https://tapscan.plantcode.cup.uni-freiburg.de/), which enables an in-depth representation of the distribution of 138 TAP families across 678 species from diverse groups of organisms, with a focus on Archaeplastida (plants in the wide sense). With this release, we also make the underlying "Genome Zoo" available, a curated protein data set with scripts and metadata. Eighteen new TAP (sub)families were added as part of the update. Nine of those were gained in the most recent common ancestor of the Streptophyta (comprising streptophyte algae and land plants), or within the streptophyte algae. More than one-third of all detected TAP family gains were identified during the evolution of streptophyte algae, before the emergence of land plants, and are thus likely to have been significant for plant terrestrialization. The TAP complement of the Zygnematophyceae was identified to be the most similar to that of land plants, consistent with the finding that this lineage is sister to land plants. Overall, our data retrace the evolution of streptophyte TAPs, allowing us to pinpoint the regulatory repertoire of the earliest land plants.
Collapse
Affiliation(s)
- Romy Petroll
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Department of Algal Development and EvolutionMax Planck Institute for Biology TübingenTübingen72076Germany
| | - Deepti Varshney
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
| | - Saskia Hiltemann
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
- Central Data FacilityUniversity of FreiburgFreiburg79108Germany
| | - Hermann Finke
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Plant Ecology & Geobotany, Department of BiologyUniversity of MarburgMarburg35043Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied BioinformaticsUniversity of GoettingenGoldschmidtstr. 1Goettingen37077Germany
- University of Goettingen, Campus Institute Data Science (CIDAS)Goldschmidstr. 1Goettingen37077Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB)Justus‐von‐Liebig‐Weg 11Goettingen37077Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
- Central Data FacilityUniversity of FreiburgFreiburg79108Germany
| |
Collapse
|
2
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Yu K, Zhang Q, Liu Z, Du Y, Gao X, Zhao Q, Cheng H, Li X, Liu ZX. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief Bioinform 2021; 21:1798-1805. [PMID: 32978618 DOI: 10.1093/bib/bbz107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 11/14/2022] Open
Abstract
Protein lysine acetylation regulation is an important molecular mechanism for regulating cellular processes and plays critical physiological and pathological roles in cancers and diseases. Although massive acetylation sites have been identified through experimental identification and high-throughput proteomics techniques, their enzyme-specific regulation remains largely unknown. Here, we developed the deep learning-based protein lysine acetylation modification prediction (Deep-PLA) software for histone acetyltransferase (HAT)/histone deacetylase (HDAC)-specific acetylation prediction based on deep learning. Experimentally identified substrates and sites of several HATs and HDACs were curated from the literature to generate enzyme-specific data sets. We integrated various protein sequence features with deep neural network and optimized the hyperparameters with particle swarm optimization, which achieved satisfactory performance. Through comparisons based on cross-validations and testing data sets, the model outperformed previous studies. Meanwhile, we found that protein-protein interactions could enrich enzyme-specific acetylation regulatory relations and visualized this information in the Deep-PLA web server. Furthermore, a cross-cancer analysis of acetylation-associated mutations revealed that acetylation regulation was intensively disrupted by mutations in cancers and heavily implicated in the regulation of cancer signaling. These prediction and analysis results might provide helpful information to reveal the regulatory mechanism of protein acetylation in various biological processes to promote the research on prognosis and treatment of cancers. Therefore, the Deep-PLA predictor and protein acetylation interaction networks could provide helpful information for studying the regulation of protein acetylation. The web server of Deep-PLA could be accessed at http://deeppla.cancerbio.info.
Collapse
Affiliation(s)
- Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yimeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinjiao Gao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of the China, Hefei 230027, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
5
|
Beta-Genus Human Papillomavirus 8 E6 Destabilizes the Host Genome by Promoting p300 Degradation. Viruses 2021; 13:v13081662. [PMID: 34452526 PMCID: PMC8402844 DOI: 10.3390/v13081662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
The beta genus of human papillomaviruses infects cutaneous keratinocytes. Their replication depends on actively proliferating cells and, thus, they conflict with the cellular response to the DNA damage frequently encountered by these cells. This review focus on one of these viruses (HPV8) that counters the cellular response to damaged DNA and mitotic errors by expressing a protein (HPV8 E6) that destabilizes a histone acetyltransferase, p300. The loss of p300 results in broad dysregulation of cell signaling that decreases genome stability. In addition to discussing phenotypes caused by p300 destabilization, the review contains a discussion of the extent to which E6 from other β-HPVs destabilizes p300, and provides a discussion on dissecting HPV8 E6 biology using mutants.
Collapse
|
6
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
7
|
Hutson TH, Kathe C, Palmisano I, Bartholdi K, Hervera A, De Virgiliis F, McLachlan E, Zhou L, Kong G, Barraud Q, Danzi MC, Medrano-Fernandez A, Lopez-Atalaya JP, Boutillier AL, Sinha SH, Singh AK, Chaturbedy P, Moon LDF, Kundu TK, Bixby JL, Lemmon VP, Barco A, Courtine G, Di Giovanni S. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med 2020; 11:11/487/eaaw2064. [PMID: 30971452 DOI: 10.1126/scitranslmed.aaw2064] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
After a spinal cord injury, axons fail to regenerate in the adult mammalian central nervous system, leading to permanent deficits in sensory and motor functions. Increasing neuronal activity after an injury using electrical stimulation or rehabilitation can enhance neuronal plasticity and result in some degree of recovery; however, the underlying mechanisms remain poorly understood. We found that placing mice in an enriched environment before an injury enhanced the activity of proprioceptive dorsal root ganglion neurons, leading to a lasting increase in their regenerative potential. This effect was dependent on Creb-binding protein (Cbp)-mediated histone acetylation, which increased the expression of genes associated with the regenerative program. Intraperitoneal delivery of a small-molecule activator of Cbp at clinically relevant times promoted regeneration and sprouting of sensory and motor axons, as well as recovery of sensory and motor functions in both the mouse and rat model of spinal cord injury. Our findings showed that the increased regenerative capacity induced by enhancing neuronal activity is mediated by epigenetic reprogramming in rodent models of spinal cord injury. Understanding the mechanisms underlying activity-dependent neuronal plasticity led to the identification of potential molecular targets for improving recovery after spinal cord injury.
Collapse
Affiliation(s)
- Thomas H Hutson
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Claudia Kathe
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK.,Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Ilaria Palmisano
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Kay Bartholdi
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Arnau Hervera
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Francesco De Virgiliis
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Eilidh McLachlan
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Luming Zhou
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Guiping Kong
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Quentin Barraud
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Matt C Danzi
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Alejandro Medrano-Fernandez
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Anne L Boutillier
- Université de Strasbourg, CNRS, UMR 7364, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), F-67000 Strasbourg, France
| | - Sarmistha H Sinha
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Akash K Singh
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Piyush Chaturbedy
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit, JNCASR, Bangalore 560064, India
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Gregoire Courtine
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Simone Di Giovanni
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK. .,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| |
Collapse
|
8
|
Liu J, Jin L, Chen X, Yuan Y, Zuo Y, Miao Y, Feng Q, Zhang H, Huang F, Guo T, Zhang L, Zhu L, Qian F, Zhu C, Zheng H. USP12 translocation maintains interferon antiviral efficacy by inhibiting CBP acetyltransferase activity. PLoS Pathog 2020; 16:e1008215. [PMID: 31899788 PMCID: PMC6961928 DOI: 10.1371/journal.ppat.1008215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/15/2020] [Accepted: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
CREB-binding protein (CBP) participates in numerous transcription events. However, cell-intrinsic inhibitors of CBP are poorly defined. Here, we found that cellular USP12 interacts with the HAT domain of CBP and inhibits CBP’s acetyltransferase activity. Interestingly, USP12 positively regulates interferon (IFN) antiviral signaling independently of its deubiquitinase activity. Furthermore, we found that in IFN signaling USP12 translocates from the cytoplasm to the nucleus. The decrease in cytoplasmic USP12 facilitates CBP-induced acetylation and activation of IFN signaling proteins in the cytoplasm. Moreover, USP12 accumulation in the nucleus blocks CBP-induced acetylation of phosphorylated STAT1 (p-STAT1) and therefore inhibits the dephosphorylation effects of TCPTP on p-STAT1, which finally maintains nuclear p-STAT1 levels and IFN antiviral efficacy. USP12 nuclear translocation extends our understanding of the regulation of the strength of IFN antiviral signaling. Our study uncovers a cell-intrinsic regulation of CBP acetyltransferase activity and may provide potential strategies for IFN-based antiviral therapy. Activated p-STAT1 is a determinant for the strength of IFN antiviral signaling. We and other groups have demonstrated that activated p-STAT1 is regulated by multiple protein post-translational modifications, including phosphorylation, acetylation and ubiquitination. In this study, we revealed that CBP-mediated acetylation regulation of p-STAT1 is modulated by the deubiquitinase USP12 in a deubiquitinase activity-independent manner. USP12 translocates into the nucleus in IFN signaling, which critically regulates nuclear p-STAT1 levels and IFN antiviral activity by inhibiting CBP’s acetyltransferase activity. Importantly, we demonstrated that USP12 is a cell-intrinsic inhibitor of the acetyltransferase CBP. These findings promote the understanding of delicate regulation of both CBP-mediated acetylation and IFN antiviral signaling.
Collapse
Affiliation(s)
- Jin Liu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qian Feng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hongguang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tingting Guo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liting Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Li Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Ropolo A, Catrinacio C, Renna FJ, Boggio V, Orquera T, Gonzalez CD, Vaccaro MI. A Novel E2F1-EP300-VMP1 Pathway Mediates Gemcitabine-Induced Autophagy in Pancreatic Cancer Cells Carrying Oncogenic KRAS. Front Endocrinol (Lausanne) 2020; 11:411. [PMID: 32655498 PMCID: PMC7324546 DOI: 10.3389/fendo.2020.00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alejandro Ropolo
| | - Cintia Catrinacio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Felipe Javier Renna
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Veronica Boggio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Tamara Orquera
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudio D. Gonzalez
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Maria I. Vaccaro
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Binding partners of NRF2: Functions and regulatory mechanisms. Arch Biochem Biophys 2019; 678:108184. [PMID: 31733215 DOI: 10.1016/j.abb.2019.108184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
NRF2 is a redox-sensitive transcription factor that plays an important role in protecting organisms against diverse types of electrophiles or oxidants. The level of NRF2 is maintained low in normal cells, but highly elevated in cancer provoking chemoresistance or radioresistance. It is now recognized that NRF2 does not merely maintain the redox balance, but also plays significant roles in autophagy, apoptosis, cell cycle progression, and stem cell differentiation, all of which could be possibly attributable to the existence of multiple binding proteins. In the present manuscript, we summarize direct binding partners of NRF2 and illustrate how they bind to NRF2 and regulate its stability or activity.
Collapse
|
11
|
Choi SM, Andea AA, Wang M, Behdad A, Shao L, Zhang Y, Lu X, Dittmann D, Castro J, Chen YH, Gao J. KRAS mutation in secondary malignant histiocytosis arising from low grade follicular lymphoma. Diagn Pathol 2018; 13:78. [PMID: 30322385 PMCID: PMC6190545 DOI: 10.1186/s13000-018-0758-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Background Transformation of follicular lymphoma most typically occurs as diffuse large B-cell lymphoma, however other forms of transformation such as classic Hodgkin lymphoma and lymphoblastic transformation can occur. Secondary malignant histiocytosis also represents a rare form of transformation, which is thought to occur due to a process of transdifferentiation whereby the lymphoma cells exhibit lineage plasticity and lose all evidence of B-cell phenotype and instead acquire the phenotype of a histiocytic neoplasm. Little is known about the underlying genetic alterations that occur during this unusual process. Comparative genetic analysis of pre- and post-transformation/transdifferentiation would be one tool by which we could better understand how this phenomenon occurs. Case presentation Here we report the clinical, immunophenotypic and genetic features of a rare case of secondary malignant histiocytosis, Langerhans cell-type (Langerhans cell sarcoma) arising from a previous low grade follicular lymphoma. FISH analysis confirmed the presence of IgH/BCL2 rearrangement in both the low grade follicular lymphoma (FL) and transformed Langerhans cells sarcoma (LCS) samples, demonstrating a clonal relationship. Comparative whole exome sequencing was then performed, which identified a KRAS p.G13D mutation in the LCS that was not present in the FL. Conclusions This report highlights genetic alterations, in particular an acquired somatic KRAS mutation, that may occur during transdifferentiation, with additional significance of KRAS mutation as a possible therapeutic target in cases which otherwise would have limited treatment options. Electronic supplementary material The online version of this article (10.1186/s13000-018-0758-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Choi
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA.,Current address: Department of Pathology, University of Michigan, 5242 Medical Science Building 1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Aleodor A Andea
- Current address: Department of Pathology, University of Michigan, 5242 Medical Science Building 1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Min Wang
- Current address: Department of Pathology, University of Michigan, 5242 Medical Science Building 1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Amir Behdad
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Lina Shao
- Current address: Department of Pathology, University of Michigan, 5242 Medical Science Building 1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Yanming Zhang
- Current address: Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - David Dittmann
- Diagnostic Molecular Biology Laboratory, Northwestern Memorial Hospital, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Juan Castro
- Diagnostic Molecular Biology Laboratory, Northwestern Memorial Hospital, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Dutto I, Scalera C, Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci 2018; 75:1325-1338. [PMID: 29170789 PMCID: PMC11105205 DOI: 10.1007/s00018-017-2717-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
The CREB-binding protein (CREBBP, or in short CBP) and p300 are lysine (K) acetyl transferases (KAT) belonging to the KAT3 family of proteins known to modify histones, as well as non-histone proteins, thereby regulating chromatin accessibility and transcription. Previous studies have indicated a tumor suppressor function for these enzymes. Recently, they have been found to acetylate key factors involved in DNA replication, and in different DNA repair processes, such as base excision repair, nucleotide excision repair, and non-homologous end joining. The growing list of CBP/p300 substrates now includes factors involved in DNA damage signaling, and in other pathways of the DNA damage response (DDR). This review will focus on the role of CBP and p300 in the acetylation of DDR proteins, and will discuss how this post-translational modification influences their functions at different levels, including catalytic activity, DNA binding, nuclear localization, and protein turnover. In addition, we will exemplify how these functions may be necessary to efficiently coordinate the spatio-temporal response to DNA damage. CBP and p300 may contribute to genome stability by fine-tuning the functions of DNA damage signaling and DNA repair factors, thereby expanding their role as tumor suppressors.
Collapse
Affiliation(s)
- Ilaria Dutto
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
- IRB, Carrer Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Claudia Scalera
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
13
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
14
|
Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci U S A 2017. [PMID: 28630323 DOI: 10.1073/pnas.1703105114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The histone acetyl transferases CREB-binding protein (CBP) and its paralog p300 play a critical role in numerous cellular processes. Dysregulation of their catalytic activity is associated with several human diseases. Previous work has elucidated the regulatory mechanisms of p300 acetyltransferase activity, but it is not known whether CBP activity is controlled similarly. Here, we present the crystal structure of the CBP catalytic core encompassing the bromodomain (BRD), CH2 (comprising PHD and RING), HAT, and ZZ domains at 2.4-Å resolution. The BRD, PHD, and HAT domains form an integral structural unit to which the RING and ZZ domains are flexibly attached. The structure of the apo-CBP HAT domain is similar to that of acyl-CoA-bound p300 HAT complexes and shows that the acetyl-CoA binding site is stably formed in the absence of cofactor. The BRD, PHD, and ZZ domains interact with small ubiquitin-like modifier 1 (SUMO-1) and Ubc9, and function as an intramolecular E3 ligase for SUMOylation of the cell cycle regulatory domain 1 (CRD1) of CBP, which is located adjacent to the BRD. In vitro HAT assays suggest that the RING domain, the autoregulatory loop (AL) within the HAT domain, and the ZZ domain do not directly influence catalytic activity, whereas the BRD is essential for histone H3 acetylation in nucleosomal substrates. Several lysine residues in the intrinsically disordered AL are autoacetylated by the HAT domain. Upon autoacetylation, acetyl-K1596 (Ac-K1596) binds intramolecularly to the BRD, competing with histones for binding to the BRD and acting as a negative regulator that inhibits histone H3 acetylation.
Collapse
|
15
|
GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep 2016; 6:39787. [PMID: 28004786 PMCID: PMC5177928 DOI: 10.1038/srep39787] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org.
Collapse
|
16
|
Identification of a novel de novo mutation of CREBBP in a patient with Rubinstein-Taybi syndrome by targeted next-generation sequencing: a case report. Hum Pathol 2016; 47:144-9. [DOI: 10.1016/j.humpath.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
|
17
|
LaBarge SA, Migdal CW, Buckner EH, Okuno H, Gertsman I, Stocks B, Barshop BA, Nalbandian SR, Philp A, McCurdy CE, Schenk S. p300 is not required for metabolic adaptation to endurance exercise training. FASEB J 2015; 30:1623-33. [PMID: 26712218 DOI: 10.1096/fj.15-281741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 11/11/2022]
Abstract
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.
Collapse
Affiliation(s)
- Samuel A LaBarge
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Christopher W Migdal
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Elisa H Buckner
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Hiroshi Okuno
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ilya Gertsman
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ben Stocks
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Bruce A Barshop
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Sarah R Nalbandian
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew Philp
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Carrie E McCurdy
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Simon Schenk
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
18
|
Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics 2014; 15:28-37. [PMID: 24653661 PMCID: PMC3958957 DOI: 10.2174/138920291501140306112742] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, transcriptional regulation is determined by dynamic and reversible chromatin modifications, such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, that are essential for the processes of DNA replication, DNA-repair, recombination and gene transcription. The reversible and rapid changes in histone acetylation induce genome-wide and specific alterations in gene expression and play a key role in chromatin modification. Because of their sessile lifestyle, plants cannot escape environmental stress, and hence have evolved a number of adaptations to survive in stress surroundings. Chromatin modifications play a major role in regulating plant gene expression following abiotic and biotic stress. Plants are also able to respond to signals that affect the maintaince of genome integrity. All these factors are associated with changes in gene expression levels through modification of histone acetylation. This review focuses on the major types of genes encoding for histone acetyltransferases, their structure, function, interaction with other genes, and participation in plant responses to environmental stimuli, as well as their role in cell cycle progression. We also bring together the most recent findings on the study of the histone acetyltransferase HAC1 in the model legumes Medicago truncatula and Lotus japonicus.
Collapse
Affiliation(s)
- Irina Boycheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev str. Bl. 21 1113, Sofia, Bulgaria
| | | |
Collapse
|
19
|
Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 2013; 87:13499-509. [PMID: 24089570 DOI: 10.1128/jvi.02658-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation.
Collapse
|
20
|
Charge density distribution and the electrostatic moments of CTPB in the active site of p300 enzyme: a DFT and charge density study. J Theor Biol 2013; 335:119-29. [PMID: 23770402 DOI: 10.1016/j.jtbi.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/21/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
A molecular docking and charge density analysis have been carried out to understand the conformational change, charge distribution and electrostatic properties of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) in the active site of p300. The nearest neighbors, shortest intermolecular contacts between CTPB-p300 and the lowest binding energy of CTPB have been analyzed from the docking analysis. Further, a charge density analysis has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site of p300. Due to the intermolecular interaction between CTPB and the amino acids of active site, the conformation of the CTPB has been significantly altered (particularly the pentadecyl chain). CTPB forms strong interaction with the amino acid residues Tyr1397 and Trp1436 at the distance 2.12 and 2.72Å, respectively. However, the long pentadecyl alkyl chain of CTPB produces a barrier and reducing the chance of forming hydrogen bonding with p300. The electron density ρbcp(r) of the polar bonds (C-O, C-N, C-F and C-Cl) of CTPB are increased when it present in the active site. The dipole moment of CTPB in the active site is significantly less (5.73D) when compared with the gas phase (8.16D) form. In the gas phase structure, a large region of negative electrostatic potential (ESP) is found at the vicinity of O(2) and CF3 group, which is less around the O(1) atom. Whereas, in the active site, the negative ESP around the CF3 group is decreased and increased at the O(1) and O(2)-atoms. The ESP modifications of CTPB in the active site are mainly attributed to the effect of intermolecular interaction. The gas phase and active site study insights the molecular flexibility and the electrostatic properties of CTPB in the active site.
Collapse
|
21
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
22
|
Devipriya B, Kumaradhas P. Probing the effect of intermolecular interaction and understanding the electrostatic moments of anacardic acid in the active site of p300 enzyme via DFT and charge density analysis. J Mol Graph Model 2011; 34:57-66. [PMID: 22306413 DOI: 10.1016/j.jmgm.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/19/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023]
Abstract
A charge density analysis has been performed on gas phase and docked forms of anacardic acid molecule to understand its charge density distribution, electrostatic moments and the conformation in the active site of p300 enzyme. Here, we report the binding affinity of anacardic acid with the p300 enzyme calculated from docking analysis. The charge density distribution of anacardic acid molecule in the gas phase as well as the docked form has been determined from the high level quantum chemical calculations using HF and DFT methods coupled with AIM theory. The charge density study on both forms of anacardic acid differentiates its structural and the electrostatic properties in different environments. When the molecule enters into the active site of p300 its conformation, charge density distribution, dipole moment and electrostatic potential are significantly altered in comparison to its gas phase structure. In the active site, the molecule adopts different conformations, its pentadecyl chain is found to be highly twisted; the charges are redistributed and the dipole moment increases from 2.37 to 3.17D. Due to the charge redistribution, the electronegative region of carboxyl group increased as it is found small in the gas phase. The comparisons between both forms reveal the flexibility of anacardic acid in the active site.
Collapse
Affiliation(s)
- B Devipriya
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636011, India
| | | |
Collapse
|
23
|
Miller M, Dauter Z, Cherry S, Tropea JE, Wlodawer A. Structure of the Taz2 domain of p300: insights into ligand binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1301-8. [PMID: 19966416 DOI: 10.1107/s0907444909040153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/01/2009] [Indexed: 11/11/2022]
Abstract
CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723-1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions. The structure comprises an atypical helical bundle stabilized by three Zn ions and closely resembles the solution structures determined previously for shorter peptides. Residues 1813-1834 from the current construct form a helical extension of the C-terminal helix and make extensive crystal-contact interactions with the peptide-binding site of Taz2, providing additional insights into the mechanism of the recognition of diverse transactivation domains (TADs) by Taz2. On the basis of these results and molecular modeling, a hypothetical model of the binding of phosphorylated p53 TAD1 to Taz2 has been proposed.
Collapse
Affiliation(s)
- Maria Miller
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
24
|
Torres-Martín M, Franco-Hernandez C, Martinez-Glez V, de Campos JM, Isla A, Casartelli C, Rey JA. Mutational analysis of the CITED4 gene in glioblastomas. ACTA ACUST UNITED AC 2008; 185:114-6. [PMID: 18722883 DOI: 10.1016/j.cancergencyto.2008.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 12/31/2022]
|
25
|
Arenas F, Hervias I, Uriz M, Joplin R, Prieto J, Medina JF. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells. J Clin Invest 2008; 118:695-709. [PMID: 18188457 DOI: 10.1172/jci33156] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/14/2007] [Indexed: 01/01/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a cholestatic disease associated with autoimmune phenomena and alterations in both biliary bicarbonate excretion and expression of the bicarbonate carrier AE2. The bile acid ursodeoxycholic acid (UCDA) is currently used in treatment of cholestatic liver diseases and is the treatment of choice in PBC; however, a subset of PBC patients respond poorly to UDCA monotherapy. In these patients, a combination of UDCA and glucocorticoid therapy appears to be beneficial. To address the mechanism of this benefit, we analyzed the effects of UDCA and dexamethasone on AE2 gene expression in human liver cells from hepatocyte and cholangiocyte lineages. The combination of UDCA and dexamethasone, but not UDCA or dexamethasone alone, increased the expression of liver-enriched alternative mRNA isoforms AE2b1 and AE2b2 and enhanced AE2 activity. Similar effects were obtained after replacing UDCA with UDCA conjugates. In in vitro and in vivo reporter assays, we found that a UDCA/dexamethasone combination upregulated human AE2 alternate overlapping promoter sequences from which AE2b1 and AE2b2 are expressed. In chromatin immunoprecipitation assays, we demonstrated that combination UCDA/dexamethasone treatment induced p300-related interactions between HNF1 and glucocorticoid receptor on the AE2 alternate promoter. Our data provide a potential molecular explanation for the beneficial effects of the combination of UDCA and glucocorticoids in PBC patients with inadequate response to UDCA monotherapy.
Collapse
Affiliation(s)
- Fabián Arenas
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research, Clínica Universitaria, University of Navarra School of Medicine, CIBERehd, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 2008; 451:846-50. [PMID: 18273021 DOI: 10.1038/nature06546] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/13/2007] [Indexed: 01/25/2023]
Abstract
The transcriptional coactivator p300/CBP (CREBBP) is a histone acetyltransferase (HAT) that regulates gene expression by acetylating histones and other transcription factors. Dysregulation of p300/CBP HAT activity contributes to various diseases including cancer. Sequence alignments, enzymology experiments and inhibitor studies on p300/CBP have led to contradictory results about its catalytic mechanism and its structural relation to the Gcn5/PCAF and MYST HATs. Here we describe a high-resolution X-ray crystal structure of a semi-synthetic heterodimeric p300 HAT domain in complex with a bi-substrate inhibitor, Lys-CoA. This structure shows that p300/CBP is a distant cousin of other structurally characterized HATs, but reveals several novel features that explain the broad substrate specificity and preference for nearby basic residues. Based on this structure and accompanying biochemical data, we propose that p300/CBP uses an unusual 'hit-and-run' (Theorell-Chance) catalytic mechanism that is distinct from other characterized HATs. Several disease-associated mutations can also be readily accounted for by the p300 HAT structure. These studies pave the way for new epigenetic therapies involving modulation of p300/CBP HAT activity.
Collapse
|
27
|
Choudhary S, Wang HCR. Pro-apoptotic activity of oncogenic H-Ras for histone deacetylase inhibitor to induce apoptosis of human cancer HT29 cells. J Cancer Res Clin Oncol 2007; 133:725-39. [PMID: 17487507 DOI: 10.1007/s00432-007-0213-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 04/02/2007] [Indexed: 11/24/2022]
Abstract
PURPOSE To verify the pro-apoptotic activity of oncogenic H-Ras in the increased susceptibility of human cancer cells to histone deacetylase inhibitor (HDACI). METHODS The pro-apoptotic activity of oncogenic H-Ras(V12) was verified by its ability to increase susceptibility of human colorectal adenocarcinoma HT29 cells to HDACI for inducing apoptosis and growth inhibition, assayed by various methods. The mode of action of HDACI FR901228 was studied by its ability to modulate protein phosphorylation, acetylation, and expression levels in various signaling pathways, measured by Western blot analysis. RESULTS Activation of caspase-3, -7, and -8, and serine protease by FR901228 was facilitated by oncogenic H-Ras to induce apoptosis. Expression of H-Ras(V12) changed the intrinsic modulation of Raf in cells responding to FR901228 treatment. Both p21( Cip1 ) and p27( Kip1 ) were induced in FR901228-treated cells arrested in either the G0/G1 or G2/M phase of the cell cycle. Deacetylation of FR901228-induced acetylation of core histones was accelerated by H-Ras(V12) in cells undergoing apoptosis. CONCLUSION Expression of H-Ras(V12) increased susceptibility of HT29 cells to HDACI FR901228 and Trichostatin A for inducing apoptosis. The pro-apoptotic activity of H-Ras(V12) responding to HDACI indicates a potential value of this new class of anticancer agents in treating Ras-related human cancers.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | |
Collapse
|
28
|
Deng W, Liu C, Pei Y, Deng X, Niu L, Cao X. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1660-1668. [PMID: 17416640 DOI: 10.1104/pp.107.095521] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis (Arabidopsis thaliana), the histone acetyltransferase AtHAC1 is homologous to animal p300/CREB (cAMP-responsive element-binding protein)-binding proteins, which are the main histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. The functions of p300/CREB-binding proteins in animals are well characterized, whereas little is known about the roles of AtHAC1 in developmental control in Arabidopsis. Lesions in AtHAC1 caused pleiotropic developmental defects, including delayed flowering, a shortened primary root, and partially reduced fertility. Analysis of the molecular basis of late flowering in hac1 mutants showed that the hac1 plants respond normally to day length, gibberellic acid treatment, and vernalization. Furthermore, the expression level of the flowering repressor FLOWERING LOCUS C (FLC) is increased in hac1 mutants, indicating that the late-flowering phenotype of hac1 mutants is mediated by FLC. Since histone acetylation is usually associated with the activation of gene expression, histone modifications of FLC chromatin are not affected by mutations in HAC1 and expression levels of all known autonomous pathway genes are unchanged in hac1 plants, we propose that HAC1 affects flowering time by epigenetic modification of factors upstream of FLC.
Collapse
Affiliation(s)
- WeiWei Deng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | | | | | | | | | | |
Collapse
|
29
|
Santoso B, Kadonaga JT. Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat Struct Mol Biol 2006; 13:131-9. [PMID: 16415879 DOI: 10.1038/nsmb1048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
Here we describe an in vitro chromatin transcription system in which chromatin assembly and transcription are carried out with purified and defined factors. With basal (also known as general) transcription factors and sequence-specific DNA-binding activators, we observed chromatin-specific, activation domain-dependent transcription. We then examined the biochemical function of purified p300 in the absence of the endogenous factor and other related activities and found, unexpectedly, that p300 has a chromatin-specific, transcriptional repression activity that can be relieved by the addition of acetyl-CoA. This p300-mediated repression is reversible, requires the p300 bromodomain but not the acetyltransferase region, and does not involve the formation of a stable, nuclease-resistant nucleoprotein complex. Hence, the mechanism of transcriptional repression by p300 is distinct from that of histone H1, PARP-1 or Sir2. These findings reveal a novel chromatin-specific repressive function of p300.
Collapse
Affiliation(s)
- Buyung Santoso
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
30
|
Bertin B, Oger F, Cornette J, Caby S, Noël C, Capron M, Fantappie MR, Rumjanek FD, Pierce RJ. Schistosoma mansoni CBP/p300 has a conserved domain structure and interacts functionally with the nuclear receptor SmFtz-F1. Mol Biochem Parasitol 2006; 146:180-91. [PMID: 16427147 DOI: 10.1016/j.molbiopara.2005.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 11/21/2022]
Abstract
Metazoan species diversification in general and the adaptation of parasites to their life-style in particular are due, not only to the evolution of different structural or metabolic proteins, but also to changes in the expression patterns of the corresponding genes. In order to explore the conservation/divergence of transcriptional regulation in the platyhelminth parasite Schistosoma mansoni, we are studying the structures and functions of transcriptional mediators. CREB-binding protein (CBP) and p300 are closely related transcriptional coactivators that possess histone acetyltransferase (HAT) activity that can modify chromatin to an active relaxed state. They are also thought to link transcription factors to the basic transcriptional machinery and to act as integrators for different regulatory pathways. Here we describe the cloning and functional characterization of S. mansoni CBP. SmCBP1 comprises 2093 amino acids and displays a conserved modular domain structure. The HAT domain was shown to acetylate histones with a marked activity toward H4. Functional studies showed that SmCBP1 could interact physically with the nuclear receptor SmFtz-F1 and also potentiated its transcriptional activity in the CV-1 cell line. Screening of the EST and genomic sequence databases with the SmCBP1 sequence allowed us to characterize a second CBP gene in S. mansoni. SmCBP2 shows a high degree of sequence identity to SmCBP1, particularly in the HAT domain. Phylogenetic studies show that these peptides are more closely related to each other than to either mammalian CBP or p300, suggesting that they derive from a platyhelminth-specific duplication event. Both genes are expressed at all life-cycle stages, but differences in their relative expression and structural variations suggest that they play distinct roles in schistosome gene regulation.
Collapse
|
31
|
Cong SY, Pepers BA, Evert BO, Rubinsztein DC, Roos RAC, van Ommen GJB, Dorsman JC. Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol Cell Neurosci 2005; 30:12-23. [PMID: 15994095 DOI: 10.1016/j.mcn.2005.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 05/14/2005] [Accepted: 05/17/2005] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease can be used as a model to study neurodegenerative disorders caused by aggregation-prone proteins. It has been proposed that the entrapment of transcription factors in aggregates plays an important role in pathogenesis. We now report that the transcriptional activity of CBP is already repressed in the early time points by soluble mutant huntingtin, whereas the histone acetylase activity of CBP/p300 is gradually diminished over time. Mutant huntingtin bound much stronger to CBP than normal huntingtin, possibly contributing to repression. Especially at the later time points, CBP protein level was gradually reduced via the proteasome pathway. In sharp contrast, p300 was unaffected by mutant huntingtin. This selective degradation of CBP was absent in spinocerebellar ataxia 3. Thus, mutant huntingtin specifically affects CBP and not p300 both at the early and later time points, via multiple mechanisms. In addition to the reduction of CBP, also the altered ratio of these closely related histone acetyltransferases may affect chromatin structure and transcription and thus contribute to neurodegeneration.
Collapse
Affiliation(s)
- Shu-Yan Cong
- CBG-Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe C, Sakiyama T, Hirama C, Kitabayashi I, Minna JD, Takenoshita S, Yokota J. Mutations and Deletions of the CBP Gene in Human Lung Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.512.11.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Microarray-based comparative genomic hybridization analysis led us to detect a homozygous deletion at the cyclic AMP response element binding protein-binding protein (CBP) locus in a lung cancer cell line. Oncogenic roles of CBP had been suggested by functional and genetic studies; thus, involvement of CBP gene alterations in lung carcinogenesis was investigated by undertaking comprehensive analysis of genetic CBP alterations in human lung cancer.
Experimental Design: Fifty-nine cell lines and 95 surgical specimens of lung cancer were analyzed for mutations, homozygous and hemizygous deletions, and expression of the CBP gene.
Results: Homozygous CBP deletions, including two intragenic deletions, were detected in three (5.1%) lung cancer cell lines. CBP mutations, including missense, nonsense, and frame-shift mutations, were detected in six (10.2 %) cell lines and five (5.3%) surgical specimens of lung cancer. The wild-type CBP allele was retained in 9 of 11 cases with CBP mutations, and both the wild-type and mutant alleles were expressed in all the six cases with heterozygous CBP mutations examined. Three mutations with amino acid substitutions in the histone acetyltransferase domain caused significant reduction in transcription activation activity of CBP protein in vivo.
Conclusions: A fraction of lung cancers carried mutations and/or deletions of the CBP gene, suggesting that genetic CBP alterations are involved in the genesis and/or progression of a subset of lung cancers.
Collapse
Affiliation(s)
- Masahiro Kishimoto
- 1Biology Division,
- 5Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; and
| | | | | | | | - Hiroki Sasaki
- 2Center for Medical Genomics,
- 3Genetics Division, and
| | | | | | | | - Issay Kitabayashi
- 4Molecular Oncology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - John D. Minna
- 6Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Seiichi Takenoshita
- 5Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; and
| | - Jun Yokota
- 1Biology Division,
- 2Center for Medical Genomics,
| |
Collapse
|
33
|
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 2004; 29:471-87. [PMID: 15625403 DOI: 10.1007/bf02712120] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Collapse
Affiliation(s)
- Sanjeev Kumar Baniwal
- Department of Molecular Cell Biology, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Meng G, Zhao Y, Nag A, Zeng M, Dimri G, Gao Q, Wazer DE, Kumar R, Band H, Band V. Human ADA3 binds to estrogen receptor (ER) and functions as a coactivator for ER-mediated transactivation. J Biol Chem 2004; 279:54230-40. [PMID: 15496419 DOI: 10.1074/jbc.m404482200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified the hADA3 protein, the human homologue of yeast transcriptional coactivator yADA3, as a novel HPV16 E6 target. Using ectopic expression approaches, we further demonstrated that hADA3 directly binds to the 9-cis retinoic acid receptors alpha and beta, and functions as a coactivator for retinoid receptor-mediated transcriptional activation. Here, we examined the role of endogenous hADA3 as a coactivator for estrogen receptor (ER), an important member of the nuclear hormone receptor superfamily. We show that ADA3 directly interacts with ER alpha and ER beta. Using the chromatin immunoprecipitation assay, we also show that hADA3 is a component of the activator complexes bound to the native ER response element within the promoter of the estrogen-responsive gene pS2. Furthermore, using an ER response element-luciferase reporter, we show that overexpression of ADA3 enhances the ER alpha- and ER beta-mediated sequence-specific transactivation. Reverse transcription-PCR analysis showed an ADA3-mediated increase in estrogen-induced expression of the endogenous pS2 gene. More importantly, using RNA interference against hADA3, we demonstrate that inhibition of endogenous hADA3 inhibited ER-mediated transactivation and the estrogen-induced increase in the expression of pS2, cathepsin D, and progesterone receptor, three widely known ER-responsive genes. The HPV E6 protein, by targeting hADA3 for degradation, inhibited the ER alpha-mediated transactivation and the protein expression of ER target genes. Thus, our results demonstrate that ADA3 directly binds to human estrogen receptor and enhances the transcription of ER-responsive genes, suggesting a broader role of mammalian hADA3 as a coactivator of nuclear hormone receptors and the potential role of these pathways in HPV oncogenesis.
Collapse
Affiliation(s)
- Gaoyuan Meng
- Department of Radiation Oncology, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol 2004; 68:1145-55. [PMID: 15313412 DOI: 10.1016/j.bcp.2004.03.045] [Citation(s) in RCA: 369] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/30/2004] [Indexed: 11/25/2022]
Abstract
The transcriptional coactivators CREB binding protein (CBP) and p300 are key regulators of RNA polymerase II-mediated transcription. Genetic alterations in the genes encoding these regulatory proteins and their functional inactivation have been linked to human disease. Findings in patients, knockout mice and cell-based studies indicate that the ability of these multidomain proteins to acetylate histones and other proteins is critical for many biological processes. Furthermore, despite their high degree of homology, accumulating evidence indicates that CBP and p300 are not completely redundant but also have unique roles in vivo. Recent studies suggest that these functional differences could be due to differential association with other proteins or differences in substrate specificity between these acetyltransferases. Inactivation of the acetyltransferase function of either CBP or p300 in various experimental systems will no doubt teach us more about the specific biological roles of these proteins. Given the wide range of human diseases in which CBP and/or p300 have been implicated, understanding the mechanisms that regulate their activity in vivo could help to develop novel approaches for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA, The Netherlands.
| |
Collapse
|
36
|
Bharti K, Von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. THE PLANT CELL 2004; 16:1521-35. [PMID: 15131252 PMCID: PMC490043 DOI: 10.1105/tpc.019927] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/17/2004] [Indexed: 05/17/2023]
Abstract
In contrast with the class A heat stress transcription factors (HSFs) of plants, a considerable number of HSFs assigned to classes B and C have no evident function as transcription activators on their own. However, in the following article, we provide evidence that tomato (Lycopersicon peruvianum) HsfB1 represents a novel type of coactivator cooperating with class A HSFs (e.g., with tomato HsfA1). Provided the appropriate promoter architecture, the two HSFs assemble into an enhanceosome-like complex, resulting in strong synergistic activation of reporter gene expression. Moreover, HsfB1 also cooperates in a similar manner with other activators, for example, with the ASF1/2 enhancer binding proteins of the 35S promoter of Cauliflower mosaic virus or with yet unidentified activators controlling housekeeping gene expression. By these effects, HsfB1 may help to maintain and/or restore expression of certain viral or housekeeping genes during ongoing heat stress. The coactivator function of HsfB1 depends on a histone-like motif in its C-terminal domain with an indispensable Lys residue in the center (GRGKMMK). This motif is required for recruitment of the plant CREB binding protein (CBP) ortholog HAC1. HsfA1, HsfB1, and HAC1/CBP form ternary complexes in vitro and in vivo with markedly enhanced efficiency in promoter recognition and transcription activation in plant and mammalian (COS7) cells. Using small interfering RNA-mediated knock down of HAC1 expression in Arabidopsis thaliana mesophyll protoplasts, the crucial role for the coactivator function of HsfB1 was confirmed.
Collapse
Affiliation(s)
- Kapil Bharti
- Department of Molecular Cell Biology, Goethe University Frankfurt, D-60439 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|