1
|
Jiang M, Zhang X, Cui Z, Li M, Qiang H, Ji K, Li M, Yuan XX, Wen B, Xue Q, Gao J, Lu Z, Wu Y. Nanomaterial-Based Autophagy Modulation: Multiple Weapons to Inflame Immune Systems and the Tumor Microenvironment. Biomater Res 2025; 29:0111. [PMID: 40231206 PMCID: PMC11994884 DOI: 10.34133/bmr.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 04/16/2025] Open
Abstract
Autophagy, a fundamental cellular process, is a sensitive indicator of environmental shifts and is crucial for the clearance of cellular debris, the remodeling of cellular architecture, and the facilitation of cell growth and development. The interplay between stromal, tumor, and immune cells within the tumor microenvironment is intricately linked to autophagy. Therefore, the modulation of autophagy in these cell types is essential for developing effective cancer treatment strategies. This review describes the design and optimization of nanomaterials that modulate autophagy in tumor-associated and immune cells. This review elucidates the primary mechanisms by which nanomaterials induce autophagy and discusses their application in cancer therapy, underscoring the potential of these materials to eradicate cancer cells, bolster the immune response, and elicit robust, enduring antitumor immunity, thereby advancing the frontiers of oncological treatment.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| | - Xinyi Zhang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhilei Cui
- Department of Respiratory Medicine,
XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meng Li
- Department of Dermatology, Shanghai Children’s Medical Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Huifen Qiang
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Keqin Ji
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Meigui Li
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Xinyang Xuan Yuan
- Department of Dermatology,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Beibei Wen
- School of Pharmacy,
Henan University, Kaifeng 475004, China
| | - Qian Xue
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science,
Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
2
|
Ngo JM, Williams JK, Temoche-Diaz MM, Murugupandiyan A, Schekman R. p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644464. [PMID: 40166149 PMCID: PMC11957149 DOI: 10.1101/2025.03.20.644464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Exosomes are multivesicular body-derived extracellular vesicles that are secreted by metazoan cells. Exosomes have utility as disease biomarkers, and exosome-mediated miRNA secretion has been proposed to facilitate tumor growth and metastasis. Previously, we demonstrated that the Lupus La protein (La) mediates the selective incorporation of miR-122 into metastatic breast cancer-derived exosomes; however, the mechanism by which La itself is sorted into exosomes remains unknown. Using unbiased proximity labeling proteomics, biochemical fractionation, superresolution microscopy and genetic tools, we establish that the selective autophagy receptor p62 sorts La and miR-122 into exosomes. We then performed small RNA sequencing and found that p62 depletion reduces the exosomal secretion of tumor suppressor miRNAs and results in their accumulation within cells. Our data indicate that p62 is a quality control factor that modulates the miRNA composition of exosomes. Cancer cells may exploit p62-dependent exosome cargo sorting to eliminate tumor suppressor miRNAs and thus to promote cell proliferation.
Collapse
Affiliation(s)
- Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
3
|
Yang X, Cao X, Zhu Q. p62/SQSTM1 in cancer: phenomena, mechanisms, and regulation in DNA damage repair. Cancer Metastasis Rev 2025; 44:33. [PMID: 39954143 PMCID: PMC11829845 DOI: 10.1007/s10555-025-10250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The multidomain protein cargo adaptor p62, also known as sequestosome 1, serves as a shuttling factor and adaptor for the degradation of substrates via the proteasome and autophagy pathways. Regarding its structure, p62 is composed of several functional domains, including the N-terminal Phox1 and Bem1p domains, a ZZ-type zinc finger domain, a LIM protein-binding domain that contains the tumor necrosis factor receptor-associated factor 6 (TRAF6) binding region, two nuclear localization signals (NLS 1/2), a nuclear export signal (NES), the LC3-interacting region (LIR), a Kelch-like ECH-associated protein 1 (KEAP1)-interacting region, and a ubiquitin-associated (UBA) domain. Recent studies have highlighted the critical role of p62 in the development and progression of various malignancies. Overexpression and/or impaired degradation of p62 are linked to the initiation and progression of numerous cancers. While p62 is primarily localized in the cytosol and often considered a cytoplasmic protein, most of the existing literature focuses on its cytoplasmic functions, leaving its nuclear roles less explored. However, an increasing body of research has uncovered p62's involvement in the cellular response to DNA damage. In this review, we summarize the current understanding of p62's molecular functions in malignancies, with particular emphasis on its role in DNA damage repair, highlighting the latest advances in this field.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xunjie Cao
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China.
| |
Collapse
|
4
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
6
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
7
|
Tao T, Xu N, Li J, Zhao M, Li X, Huang L. Conditional loss of Ube3d in the retinal pigment epithelium accelerates age-associated alterations in the retina of mice. J Pathol 2023; 261:442-454. [PMID: 37772657 DOI: 10.1002/path.6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Several studies have suggested a correlation between the ubiquitin-proteasome system (UPS) and age-related macular degeneration (AMD), with its phenotypic severity ranging from mild visual impairment to blindness, but the mechanism for UPS dysfunction contributing to disease progression is unclear. In this study, we investigated the role of ubiquitin protein ligase E3D (UBE3D) in aging and degeneration in mouse retina. Conditional knockout of Ube3d in the retinal pigment epithelium (RPE) of mice led to progressive and irregular fundus lesions, attenuation of the retinal vascular system, and age-associated deterioration of rod and cone responses. Simultaneously, RPE-specific Ube3d knockout mice also presented morphological changes similar to the histopathological characteristics of human AMD, in which a defective UPS led to RPE abnormalities such as phagocytosis or degradation of metabolites, the interaction with photoreceptor outer segment, and the transport of nutrients or waste products with choroidal capillaries via Bruch's membrane. Moreover, conditional loss of Ube3d resulted in aberrant molecular characterizations associated with the autophagy-lysosomal pathway, oxidative stress damage, and cell-cycle regulation, which are implicated in AMD pathology. Thus, our findings strengthen and expand the impact of UPS dysfunction on retinal pathophysiology during aging, indicating that genetic Ube3d deficiency in the RPE could lead to the abnormal formation of pigment deposits and secondary fundus alterations. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, PR China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| |
Collapse
|
8
|
Lee B, Kim YH, Lee W, Choi HY, Lee J, Kim J, Mai DN, Jung SF, Kwak MS, Shin JS. USP13 deubiquitinates p62/SQSTM1 to induce autophagy and Nrf2 release for activating antioxidant response genes. Free Radic Biol Med 2023; 208:820-832. [PMID: 37776917 DOI: 10.1016/j.freeradbiomed.2023.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
SQSTM1/p62 (sequestosome 1) is a multifunctional protein that serves as a receptor for selective autophagy and scaffold. In selective autophagy, p62 functions as a bridge between polyubiquitinated proteins and autophagosomes. Further, p62 acts as a signaling hub for many cellular pathways including mTORC1, NF-κB, and Keap1-Nrf2. Post-translational modifications of p62, such as ubiquitination and phosphorylation, are known to determine its binding partners and regulate their intracellular functions. However, the mechanism of p62 deubiquitination remains unclear. In this study, we found that ubiquitin-specific protease 13 (USP13), a member of the USP family, directly binds p62 and removes ubiquitin at Lys7 (K7) of the PB1 domain. USP13-mediated p62 deubiquitination enhances p62 protein stability and facilitates p62 oligomerization, resulting in increased autophagy and degradation of Keap1, which is a negative regulator of the antioxidant response that promotes Nrf2 activation. Thus, USP13 can be considered a therapeutic target as a deubiquitination enzyme of p62 in autophagy-related diseases.
Collapse
Affiliation(s)
- Bin Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Woori Lee
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Youn Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Dương Ngọc Mai
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Ful Jung
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, South Korea.
| |
Collapse
|
9
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The sequestosome 1 protein: therapeutic vulnerabilities in ovarian cancer. Clin Transl Oncol 2023; 25:2783-2792. [PMID: 36964889 DOI: 10.1007/s12094-023-03148-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/04/2023] [Indexed: 03/26/2023]
Abstract
Ovarian cancer (OC) is the most deadly tumor that may develop in a woman's reproductive system. It is also one of the most common causes of death among those who have been diagnosed with cancer in women. An adapter protein known as sequestosome 1(SQSTM1) or p62 is primarily responsible for the transportation, degradation, and destruction of a wide variety of proteins. This adapter protein works in conjunction with the autophagy process as well as the ubiquitin proteasome degradation pathway. In addition, the ability of SQSTM1 to interact with multiple binding partners link SQSTM1 to various pathways in the context of antioxidant defense system and inflammation. In this review, we outline the processes underlying the control that SQSTM1 has on these pathways and how their dysregulation contributes to the development of OC. At the final, the therapeutic approaches based on SQSTM1 targeting have been discussed.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Takasaki R, Uchida F, Takaoka S, Ishii R, Fukuzawa S, Warabi E, Ishibashi-Kanno N, Yamagata K, Bukawa H, Yanagawa T. p62 Is a Potential Biomarker for Risk of Malignant Transformation of Oral Potentially Malignant Disorders (OPMDs). Curr Issues Mol Biol 2023; 45:7630-7641. [PMID: 37754264 PMCID: PMC10529731 DOI: 10.3390/cimb45090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
To determine the intracellular behavior of p62, a marker of selective autophagy, in oral potentially malignant disorders (OPMDs). This retrospective study includes 70 patients who underwent biopsy or surgical resection and were definitively diagnosed with OPMDs. Immunohistochemical staining for p62, XPO1, p53, and ki67 was performed on all samples and positive cell occupancy was calculated. We statistically investigated the correlation between protein expression in OPMDs and the association between malignant transformation, clinicopathological characteristics, and occupancy. ki67 expression was negatively correlated with p62 expression in the nucleus (p < 0.01) and positively correlated with p62 expression in the cytoplasm (p < 0.01). For malignant transformation, the expression of p62 in the nucleus (p = 0.03) was significantly lower in malignant transformation cases, whereas the expression of p62 in the cytoplasm (p = 0.03) and the aggregation expression (p < 0.01) were significantly higher. Our results suggest that the function of p62 is altered by its subcellular localization. In addition, defects in selective autophagy occur in cases of malignant transformation, suggesting that p62 is a potential biomarker of the risk of malignant transformation of OPMDs.
Collapse
Affiliation(s)
- Ryo Takasaki
- Oral and Maxillofacial Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8875, Japan
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Shohei Takaoka
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Satoshi Fukuzawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Eiji Warabi
- Department of Anatomy and Rmbryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Naomi Ishibashi-Kanno
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Department of Oral and Maxillofacial Surgery, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama 309-1793, Japan
| |
Collapse
|
11
|
Eto R, Kawano H, Matsuyama-Matsuu M, Matsuda K, Ueki N, Nakashima M, Okano S, Ishijima M, Kawakatsu M, Watanabe J, Yoshimuta T, Ikeda S, Maemura K. Ubiquitin, p62, and Microtubule-Associated Protein 1 Light Chain 3 in Cardiomyopathy. Circ Rep 2023; 5:323-330. [PMID: 37564875 PMCID: PMC10411995 DOI: 10.1253/circrep.cr-23-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The accumulation of ubiquitinated proteins has been detected in diseased hearts and has been associated with the expression of p62 and microtubule-associated protein 1 light chain 3 (LC3), which are related to autophagy. We evaluated differences in ubiquitin accumulation and p62 and LC3 expression in cardiomyopathy using endomyocardial biopsies. Methods and Results: We studied 24 patients (aged 24-70 years; mean age 55 years) diagnosed with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), or non-cardiomyopathy (NCM) who underwent endomyocardial biopsy. Biopsied samples were evaluated by microscopy for ubiquitin accumulation and expression of p62 and LC3. Ubiquitin accumulation and p62 and LC3 expression were observed in all patients. Ubiquitin accumulation was higher in DCM than in HCM or NCM; p62 expression was higher in DCM than in HCM. There were no significant differences in LC3 expression among the groups. Ubiquitin accumulation was significantly related to serum N-terminal pro B-type natriuretic peptide concentration and the expression of p62, but not LC3. Conclusions: Ubiquitin accumulation was more prominent in DCM than in HCM and NCM, which may be due to a relative shortage of clearance, including autophagy, compared with production.
Collapse
Affiliation(s)
- Ryo Eto
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Mutsumi Matsuyama-Matsuu
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Nozomi Ueki
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Shinji Okano
- Department of Pathology, Nagasaki University Hospital Nagasaki Japan
| | - Mitsuaki Ishijima
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Miho Kawakatsu
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Jumpei Watanabe
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Tsuyoshi Yoshimuta
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| |
Collapse
|
12
|
Zhang S, Qian Y, Ye L. Delineating the twin role of autophagy in lung cancer. Biol Futur 2023:10.1007/s42977-023-00165-4. [PMID: 37120768 DOI: 10.1007/s42977-023-00165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2023] [Indexed: 05/01/2023]
Abstract
Autophagy represents an intracellular defense mechanism equipped within each eukaryotic cells to enable them to cope with variety of physical, chemical, and biological stresses. This mechanism helps to restore the homeostasis and preserve the cellular integrity and function of the cells. In these conditions, such as hypoxia, nutrient deprivation, inhibition of protein synthesis or microbial attack, the process of autophagy is upregulated to maintain cellular homeostasis. The role of autophagy in cancer is an intriguing topic which needs further exploration. This process of autophagy has been many times referred as a double-edged sword in the process of tumorigenesis. In the initial stages, it may act as a tumor suppressor and enable to quench the damaged organelles and harmful molecules generated. In more advanced stages, autophagy has been shown to act as a tumor-promoting system as it may help the cancer cells to cope better with stressful microenvironments. Besides this, autophagy has been associated with development of resistance to anticancer drugs as well as promoting the immune evasion in cancer cells, representing a serious obstacle in cancer treatment and its outcome. Also, autophagy is associated with hallmarks of cancer that may lead to activation of invasion and metastasis. The information on this twin role needs further exploration and deeper understanding of the pathways involved. In this review, we discuss the various aspects of autophagy during tumor development, from early to late stages of tumor growth. Both the protective role of autophagy in preventing tumor growth and the underlying mechanisms adopted with evidence from past studies have been detailed. Further, the role of autophagy in conferring resistance to distinct lung cancer treatment and immune shielding properties has also been discussed. This is essential for further improving on treatment outcome and success rates.
Collapse
Affiliation(s)
- Shaoqin Zhang
- Department of Chest Surgery, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312400, Zhejiang, China
| | - Ye Qian
- Department of Oncology, Hai 'an Hospital Affiliated to Nantong University, Haian, 226600, Jiangsu, China
| | - Luhai Ye
- Department of Chest Surgery, Xinchang Country Hospital of TCM, Shaoxing, 312500, Zhejiang, China.
| |
Collapse
|
13
|
Cortés Mancera EA, Sinisterra Solis FA, Romero-Castellanos FR, Diaz-Meneses IE, Kerik-Rotenberg NE. 18F-FDG PET/CT as a molecular biomarker in the diagnosis of amyotrophic lateral sclerosis associated with prostate cancer and progressive supranuclear palsy: A case report. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1137875. [PMID: 39355053 PMCID: PMC11440934 DOI: 10.3389/fnume.2023.1137875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/23/2023] [Indexed: 10/03/2024]
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a neurodegenerative, multisystem disorder. Its clinical presentation typically consists of progressive focal muscle atrophy and weakness. In addition to motor disorders, the association between ALS and cancer has been researched, such as frontotemporal dementia and progressive supranuclear palsy. The diagnosis is based primarily on the clinical history, physical examination, electrodiagnostic tests (with an EMG needle), and neuroimaging, such as MRI and 18F-FDG PET/CT. Presentation of the case A 67-year-old male patient was diagnosed with prostate adenocarcinoma with a clinical picture of muscle weakness in the lower limbs that caused falls and was associated with fasciculations in the thighs and arms, alterations in the tone of voice, poor memory, and difficulty articulating words. In the neurological assessment, he described walking supported by a walker with decreased strength in both lower limbs and sensitivity without alterations. The diagnoses of upper and lower motor neuron disease and probable ALS were integrated. Furthermore, the probable coexistence of frontotemporal dementia/disorder (FDD) with ALS was considered. The main findings in the 18F-FDG PET/CT study was hypometabolism in the cortex of the bilateral motor and premotor areas, the anterior cingulate, both caudate and putamen, a metabolic pattern compatible with ALS, and progressive supranuclear palsy. Conclusion Through the PET/CT studies, we demonstrated a case in which ALS, prostate cancer and progressive supranuclear palsy coexisted molecularly; it was clinically difficult to diagnose. Molecular imaging has potential in the diagnostic and prognostic evaluation of ALS. It is crucial to identify the disease early and reliably through metabolic patterns that allow us to confirm the disease or differentiate it from other pathologies.
Collapse
Affiliation(s)
- Emilly A Cortés Mancera
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Fabio A Sinisterra Solis
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Ivan E Diaz-Meneses
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Nora E Kerik-Rotenberg
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
14
|
Huang H, Pan R, Wang S, Guan Y, Zhao Y, Liu X. Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Arch Biochem Biophys 2023; 736:109542. [PMID: 36758911 DOI: 10.1016/j.abb.2023.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Autophagy, a cellular lysosomal degradation and survival pathway, supports nutrient recycling and adaptation to metabolic stress and participates in various stages of tumor development, including tumorigenesis, metastasis, and malignant state maintenance. Among the various factors contributing to the dysregulation of autophagy in cancer, RNA modification can regulate autophagy by directly affecting the expression of core autophagy proteins. We propose that autophagy disorder mediated by RNA modification is an important mechanism for cancer development. Therefore, this review mainly discusses the role of RNA modification-mediated autophagy regulation in tumorigenesis. We summarize the molecular basis of autophagy and the core proteins and complexes at different stages of autophagy, especially those involved in cancer development. Moreover, we describe the crosstalk of RNA modification and autophagy and review the recent advances and potential role of the RNA modification/autophagy axis in the development of multiple cancers. Furthermore, the dual role of the RNA modification/autophagy axis in cancer drug resistance is discussed. A comprehensive understanding and extensive exploration of the molecular crosstalk of RNA modifications with autophagy will provide important insights into tumor pathophysiology and provide more options for cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Ruining Pan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yue Zhao
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
15
|
Phan V, Hathazi D, Preuße C, Czech A, Freier E, Shema G, Zahedi RP, Roos A. Molecular mechanisms in chloroquine-exposed muscle cells elucidated by combined proteomic and microscopic studies. Neuropathol Appl Neurobiol 2023; 49:e12877. [PMID: 36633103 DOI: 10.1111/nan.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Chloroquine (CQ) is an antimalarial drug with a growing number of applications as recently demonstrated in attempts to treat Covid-19. For decades, it has been well known that skeletal and cardiac muscle cells might display vulnerability against CQ exposure resulting in the clinical manifestation of a CQ-induced myopathy. In line with the known effect of CQ on inhibition of the lysosomal function and thus cellular protein clearance, the build-up of autophagic vacuoles along with protein aggregates is a histological hallmark of the disease. Given that protein targets of the perturbed proteostasis are still not fully discovered, we applied different proteomic and immunological-based studies to improve the current understanding of the biochemical nature of CQ-myopathy. METHODS To gain a comprehensive understanding of the molecular pathogenesis of this acquired myopathy and to define proteins targets as well as pathophysiological processes beyond impaired proteolysis, utilising CQ-treated C2C12 cells and muscle biopsies derived from CQ-myopathy patients, we performed different proteomic approaches and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, in addition to immunohistochemical studies. RESULTS Our combined studies confirmed an impact of CQ-exposure on proper protein processing/folding and clearance, highlighted changes in the interactome of p62, a known aggregation marker and hereby identified the Rett syndrome protein MeCP2 as being affected. Moreover, our approach revealed-among others-a vulnerability of the extracellular matrix, cytoskeleton and lipid homeostasis. CONCLUSION We demonstrated that CQ exposure (secondarily) impacts biological processes beyond lysosomal function and linked a variety of proteins with known roles in the manifestation of other neuromuscular diseases.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Denisa Hathazi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Corinna Preuße
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Artur Czech
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Erik Freier
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Gerta Shema
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, Department of Biochemistry and Medical Genetics, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB, Canada
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
16
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
17
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
18
|
Immunohistochemical Expression of p62 in Feline Mammary Carcinoma and Non-Neoplastic Mammary Tissue. Animals (Basel) 2022; 12:ani12151964. [PMID: 35953953 PMCID: PMC9367523 DOI: 10.3390/ani12151964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein. In human oncology, although the interest in the function of this protein is recent, the knowledge is now numerous, but its role in tumorigenesis is not yet clear. This preliminary study aims to evaluate the immunohistochemical expression of p62 in 38 cases of feline mammary carcinoma with different grades of differentiation and in 12 non-neoplastic mammary gland tissues, to assess the expression level and a possible correlation with malignancy. The expression of p62 was statistically higher in carcinoma compared to non-neoplastic mammary glands: 28 feline mammary carcinomas (73.7%) had a high p62 expression score, three (7.9%) had a moderate expression, while seven cases (18.4%) had a low expression. The grade of the differentiation of the carcinoma was not correlated with the p62 expression. This study represents the first approach in feline oncology that correlates p62 expression in feline mammary carcinoma. Our results, although preliminary, are similar to the results of human breast cancer, therefore, also in the cat, p62 could be considered a possible oncotarget.
Collapse
|
19
|
Wang L, Hensley CR, Howell ME, Ning S. Bioinformatics-Driven Identification of p62 as A Crucial Oncogene in Liver Cancer. Front Oncol 2022; 12:923009. [PMID: 35814476 PMCID: PMC9263135 DOI: 10.3389/fonc.2022.923009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is the major form of liver cancer that is the fourth most common cause of cancer death worldwide. It has been reported that the multifunctional protein p62 (also known as SQSTM1) plays a cancer-promoting role in LIHC, but the detailed mechanisms underlying p62 interaction with LIHC remains unclear. To gain a comprehensive understanding of p62 interaction with LIHC in clinical settings, we performed bioinformatic analyses using various online algorithms derived from high throughput profiling. Our results indicate that p62 expression is significantly upregulated, partially due to its promoter demethylation, rather than p62 gene mutation, in LIHC. Mutation of TP53, CTNNB1, or ALB significantly correlates with, and mutation of AXIN1 reversely correlates with, the p62 expression level. Its upregulation occurs as early as liver cirrhosis, and go through all stages of the carcinogenesis. HCV infection makes a significant contribution to p62 upregulation in LIHC. We further identified p62-associated molecular signatures in LIHC, including many genes that are involved in antioxidant stress and metabolism, such as SRX1 and TXNRD1. Regarding to the clinical outcome, p62 expression level reversely correlates with the survival of LIHC patients (p<0.01). Importantly, we experimentally validated that p62 depletion in liver cancer cell lines downregulates the expression of SRX1 and TXNRD1 at both transcriptional and translational levels, and reduces cell proliferation. As the potential mechanisms underlying the tumor-promoting role of p62, we show that p62 upregulation is remarkably associated with reprogramming of pathways mediated by p53, Wnt/β-catenin, and Keap1-NRF2, which are crucial for oncogenesis in many contexts. Our findings provide a comprehensive insight into the interaction between p62 and LIHC, offering valuable information for understanding of LIHC pathogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- *Correspondence: Ling Wang,
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mary E. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
20
|
Roy PK, Biswas A, Deepak K, Mandal M. An insight into the ubiquitin-proteasomal axis and related therapeutic approaches towards central nervous system malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188734. [PMID: 35489645 DOI: 10.1016/j.bbcan.2022.188734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The Ubiquitin-Protease system (UPS) is a major destruction system that is responsible for the elimination of dysfunctional/misfolded proteins, thus acting as a pivotal regulator of protein homeostasis in eukaryotic cells. In this review, the UPS system and its various functions in the cell and their detailed impact such as cell cycle control, DNA damage response, apoptosis, and cellular stress regulations have been elucidated with a focus on the central nervous system. Since the Ubiquitin-Protease pathway(UPP) plays a prominent role in the sculpting of the CNS cells and their maintenance, it is naturally deeply involved in many malignancies that develop due to dysregulation of the UPS. Understanding the major disruptive players of the UPS in the development of these malignancies, for example, insoluble protein aggregates or inclusion bodies deposits due to malfunctioning of the UPS has paved the pathway for the development of new therapeutics. Here, the de-regulation of the UPS at various checkpoints in CNS malignancies has been detailed, thus facilitating an easy comprehension of the different targets that remain to be explored yet. The present therapeutic advancements in the field of CNS malignancies management through UPS targeting have also been included thus broadening the scope of drug development. Thus, this review while shedding sufficient light on the details of the UPS system and its connection to CNS malignancies, also opens new avenues for therapeutic advancements in the form of novel targetable UPP proteins and their interactions.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India..
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India..
| |
Collapse
|
21
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
22
|
Prognostic Value of LC3B and p62 Expression in Small Intestinal Adenocarcinoma. J Clin Med 2021; 10:jcm10225398. [PMID: 34830679 PMCID: PMC8624293 DOI: 10.3390/jcm10225398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a mechanism that maintains cellular homeostasis, is involved in tumor cell growth and survival in cancer, and autophagy inhibitors have been tested clinical trials for anticancer therapy. To elucidate the clinical and prognostic implications of autophagy in small intestinal adenocarcinoma (SIAC), we assessed the expression of autophagy markers, LC3B and p62, in 171 surgically resected primary SIACs using automated quantitative analysis. Positive LC3B, p62 nuclear (p62Nu), and p62 cytoplasmic (p62Cy) expression was observed in 23 (13.5%), 52 (30.4%), and 43 (25.1%) carcinomas, respectively. LC3B+ expression was correlated with undifferentiated carcinoma (p < 0.001) and high histologic grade (p = 0.029). The combined expression of LC3B and p62Nu (LC3+/p62Nu+) was related to the older age of patients (p = 0.017), undifferentiated carcinoma (p < 0.001), and high grade (p = 0.031). LC3B+ (p = 0.006), p62Cy+ (p = 0.041), or p62Nu+ (p = 0.006) expression were associated with worse survival. In addition, SIAC patients with either LC3B+/p62Nu+ (p = 0.001) or LC3B+/p62Cy+ (p = 0.002) expression had shorter survival times. In multivariate analysis, LC3B expression remained an independent prognostic factor (p = 0.025) for overall survival. In conclusion, autophagy may play a role in the tumorigenesis of SIACs, and LC3B and p62 could be used as prognostic biomarkers and potential therapeutic targets for SIACs.
Collapse
|
23
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
24
|
Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio 2021; 12:e0109721. [PMID: 34488443 PMCID: PMC8546576 DOI: 10.1128/mbio.01097-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023] Open
Abstract
The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Juan Zhao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Shanna R. Horne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kaylea B. Mohr
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
25
|
Wu Q, Xiang M, Wang K, Chen Z, Long L, Tao Y, Liang Y, Yan Y, Xiao Z, Qiu S, Yi B. Overexpression of p62 Induces Autophagy and Promotes Proliferation, Migration and Invasion of Nasopharyngeal Carcinoma Cells through Promoting ERK Signaling Pathway. Curr Cancer Drug Targets 2021; 20:624-637. [PMID: 32329689 DOI: 10.2174/1568009620666200424145122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/02/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Increasing evidence has shown that p62 plays an important role in tumorigenesis. However, relatively little is known about the association between p62 and tumor invasion and metastasis; in addition, its role in NPC (nasopharyngeal carcinoma, NPC) has been rarely investigated. OBJECTIVE To investigate the effect of p62 on tumorigenesis and metastasis in nasopharyngeal carcinoma. METHODS Western blotting, immunofluorescent staining and immunohistochemistry were used to evaluate p62 protein expression. Subsequently, cell viability, colony formation, migration, invasion and autophagy assays were performed. anti-p62 autoantibodies in sera were detected by ELISA. These data were correlated with clinicopathological parameters. RESULTS We confirmed that p62 was significantly up-regulated in NPC tissues. Furthermore, high expression of p62 was observed in NPC cell lines, and especially in the highly metastatic 5-8F cells. In vitro, down-regulation of p62 inhibited proliferation, clone forming ability, autophagy, migration, and invasion in 5-8F cells, whereas p62 overexpression resulted in the opposite effects in 6-10B cells. Moreover, we confirmed that p62 promotes NPC cell proliferation, migration, and invasion by activating ERK (extracellular signal-regulated kinase, ERK). Clinical analysis indicated that high p62 expression correlates with lymph node and distant metastasis (P<0.05). Serum anti-p62 autoantibodies were increased in NPC patients and levels were associated with metastasis. CONCLUSION Our data establish p62 targeting ERK as potential determinant in the NPC, which supplies a new pathway to treat NPC. Furthermore, p62 is a potential biomarker which might be closely related to the tumorigenesis and metastasis in NPC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Manlin Xiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Zhen Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Lu Long
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Ya Tao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Yahui Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shiyang Qiu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
26
|
The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer. Biomedicines 2021; 9:biomedicines9070707. [PMID: 34206503 PMCID: PMC8301319 DOI: 10.3390/biomedicines9070707] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
p62 is a highly conserved, multi-domain, and multi-functional adaptor protein critically involved in several important cellular processes. Via its pronounced domain architecture, p62 binds to numerous interaction partners, thereby influencing key pathways that regulate tissue homeostasis, inflammation, and several common diseases including cancer. Via binding of ubiquitin chains, p62 acts in an anti-inflammatory manner as an adaptor for the auto-, xeno-, and mitophagy-dependent degradation of proteins, pathogens, and mitochondria. Furthermore, p62 is a negative regulator of inflammasome complexes. The transcription factor Nrf2 regulates expression of a bundle of ROS detoxifying genes. p62 activates Nrf2 by interaction with and autophagosomal degradation of the Nrf2 inhibitor Keap1. Moreover, p62 activates mTOR, the central kinase of the mTORC1 sensor complex that controls cell proliferation and differentiation. Through different mechanisms, p62 acts as a positive regulator of the transcription factor NF-κB, a central player in inflammation and cancer development. Therefore, p62 represents not only a cargo receptor for autophagy, but also a central signaling hub, linking several important pro- and anti-inflammatory pathways. This review aims to summarize knowledge about the molecular mechanisms underlying the roles of p62 in health and disease. In particular, different types of tumors are characterized by deregulated levels of p62. The elucidation of how p62 contributes to inflammation and cancer progression at the molecular level might promote the development of novel therapeutic strategies.
Collapse
|
27
|
Santos-Galdiano M, González-Rodríguez P, Font-Belmonte E, Ugidos IF, Anuncibay-Soto B, Pérez-Rodríguez D, Fernández-López A. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 2021; 58:1404-1417. [PMID: 33184783 DOI: 10.1007/s12035-020-02202-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
Collapse
Affiliation(s)
- María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Irene F Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at Department of Life Sciences, Imperial College London (ICL), London, UK
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
- Currently at Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
| |
Collapse
|
28
|
β-Arrestin inhibition induces autophagy, apoptosis, G0/G1 cell cycle arrest in agonist-activated V2R receptor in breast cancer cells. Med Oncol 2021; 38:38. [PMID: 33721131 DOI: 10.1007/s12032-021-01484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Non-visual arrestins (β-arrestins) are endocytic proteins that mediate agonist-activated GPCRs internalization and signaling pathways in an independent manner. The involvement of β-arrestins in cancer invasion and metastasis is increasingly reported. So, it is hypothesized that inhibition of β-arrestins may diminish the survival chances of cancer cells. This study aimed to evaluate the in vitro impact of inhibiting β-arrestins on the autophagic and/or apoptotic responsiveness of breast cancer cells. We used Barbadin to selectively inhibit β-Arr/AP2 interaction in AVP-stimulated V2R receptor of triple-negative breast cancer cells (MDA MB-231). Autophagy was assessed by the microtubule-associated protein 1 light chain 3-II (LC3II), apoptosis was measured by Annexin-V/PI staining and cell cycle distribution was investigated based upon the DNA content using flow cytometry. Barbadin reduced cell viability to 69.1% and increased the autophagy marker LC3II and its autophagic effect disappeared in cells transiently starved in Earle's balanced salt solution (EBSS). Also, Barbadin mildly enhanced the expression of P62 mRNA and arrested 63.7% of cells in G0/G1 phase. In parallel, the drug-induced apoptosis in 29.9% of cells (by AV/PI) and 27.8% of cells were trapped in sub-G1 phase. The apoptotic effect of Barbadin was enhanced when autophagy was inhibited by the PI3K inhibitor (Wortmannin). Conclusively, the data demonstrate the dual autophagic and apoptotic effects of β-βArr/AP2 inhibition in triple-negative breast cancer cells. These observations nominate β-Arrs as selective targets in breast cancer treatment.
Collapse
|
29
|
Huang M, Zhou Y, Duan D, Yang C, Zhou Z, Li F, Kong Y, Hsieh YC, Zhang R, Ding W, Xiao W, Puno P, Chen C. Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib. Cancer Lett 2021; 504:125-136. [PMID: 33607208 DOI: 10.1016/j.canlet.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
Increasing evidence suggested that a number of ubiquitin enzymes, including ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, E3 ubiquitin ligases and deubiquitination enzymes contribute to therapeutic resistance in triple-negative breast cancer (TNBC) cells. Inhibition of these enzymes with small molecule inhibitors may restore therapeutic sensitivity. Here, we demonstrated ubiquitin conjugating enzyme UbcH5b strongly supports HECTD3 auto-ubiquitination in vitro. Based on this, we developed a Fluorescence Resonance Energy Transfer (FRET) assay and identified three Schisandraceae triterpenoids, including PC3-15, to block HECTD3/UbcH5b auto-ubiquitination. Furthermore, we revealed that PC3-15 directly binds to UbcH5b and also inhibits UbcH5b-mediated p62 ubiquitination. We found that the UbcH5b-p62 axis confers TNBC cells resistance to lapatinib by promoting autophagy. Consistently, PC3-15 inhibits lapatinib-induced autophagy and increases lapatinib sensitivity in TNBC in vitro and in mouse xenografts. These findings suggest that the UbcH5b-p62 axis provides potential therapeutic targets and that Schisandraceae triterpenoids may be used for TNBC treatment in combination with lapatinib.
Collapse
Affiliation(s)
- Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yuanfei Zhou
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Fubing Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yi-Ching Hsieh
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming, 650091, China
| | - Wenping Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming, 650091, China
| | - PemaTenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
30
|
Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021; 57:131-147. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Endothelial mitochondria play important signaling roles critical for the regulation of various cellular processes, including calcium signaling, ROS generation, NO synthesis or inflammatory response. Mitochondrial stress or disturbances in mitochondrial function may participate in the development and/or progression of endothelial dysfunction and could precede vascular diseases. Vascular functions are also strictly regulated by properly functioning degradation machinery, including autophagy and mitophagy, and tightly coordinated by mitochondrial and endoplasmic reticulum responses to stress. Within this review, current knowledge related to the development of cardiovascular disorders and the importance of mitochondria, endoplasmic reticulum and degradation mechanisms in vascular endothelial functions are summarized.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur str. 02-093 Warsaw, Poland.
| |
Collapse
|
31
|
Kaur H, Moreau R. Curcumin represses mTORC1 signaling in Caco-2 cells by a two-sided mechanism involving the loss of IRS-1 and activation of AMPK. Cell Signal 2020; 78:109842. [PMID: 33234350 DOI: 10.1016/j.cellsig.2020.109842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central modulator of inflammation and tumorigenesis in the gastrointestinal tract. Growth factors upregulate mTORC1 via the PI3K/AKT and/or Ras/MAPK signal pathways. Curcumin (CUR), a polyphenol found in turmeric roots (Curcuma longa) can repress mTORC1 kinase activity in colon cancer cell lines; however, key aspects of CUR mechanism of action remain to be elucidated including its primary cellular target. We investigated the molecular effects of physiologically attainable concentration of CUR (20 μM) in the intestinal lumen on mTORC1 signaling in Caco-2 cells. CUR markedly inhibited mTORC1 kinase activity as determined by the decreased phosphorylation of p70S6K (Thr389, -99%, P < 0.0001) and S6 (Ser235/236, -92%, P < 0.0001). Mechanistically, CUR decreased IRS-1 protein abundance (-80%, P < 0.0001) thereby downregulating AKT phosphorylation (Ser473, -94%, P < 0.0001) and in turn PRAS40 phosphorylation (Thr246, -99%, P < 0.0001) while total PRAS40 abundance was unchanged. The use of proteasome inhibitor MG132 showed that CUR-mediated loss of IRS-1 involved proteasomal degradation. CUR lowered Raptor protein abundance, which combined with PRAS40 hypophosphorylation, suggests CUR repressed mTORC1 activity by inducing compositional changes that hinder the complex assembly. In addition, CUR activated AMPK (Thr172 phosphorylation, P < 0.0001), a recognized repressor of mTORC1, and AMPK upstream regulator LKB1. Although cargo adapter protein p62 was decreased by CUR (-49%, P < 0.004), CUR did not significantly induce autophagy. Inhibition of AKT/mTORC1 signaling by CUR may have lifted the cross-inhibition onto MAPK signaling, which became induced; p-ERK1/2 (+670%, P < 0.0001), p-p38 (+1433%, P < 0.0001). By concomitantly targeting IRS-1 and AMPK, CUR's mechanism of mTORC1 inhibition is distinct from that of rapamycin.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
32
|
Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020; 8:590192. [PMID: 33224954 PMCID: PMC7674637 DOI: 10.3389/fcell.2020.590192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Duke University School of Medicine, Durham, NC, United States
| | - Michael F Coleman
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane B Pearce
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander J Pfeil
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suhas K Etigunta
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
33
|
Ning S, Wang L. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Curr Cancer Drug Targets 2020; 19:468-478. [PMID: 30332964 PMCID: PMC8052633 DOI: 10.2174/1568009618666181016164920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
The multifunctional signaling hub p62 is well recognized as a ubiquitin sensor and a selective autophagy receptor. As a ubiquitin sensor, p62 promotes NFκB activation by facilitating TRAF6 ubiquitination and aggregation. As a selective autophagy receptor, p62 sorts ubiquitinated substrates including p62 itself for lysosome-mediated degradation. p62 plays crucial roles in myriad cellular processes including DNA damage response, aging/senescence, infection and immunity, chronic inflammation, and cancerogenesis, dependent on or independent of autophagy. Targeting p62-mediated autophagy may represent a promising strategy for clinical interventions of different cancers. In this review, we summarize the transcriptional and post-translational regulation of p62, and its mechanistic roles in cancers, with the emphasis on its roles in regulation of DNA damage response and its connection to the cGAS-STING-mediated antitumor immune response, which is promising for cancer vaccine design.
Collapse
Affiliation(s)
- Shunbin Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Ling Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
34
|
Yokota A, Hiramoto M, Hino H, Tokuhisa M, Miyazaki M, Kazama H, Takano N, Miyazawa K. Sequestosome 1 (p62) accumulation in breast cancer cells suppresses progesterone receptor expression via argonaute 2. Biochem Biophys Res Commun 2020; 531:256-263. [PMID: 32800344 DOI: 10.1016/j.bbrc.2020.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
Sequestosome 1 (p62) is a multifunctional adapter protein involved in various physiological functions, such as selective autophagy and oxidative stress response. Hence, aberrant expression and defective regulation of p62 are thought to lead to the onset of various diseases, including cancer. The expression of p62 has been shown to be increased in breast cancer tissues, and is correlated with a poor prognosis. However, the role of p62 in the breast cancer pathophysiology is still unclear. Here, we aimed to analyze the effect of changes in p62 expression on breast cancer cell lines. DNA microarray analysis revealed that the expression of progesterone receptor (PR), which is one of the indices for the classification of breast cancer subtypes, was markedly suppressed by forced expression of p62. The protein expression of PR was also decreased by forced expression of p62, but increased by knockdown of p62. Moreover, we found that p62 knockdown induced the protein expression of argonaute 2 (AGO2). Luciferase reporter assay results showed that the gene expression of PR was promoted by AGO2. Furthermore, results revealed that overexpression of AGO2 partially rescued the decrease in PR expression induced by forced expression of p62. Collectively, our findings indicated that p62 accumulation suppressed the expression of AGO2, which in turn decreased the expression of PR, suggesting that p62 may serve as a marker of aggressive breast cancer and poor prognosis. Moreover, the p62-AGO2-PR axis was identified as a crucial signaling cascade in breast cancer progression.
Collapse
Affiliation(s)
- Ayuka Yokota
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| |
Collapse
|
35
|
Ye T, Feng J, Wan X, Xie D, Liu J. Double Agent: SPDEF Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer. Cancer Manag Res 2020; 12:3891-3902. [PMID: 32547225 PMCID: PMC7259446 DOI: 10.2147/cmar.s243748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
The dichotomy of cancer-regulatory genes into “oncogenes (OCGs)” and “tumor-suppressor genes (TSGs)” has greatly helped us in learning molecular details of tumor biology. SPDEF, known as the prostate-derived ETS factor, is reported to play a pivotal role in normal cell development and survival, which has also been endowed with dual characteristics in cancers. Breast cancer (BC) is a highly heterogeneous disease which becomes the leading reason for cancer-related fatality among women worldwide. The involvement of SPDEF in many aspects of BC has been postulated, whereas the mechanism governing the regulation of the pro- and anti-oncogenic activities of SPDEF in BC state remains poorly defined. In this review, we summarized SPDEF as the double agent involving in expression profiles, the regulatory mechanism in BC progression, as well as the role in diagnosis, treatment and prognosis of BC. The understanding of SPDEF duality has contributed to gain insight into the tumor biology and also add a new dimension to the new therapy targets for BC.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| |
Collapse
|
36
|
Shin WH, Park JH, Chung KC. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Rep 2020. [PMID: 31818366 PMCID: PMC6999829 DOI: 10.5483/bmbrep.2020.53.1.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we’ll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson’s disease, one of the major neurodegenerative diseases, will be briefly reviewed.
Collapse
Affiliation(s)
- Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
37
|
Alza L, Nàger M, Visa A, Cantí C, Herreros J. FAK Inhibition Induces Glioblastoma Cell Senescence-Like State through p62 and p27. Cancers (Basel) 2020; 12:E1086. [PMID: 32349327 PMCID: PMC7281094 DOI: 10.3390/cancers12051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
Focal adhesion kinase (FAK) is a central component of focal adhesions that regulate cancer cell proliferation and migration. Here, we studied the effects of FAK inhibition in glioblastoma (GBM), a fast growing brain tumor that has a poor prognosis. Treating GBM cells with the FAK inhibitor PF-573228 induced a proliferative arrest and increased cell size. PF-573228 also reduced the growth of GBM neurospheres. These effects were associated with increased p27/CDKN1B levels and β-galactosidase activity, compatible with acquisition of senescence. Interestingly, FAK inhibition repressed the expression of the autophagy cargo receptor p62/SQSTM-1. Moreover, depleting p62 in GBM cells also induced a senescent-like phenotype through transcriptional upregulation of p27. Our results indicate that FAK inhibition arrests GBM cell proliferation, resulting in cell senescence, and pinpoint p62 as being key to this process. These findings highlight the possible therapeutic value of targeting FAK in GBM.
Collapse
Affiliation(s)
- Lía Alza
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Mireia Nàger
- Department of Medical Biology, UiT The Arctic University of Norway, 9010 Tromsø, Norway;
| | - Anna Visa
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Carles Cantí
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Judit Herreros
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| |
Collapse
|
38
|
Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem 2020; 193:112231. [PMID: 32193054 DOI: 10.1016/j.ejmech.2020.112231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
p62/SQSTM1 (hereafter as p62) is a stress-inducible cellular protein, which interacts with various signaling proteins to regulate a variety of cellular functions. Growing lines of evidence supported a critical role of p62 in tumorigenesis, and p62 may become a therapeutic target for tumor. In this review, we summarize biological functions of structural domains of p62, reported bioactive molecules targeting p62, and the relationship between p62 and tumorigenesis.
Collapse
Affiliation(s)
- Mengmin Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Abstract
RNA-binding proteins typically change the fate of RNA, such as stability, translation or processing. Conversely, we recently uncovered that the small non-coding vault RNA 1-1 (vtRNA1-1) directly binds to the autophagic receptor p62/SQSTM1 and changes the protein's function. We refer to this process as 'riboregulation'. Here, we discuss this newly uncovered vault RNA function against the background of three decades of vault RNA research. We highlight the vtRNA1-1-p62 interaction as an example of riboregulation of a key cellular process.
Collapse
Affiliation(s)
- Magdalena Büscher
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
40
|
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19:12. [PMID: 31969156 PMCID: PMC6975070 DOI: 10.1186/s12943-020-1138-4] [Citation(s) in RCA: 1035] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, as a type II programmed cell death, plays crucial roles with autophagy-related (ATG) proteins in cancer. Up to now, the dual role of autophagy both in cancer progression and inhibition remains controversial, in which the numerous ATG proteins and their core complexes including ULK1/2 kinase core complex, autophagy-specific class III PI3K complex, ATG9A trafficking system, ATG12 and LC3 ubiquitin-like conjugation systems, give multiple activities of autophagy pathway and are involved in autophagy initiation, nucleation, elongation, maturation, fusion and degradation. Autophagy plays a dynamic tumor-suppressive or tumor-promoting role in different contexts and stages of cancer development. In the early tumorigenesis, autophagy, as a survival pathway and quality-control mechanism, prevents tumor initiation and suppresses cancer progression. Once the tumors progress to late stage and are established and subjected to the environmental stresses, autophagy, as a dynamic degradation and recycling system, contributes to the survival and growth of the established tumors and promotes aggressiveness of the cancers by facilitating metastasis. This indicates that regulation of autophagy can be used as effective interventional strategies for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, 100044, China.,Department of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
41
|
Nawas AF, Kanchwala M, Thomas-Jardin SE, Dahl H, Daescu K, Bautista M, Anunobi V, Wong A, Meade R, Mistry R, Ghatwai N, Bayerl F, Xing C, Delk NA. IL-1-conferred gene expression pattern in ERα + BCa and AR + PCa cells is intrinsic to ERα - BCa and AR - PCa cells and promotes cell survival. BMC Cancer 2020; 20:46. [PMID: 31959131 PMCID: PMC6971947 DOI: 10.1186/s12885-020-6529-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR− BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR− BCa and PCa cells to promote HR-independent survival and tumorigenicity. Methods We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR− BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. Results We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR− cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR− BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR− cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR− cell lines. Conclusions Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.
Collapse
Affiliation(s)
- Afshan F Nawas
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Mohammed Kanchwala
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shayna E Thomas-Jardin
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Haley Dahl
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Kelly Daescu
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Monica Bautista
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Vanessa Anunobi
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Ally Wong
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Rachel Meade
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Ragini Mistry
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Nisha Ghatwai
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Felix Bayerl
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Chao Xing
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nikki A Delk
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA.
| |
Collapse
|
42
|
Abstract
p62 is a multifunctional protein involved in multiple cellular processes including proliferation, drug sensitivity and autophagy-associated cancer cell growth. However, the role of p62 in colon cancer remains controversial. Here we investigated the expression of p62 protein in colon cancer and its clinical significance.Patients with colon adenocarcinoma who underwent resection at the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital) were retrospectively analyzed. The expression of p62 protein in tumor tissues and adjacent normal tissues was detected by immunohistochemistry and western-blotting. Real-time quantitative polymerase chain reaction was used to detect the expression level of p62 messenger ribonucleic acid in specimens. Progression-free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meier method and the log-rank test.A total of 85 colon cancer patients were enrolled, including 55 (64.71%) patients with high p62 expression, and 30 (35.29%) patients with low p62 expression. The transcription and expression level of p62 in colon cancer tissues were higher than those in adjacent normal tissues (P < .01). High expression of p62 was an independent risk factor for the poor prognosis (PFS and OS) of colon cancer.p62 may be a potential indicator of determining the progression and prognosis evaluation of colon cancer.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Gastrointestinal Surgery the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)
| | - Bing Zhao
- Department of Day Oncology Unit the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)
| | - Lin Liu
- Department of Gastrointestinal Surgery the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)
| | - Xiangyue Zeng
- Department of Gastrointestinal Surgery the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)
| | - Zhen Yu
- Department of Gastrointestinal Surgery the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)
| | - Xiyan Wang
- The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, China
| |
Collapse
|
43
|
Wu X, Sun R, Wang H, Yang B, Wang F, Xu H, Chen S, Zhao R, Pi J, Xu Y. Enhanced p62-NRF2 Feedback Loop due to Impaired Autophagic Flux Contributes to Arsenic-Induced Malignant Transformation of Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1038932. [PMID: 31781319 PMCID: PMC6875345 DOI: 10.1155/2019/1038932] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Chronic exposure to arsenic induces a variety of cancers, particularly in the skin. Autophagy is a highly conserved process which plays a dual role in tumorigenesis. In the present study, we found that chronic exposure to an environmentally relevant dose of arsenite induced malignant transformation of human keratinocytes (HaCaT) with dysregulated autophagy as indicated by an increased number of autophagosomes, activation of mTORC1 pathway, and elevated protein levels of p62 and LC3II. Meanwhile, arsenite-transformed cells showed lower intracellular levels of reactive oxygen species compared with control. Silencing p62 ameliorated elevation in mRNA levels of NRF2 downstream genes (AKR1C1 and NQO1) and malignant phenotypes (acquired invasiveness and anchor-independent growth) induced by chronic arsenite exposure. On the other hand, silencing NRF2 abrogated the increase in mRNA and protein levels of p62 and malignant phenotypes induced by arsenite. In response to acute arsenite exposure, impaired autophagic flux with an increase in p62 protein level and interrupted autophagosome-lysosome fusion was observed. The increase in p62 protein levels in response to arsenite was not completely dependent on NRF2 activation and at least partially attributed to protein degradation. Our data indicate that accumulation of p62 by impaired autophagic flux is involved in the activation of NRF2 and contributes to skin tumorigenesis due to chronic arsenite exposure.
Collapse
Affiliation(s)
- Xiafang Wu
- School of Public Health, China Medical University, China
- The First Hospital of China Medical University, China
| | - Ru Sun
- School of Public Health, China Medical University, China
| | - Huihui Wang
- School of Public Health, China Medical University, China
| | - Bei Yang
- College of Basic Medical Sciences, China Medical University, China
| | - Fang Wang
- School of Public Health, China Medical University, China
| | - Hongtao Xu
- College of Basic Medical Sciences, China Medical University, China
| | - Shimin Chen
- School of Public Health, China Medical University, China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, China
| | - Jingbo Pi
- School of Public Health, China Medical University, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, China
| |
Collapse
|
44
|
Mariotti F, Magi GE, Gavazza A, Vincenzetti S, Komissarov A, Shneider A, Venanzi FM. p62/SQSTM1 expression in canine mammary tumours: Evolutionary notes. Vet Comp Oncol 2019; 17:570-577. [PMID: 31332942 DOI: 10.1111/vco.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/30/2022]
Abstract
Recent studies highlighted the role of autophagy as a cardinal regulatory system for homeostasis and cancer-related signalling pathways. In this context, the deregulated expression of p62 - Sequestosome1 (p62/SQSTM1) - a protein acting both as an autophagy receptor and signalling hub, has been associated with tumour development and chronic inflammation. Multiple clinical studies test drugs targeting autophagy, and even more research is on the way to clinical trials. However, no comparative investigations have been carried out to identify adequate preclinical models to assess p62-based medicine. In veterinary oncology the role of p62 in cancer-related pathways has been largely ignored. We compared p62 sequences in multiple organisms and found that canine p62 significantly diverges from the humans and from other animals sequences. Then, we chart by immunohistochemistry the expression levels of p62 in canine mammary tumours. A total of 66 tumours and 10 non-neoplastic mammary samples were examined. The expression of p62 was higher in normal tissue and adenomas than carcinomas, with lowest levels of p62 protein detected in high grade carcinomas. In all cases examined the tumour stroma appeared to be p62-negative. Taken together our results would suggest that in dogs the association between p62 expression and cancer cells overturns that reported in human breast carcinoma, where p62 accumulates in malignant cells as compared to normal epithelium. Thus, at least in canine mammary tumours, p62 should be not considered a tumour-rejection antigen for an anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Francesca Mariotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | | | - Alex Shneider
- CureLab Oncology. Inc. Dedham Boston, Massachusetts.,Department of Molecular Biology, Ariel University, Ariel, Israel.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Maria Venanzi
- CureLab Oncology. Inc. Dedham Boston, Massachusetts.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
45
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
46
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
47
|
Wang L, Howell MEA, Sparks-Wallace A, Hawkins C, Nicksic CA, Kohne C, Hall KH, Moorman JP, Yao ZQ, Ning S. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog 2019; 15:e1007541. [PMID: 31017975 PMCID: PMC6502431 DOI: 10.1371/journal.ppat.1007541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Caroline Hawkins
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Carissa Kohne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Kenton H. Hall
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
48
|
Nawas A, Narayanan S, Mistry R, Thomas-Jardin S, Ramachandran J, Ravichandran J, Neduvelil E, Luangpanh K, Delk NA. IL-1 induces p62/SQSTM1 and autophagy in ERα + /PR + BCa cell lines concomitant with ERα and PR repression, conferring an ERα - /PR - BCa-like phenotype. J Cell Biochem 2019; 120:1477-1491. [PMID: 30324661 PMCID: PMC6465183 DOI: 10.1002/jcb.27340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Estrogen receptor α (ERα)low/- tumors are associated with breast cancer (BCa) endocrine resistance, where ERα low tumors show a poor prognosis and a molecular profile similar to triple negative BCa tumors. Interleukin-1 (IL-1) downregulates ERα accumulation in BCa cell lines, yet the cells can remain viable. In kind, IL-1 and ERα show inverse accumulation in BCa patient tumors and IL-1 is implicated in BCa progression. IL-1 represses the androgen receptor hormone receptor in prostate cancer cells concomitant with the upregulation of the prosurvival, autophagy-related protein, Sequestome-1 (p62/SQSTM1; hereinafter, p62); and given their similar etiology, we hypothesized that IL-1 also upregulates p62 in BCa cells concomitant with hormone receptor repression. To test our hypothesis, BCa cell lines were exposed to conditioned medium from IL-1-secreting bone marrow stromal cells (BMSCs), IL-1, or IL-1 receptor antagonist. Cells were analyzed for the accumulation of ERα, progesterone receptor (PR), p62, or the autophagosome membrane protein, microtubule-associated protein 1 light chain 3 (LC3), and for p62-LC3 interaction. We found that IL-1 is sufficient to mediate BMSC-induced ERα and PR repression, p62 and autophagy upregulation, and p62-LC3 interaction in ERα+ /PR+ BCa cell lines. However, IL-1 does not significantly elevate the high basal p62 accumulation or high basal autophagy in the ERα- /PR- BCa cell lines. Thus, our observations imply that IL-1 confers a prosurvival ERα- /PR- molecular phenotype in ERα+ /PR+ BCa cells that may be dependent on p62 function and autophagy and may underlie endocrine resistance.
Collapse
Affiliation(s)
- A.F. Nawas
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - S. Narayanan
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - R. Mistry
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - S.E. Thomas-Jardin
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - J. Ramachandran
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - J. Ravichandran
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - E. Neduvelil
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - K. Luangpanh
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - N. A. Delk
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| |
Collapse
|
49
|
Tábuas-Pereira M, Almendra L, Almeida MR, Durães J, Pinho A, Matos A, Negrão L, Geraldo A, Santana I. Increased risk of melanoma in C9ORF72 repeat expansion carriers: A case-control study. Muscle Nerve 2018; 59:362-365. [PMID: 30447080 DOI: 10.1002/mus.26383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are considered part of the same pathological spectrum. There is an increased risk of ALS in patients who have had melanoma. The risk of FTLD in melanoma (or cancer) patients is unknown. We aimed to study if C9ORF72 expansion is linked to a higher prevalence of melanoma. METHODS We selected patients with a diagnosis in the ALS-FTLD spectrum who were tested for pathogenic mutations. Medical history was reviewed, to identify those with pathologically documented melanomas. RESULTS We included 189 patients. Sixty-two had identified pathogenic mutations (39 C9ORF72). C9ORF72 carriers had a significantly higher risk of melanoma (odds ratio = 24.709; P < 0.007). There was no association with phenotype. CONCLUSIONS These findings suggest that patients with a history of melanoma may have an increased probability of carrying a C9ORF72 repeat expansion. ALS or FTLD carriers of C9ORF72 should undergo surveillance for skin changes. Muscle Nerve 59:362-365, 2019.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Luciano Almendra
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | | | - João Durães
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - André Pinho
- Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Anabela Matos
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Luis Negrão
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Argemiro Geraldo
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Isabel Santana
- CHUC, Serviço de Neurologia, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
50
|
Sánchez-Martín P, Saito T, Komatsu M. p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J 2018; 286:8-23. [PMID: 30499183 PMCID: PMC7379270 DOI: 10.1111/febs.14712] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/11/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
p62 is a stress‐inducible protein able to change among binding partners, cellular localizations and form liquid droplet structures in a context‐dependent manner. This protein is mainly defined as a cargo receptor for selective autophagy, a process that allows the degradation of detrimental and unnecessary components through the lysosome. Besides this role, its ability to interact with multiple binding partners allows p62 to act as a main regulator of the activation of the Nrf2, mTORC1, and NF‐κB signaling pathways, linking p62 to the oxidative defense system, nutrient sensing, and inflammation, respectively. In the present review, we will present the molecular mechanisms behind the control p62 exerts over these pathways, their interconnection and how their deregulation contributes to cancer progression.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Tetsuya Saito
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|