1
|
Mota S, Rego L, Sousa E, Cruz MT, de Almeida IM. Usage Frequency and Ecotoxicity of Skin Depigmenting Agents. Pharmaceuticals (Basel) 2025; 18:368. [PMID: 40143144 PMCID: PMC11945762 DOI: 10.3390/ph18030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Depigmenting cosmetic products are a fast-growing segment of the health products market, driven by consumer demand to address skin hyperpigmentation. Simultaneously, interest in products with a reduced environmental impact is increasing. However, the potential environmental risks, especially in aquatic ecosystems, of depigmenting products remain unexplored. This study assesses the usage frequency of skin depigmenting agents in cosmetic products and compiles data on the biodegradability and acute aquatic toxicity of the most prevalent compounds. Methods: A market analysis of Portuguese pharmacies and parapharmacies in 2022 identified prevalent depigmenting agents. Scientific evidence on their biodegradability and acute aquatic toxicity was compiled, and when data was unavailable, in silico predictions were conducted. Results: The study identified the ten most-used depigmenting agents in cosmetic products, including hydroxy/keto acids, as well as vitamin C and derivatives, with a usage frequency surpassing 50%. While most were naturally derived and showed low environmental risk, synthetic and highly lipophilic depigmenting agents found in 35 of 70 products (ascorbyl tetraisopalmitate/tetrahexyldecyl ascorbate and resorcinol derivatives) showed a higher potential for environmental hazard. Conclusions: The findings underscore the need for further research on the presence of these cosmetic ingredients in aquatic ecosystems and a reassessment of regulatory frameworks concerning their environmental impact. Mitigation strategies should emphasize biodegradable alternatives, renewable sources, and molecular modifications to reduce toxicity while maintaining depigmenting efficacy and skin safety. This study provides original insights into commonly used depigmenting agents in the health products market and their chemical structures, offering valuable opportunities for innovation in chemical/pharmaceutical industries.
Collapse
Affiliation(s)
- Sandra Mota
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Liliana Rego
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isabel Martins de Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Zhang Y, Wang S, Yang A. Hydrolyzed conchiolin protein inhibits melanogenesis through PKA/CREB and MEK/ERK signalling pathways. Int J Cosmet Sci 2025; 47:31-44. [PMID: 39128885 PMCID: PMC11787999 DOI: 10.1111/ics.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Hydrolyzed conchiolin protein (HCP) derived from pearl and nacre extracts exerts skin-lightening effects; however, the underlying molecular mechanisms are not fully understood. Herein, we investigated the effect of HCP on melanogenesis and the signalling pathways involved. METHODS B16F10 cells and PIG cells were treated with HCP to verify its ability to inhibit melanin. Western Blot, immunofluorescence, and flow cytometry methods were performed to investigate the effect of HCP on melanogenesis signalling pathway proteins. The inhibitors were used to further validate the effect of HCP on PKA/CREB and MEK/ERK signalling pathways. To further evaluate the whitening ability of HCP, changes in melanin were detected using 3D melanin skin model and zebrafish model. RESULTS HCP was found to significantly inhibit melanin synthesis and decrease the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-2, in a dose-dependent manner. Additionally, we revealed that HCP suppresses melanogenesis via the regulation of the PKA/cAMP response element-binding (CREB) and MEK/extracellular signalling-regulated kinase (ERK) signalling pathways. Using 3D melanin skin models, we demonstrated that HCP can achieve skin-lightening effects by improving apparent chroma, increasing apparent brightness, and inhibiting melanin synthesis. Furthermore, HCP exhibits skin-whitening effects in a zebrafish model. CONCLUSION These results suggest that HCP suppresses the melanogenesis signalling cascade by inhibiting the PKA/CREB, MEK/ERK signalling pathway and downregulating MITF and its downstream signalling pathways, resulting in decreased melanin synthesis. In summary, HCP is a potential anti-pigmentation agent with promising applications in cosmetics and pharmaceutical products.
Collapse
Affiliation(s)
| | - Sisi Wang
- Osmum Biological Co., LtdHuzhouChina
| | | |
Collapse
|
3
|
Liao Y, Han T, Jiang D, Zhu C, Shi G, Li G, Shi H. Functions of thyroid hormone signaling in regulating melanophore, iridophore, erythrophore, and pigment pattern formation in spotted scat (Scatophagus argus). BMC Genomics 2025; 26:79. [PMID: 39871198 PMCID: PMC11773731 DOI: 10.1186/s12864-025-11286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis. In this study, exogenous thyroid hormones 3,5,3'-L-triiodothyronine (T3) and its inhibitor thiourea (TU) were used to treat spotted scat juveniles during the metamorphosis stage (from 60 to 90 dpf). The function and molecular mechanism of thyroid hormone signaling in regulating body color patterns formation was revealed, using the micro-observation of pigments cells distribution, colorimetric evaluation and carotenoids concentration measurement by spectrophotometry, and comparative transcriptome analysis. RESULTS Spotted scat body color patterns consisted of whole body black color, black bar, black and red spots, and its final pattern was formed through the metamorphosis. When spotted scat were treated with the inhibitor TU to disrupt thyroid hormone signaling, the levels of T3 and T4 were significantly decreased, the melanophores numbers were significantly increased, as well as the expression of genes involved in melanin synthesis and melanophore differentiation (tyr, tyrp1, dct, mitf, pmel, oca2, slc24a5, and erbb3) was significantly increased. Besides, the expression of genes associated with carotenoids and pteridine metabolism (apod, pnpla2, rdh12, stard10, xdh, abca1, retsat, scarb1, rgs2, and gch1) and carotenoids accumulation were stimulated, when thyroid hormone signaling was disrupted by TU. On the contrary, the levels of T3 and T4 were significantly elevated in spotted scat treated with T3, which could weaken the skin redness and reduce the number of black spots and melanophores, as well as the number and diameter of larval erythrophores. Notably, unlike melanophores and erythrophores, the differentiation of iridophore was promoted by thyroid hormones, gene related to iridophore differentiation (fhl2-l, fhl2, ltk, id2a, alx4) and guanine metabolism (gmps, hprt1, ppat, impdh1b) were up-regulated after T3 treatment, but they were down-regulated after TU treatment. CONCLUSIONS Above results showed that thyroid hormone signaling might play critical roles in regulation pigments synthesis and deposition, thereby affecting pigment cells (melanophores, iridophores and erythrophores) formation and body color patterns. The mechanisms of hyperthyroid and hypothyroid on different pigment cells development were different. Excess thyroid hormone might impact the rearrangement of melanophore by regulating cell cycle, resulting in the abnormalities of black spots in spotted scat. Meanwhile, the excessed thyroid hormone could reduce the number and diameter of larval erythrophores, as well as weaken the skin redness of juvenile erythrophores, but they were enhanced by the disruption of thyroid hormone. However, the formation of iridophore differentiation and guanine synthesis genes expression were stimulated by thyroid hormones. These findings provide new insights for exploring the formation of body color patterns in fish, and help to elucidate the molecular mechanism of thyroid hormone in regulating pigment cell development and body coloration, and may also contribute to selective breeding of ornamental fish.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tong Han
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunhua Zhu
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
| | - Gang Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - GuangLi Li
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongjuan Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
4
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Zhu Y, Li Q. Mitf involved in shell pigmentation by activating tyrosinase-mediated melanin synthesis in Pacific oyster (Crassostrea gigas). Gene 2024; 897:148086. [PMID: 38104952 DOI: 10.1016/j.gene.2023.148086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
9
|
Uto T, Tung NH, Ohta T, Shoyama Y. (+)-Magnolin Enhances Melanogenesis in Melanoma Cells and Three-Dimensional Human Skin Equivalent; Involvement of PKA and p38 MAPK Signaling Pathways. PLANTA MEDICA 2022; 88:1199-1208. [PMID: 35211932 DOI: 10.1055/a-1740-7325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnoliae Flos is a traditional herbal medicine used to treat nasal congestion associated with headache, empyema, and allergic rhinitis. In our preliminary screening of crude drugs used in Japanese Kampo formulas for melanin synthesis, the methanol extract of Magnoliae Flos was found to exhibit strong melanin synthesis activity. However, there have been no studies evaluating the effects of Magnoliae Flos or its constituents on melanogenesis. The present study aimed to isolate the active compounds from Magnoliae Flos that activate melanin synthesis in melanoma cells and three-dimensional human skin equivalent, and to investigate the molecular mechanism underlying melanin induction. The methanol extract of Magnoliae Flos induced an increase of melanin content in both B16-F1 and HMV-II cells. A comparison of melanin induction by three fractions prepared from the extract showed that the ethyl acetate fraction markedly induced melanin synthesis. Bioassay-guided separation of the ethyl acetate fraction resulted in the isolation of seven lignans (1: - 7: ). Among them, (+)-magnolin (5: ) strongly induced melanin synthesis and intracellular tyrosinase activity. Furthermore, the ethyl acetate fraction and 5: clearly induced melanin content in a three-dimensional human skin equivalent. Molecular analysis revealed that 5: triggered the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Further analysis of transcriptional factors and signaling pathways demonstrated that 5: induces the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2 activated by the protein kinase A- and p38 mitogen-activated protein kinase-dependent pathways, leading to cAMP-responsive element-binding protein phosphorylation and microphthalmia-associated transcription factor expression. These findings demonstrate the potential of 5: as a potent therapeutic agent for hypopigmentation.
Collapse
Affiliation(s)
- Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Nguyen Huu Tung
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Tomoe Ohta
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| |
Collapse
|
10
|
Antioxidant and Anti-Melanogenesis Effects of Colloidal Gold Camellia sinensis L. Extracts. Molecules 2022; 27:molecules27175593. [PMID: 36080359 PMCID: PMC9457959 DOI: 10.3390/molecules27175593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
Green tea extract derived from the leaves of Camellia sinensis L. (CS), is a representative beverage with antioxidant, anti-cancer, and anti-viral properties. CS extract is also used in cosmetics. Colloidal gold is generally a sol or colloidal suspension of gold nanoparticles in water. Colloidal gold green tea (CGCS), cultivated as a fertilizer using this colloidal gold solution, contains gold minerals and possesses anti-inflammatory, analgesic, and anti-tumor properties. However, the skin bioactivity of CGCS has not yet been investigated. In this study, we investigated the effect of the CGCS extract on skin whitening. CGCS extract contained high levels of phenols and flavonoids and displayed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in a concentration-dependent manner. CGCS extract inhibited melanin synthesis and tyrosinase activity in B16F10 cells more effectively than the CS extract. Moreover, the CGCS extract decreased the expression levels of the melanogenesis-related proteins, tyrosinase, tyrosinase-related proteins (TRPs), and microphthalmia-associated transcription factor (MITF). In conclusion, our study showed that the CGCS extract inhibits the expression of tyrosinase, TRP-1, and TRP-2 via the downregulation of MITF, thereby inhibiting melanin synthesis. Therefore, CGCS can potentially be used as a skin-whitening ingredient in the cosmetic industry.
Collapse
|
11
|
Oh E, Kim HJ, Lee D, Kang JH, Kim HG, Han SH, Baek NI, Kim KT. 8-Methoxybutin inhibits α-MSH induced melanogenesis and proliferation of skin melanoma by suppression of the transactivation activity of microphthalmia-associated transcription factor. Biomed Pharmacother 2022; 152:113272. [PMID: 35716437 DOI: 10.1016/j.biopha.2022.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is highly expressed in melanocytes and is the main regulator of melanogenesis and melanocyte cell fate. Although MITF is important for the differentiation and development of melanocytes, it is also considered an oncogene of skin melanoma. Based on these findings, MITF could be an attractive therapeutic target for skin cancer intervention. This study identified 8-methoxybutin as an inhibitor of MITF and investigated the underlying mechanism. 8-Methoxybutin inhibited α-MSH-induced melanogenesis in murine melanoma cells (B16F10) and skin melanoma proliferation by reducing melanogenic gene expression via blockade of the transactivation activity of MITF. In silico docking analysis and pull-down analysis suggested that 8-methoxybutin binds to the DNA-binding domain of MITF and further inhibits its binding to the E-box in the promoter of target genes, including tyrosinase. In addition, 8-methoxybutin suppressed growth of skin melanoma in a xenograft mouse model. These results indicate that 8-methoxybutin has potential as a therapeutic agent for hyperpigmentation disorder and skin cancer. SIGNIFICANCE STATEMENT: 8-Methoxybutin inhibits MITF transactivation activity resulting suppression of melanogenesis and skin melanoma growth.
Collapse
Affiliation(s)
- Eunji Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Hyo Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Jeong Hwa Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Hyung Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Seung Hyun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Nam In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea.
| |
Collapse
|
12
|
On the evolutionary origins and regionalization of the neural crest. Semin Cell Dev Biol 2022; 138:28-35. [PMID: 35787974 DOI: 10.1016/j.semcdb.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
The neural crest is a vertebrate-specific embryonic stem cell population that gives rise to a vast array of cell types throughout the animal body plan. These cells are first born at the edges of the central nervous system, from which they migrate extensively and differentiate into multiple cellular derivatives. Given the unique set of structures these cells comprise, the origin of the neural crest is thought to have important implications for the evolution and diversification of the vertebrate clade. In jawed vertebrates, neural crest cells exist as distinct subpopulations along the anterior-posterior axis. These subpopulations differ in terms of their respective differentiation potential and cellular derivatives. Thus, the modern neural crest is characterized as multipotent, migratory, and regionally segregated throughout the embryo. Here, we retrace the evolutionary origins of the neural crest, from the appearance of conserved regulatory circuitry in basal chordates to the emergence of neural crest subpopulations in higher vertebrates. Finally, we discuss a stepwise trajectory by which these cells may have arisen and diversified throughout vertebrate evolution.
Collapse
|
13
|
Gutierrez-Prat N, Zuberer HL, Mangano L, Karimaddini Z, Wolf L, Tyanova S, Wellinger LC, Marbach D, Griesser V, Pettazzoni P, Bischoff JR, Rohle D, Palladino C, Vivanco I. DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF. Life Sci Alliance 2022; 5:5/9/e202101235. [PMID: 35580987 PMCID: PMC9113946 DOI: 10.26508/lsa.202101235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.
Collapse
Affiliation(s)
- Nuria Gutierrez-Prat
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Hedwig L Zuberer
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Mangano
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Zahra Karimaddini
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Luise Wolf
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Stefka Tyanova
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Vera Griesser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Piergiorgio Pettazzoni
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - James R Bischoff
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Chiara Palladino
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Igor Vivanco
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
14
|
Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:113-123. [PMID: 35203061 PMCID: PMC8890945 DOI: 10.4196/kjpp.2022.26.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via down-regulation of PKA/CREB/MITF signaling pathway.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Sungkwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
15
|
Loxl3 Promotes Melanoma Progression and Dissemination Influencing Cell Plasticity and Survival. Cancers (Basel) 2022; 14:cancers14051200. [PMID: 35267510 PMCID: PMC8909883 DOI: 10.3390/cancers14051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Malignant melanoma is the most lethal skin cancer due to its aggressive clinical behavior and therapeutic resistance. A comprehensive knowledge of the molecular mechanisms underlying melanoma progression is urgently needed to improve the survival of melanoma patients. Phenotypic plasticity of melanoma cells has emerged as a key process in melanomagenesis and therapy resistance. This phenotypic plasticity is sustained by an epithelial-to-mesenchymal (EMT)-like program that favors multiple intermediate states and allows adaptation to changing microenvironments along melanoma progression. Given the essential role of lysyl oxidase-like 3 (LOXL3) in human melanoma cell survival and its contribution to EMT, we generated mice with conditional melanocyte-specific targeting of Loxl3, concomitant to Braf activation and Pten deletion. Our results supported a key role of Loxl3 for melanoma progression, metastatic dissemination, and genomic stability, and supported its contribution to melanoma phenotypic plasticity by modulating the expression of several EMT transcription factors (EMT-TFs). Abstract Malignant melanoma is a highly aggressive tumor causing most skin cancer-related deaths. Understanding the fundamental mechanisms responsible for melanoma progression and therapeutic evasion is still an unmet need for melanoma patients. Progression of skin melanoma and its dissemination to local or distant organs relies on phenotypic plasticity of melanoma cells, orchestrated by EMT-TFs and microphthalmia-associated TF (MITF). Recently, melanoma phenotypic switching has been proposed to uphold context-dependent intermediate cell states benefitting malignancy. LOXL3 (lysyl oxidase-like 3) promotes EMT and has a key role in human melanoma cell survival and maintenance of genomic integrity. To further understand the role of Loxl3 in melanoma, we generated a conditional Loxl3-knockout (KO) melanoma mouse model in the context of BrafV600E-activating mutation and Pten loss. Melanocyte-Loxl3 deletion increased melanoma latency, decreased tumor growth, and reduced lymph node metastatic dissemination. Complementary in vitro and in vivo studies in mouse melanoma cells confirmed Loxl3’s contribution to melanoma progression and metastasis, in part by modulating phenotypic switching through Snail1 and Prrx1 EMT-TFs. Importantly, a novel LOXL3-SNAIL1-PRRX1 axis was identified in human melanoma, plausibly relevant to melanoma cellular plasticity. These data reinforced the value of LOXL3 as a therapeutic target in melanoma.
Collapse
|
16
|
Wang Y, Duan T, Hong M, Zhou Y, Huang H, Xiao X, Zheng J, Zhou H, Lu Z. Quantitative proteomic analysis uncovers inhibition of melanin synthesis by silk fibroin via MITF/tyrosinase axis in B16 melanoma cells. Life Sci 2021; 284:119930. [PMID: 34480938 DOI: 10.1016/j.lfs.2021.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
AIMS Silk fibroin (SF), a natural product from silkworms, has been used to promote anti-inflammation, induce wound healing, and reduce melanin production. However, the underlying regulatory mechanism of SF on melanin production remains unknown. The aim of this study was to investigate the distinct regulatory mechanism of SF in B16 melanoma cells by applying quantitative proteomic approach. MATERIALS AND METHODS B16 melanoma cells were treated with PBS, KA or SF for 48 h, respectively. Cell viability, melanin content, and tyrosinase activity were examined. A label-free quantitative proteomic approach was utilized to investigate the regulatory mechanism of SF. The differentially expressed proteins and their related biological processes were subsequently identified by bioinformatics methods. Furthermore, the identified differentially expressed proteins were validated by western blot. KEY FINDINGS Both SF and KA were able to suppress the melanin synthesis of B16 melanoma cells without appreciable toxicity; yet, SF had a distinct effect on mushroom tyrosinase activity in vitro. Moreover, quantitative proteomic approach identified 141 proteins differentially expressed only in SF/Con group. Bioinformatic analysis of these proteins revealed that oxidation-reduction process, RNA processing, fatty acid degradation, as well as melanin biosynthetic process were enriched with SF treatment. The proteins associated with melanin biosynthetic process, including microphthalmia-associated transcription factor (MITF) and tyrosinase, were down-regulated in SF group, which was confirmed by western blot. SIGNIFICANCE SF inhibited melanin synthesis in B16 melanoma cells via down-regulation of MITF and tyrosinase expression, which provides a rationale for future utilization of SF.
Collapse
Affiliation(s)
- Yuqiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianbi Duan
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Yanting Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Huang
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Zheng
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hu Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China.
| |
Collapse
|
17
|
Cajanin Suppresses Melanin Synthesis through Modulating MITF in Human Melanin-Producing Cells. Molecules 2021; 26:molecules26196040. [PMID: 34641584 PMCID: PMC8512678 DOI: 10.3390/molecules26196040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Despite its classification as a non-life-threatening disease, increased skin pigmentation adversely affects quality of life and leads to loss of self-confidence. Until now, there are no recommended remedies with high efficacy and human safety for hyperpigmentation. This study aimed to investigate anti-melanogenic activity and underlying mechanism of cajanin, an isoflavonoid extracted from Dalbergia parviflora Roxb. (Leguminosae) in human melanin-producing cells. Culture with 50 μM cajanin for 48–72 h significantly suppressed proliferation in human melanoma MNT1 cells assessed via MTT viability assay. Interestingly, cajanin also efficiently diminished melanin content in MNT1 cells with the half maximum inhibitory concentration (IC50) at 77.47 ± 9.28 μM. Instead of direct inactivating enzymatic function of human tyrosinase, down-regulated mRNA and protein expression levels of MITF and downstream melanogenic enzymes, including tyrosinase, TRP-1 and Dct (TRP-2) were observed in MNT1 cells treated with 50 μM cajanin for 24–72 h. Correspondingly, treatment with cajanin modulated the signaling pathway of CREB and ERK which both regulate MITF expression level. Targeted suppression on MITF-related proteins in human melanin-producing cells strengthens the potential development of cajanin as an effective treatment for human hyperpigmented disorders.
Collapse
|
18
|
Jang HS, Chen Y, Ge J, Wilkening AN, Hou Y, Lee HJ, Choi YR, Lowdon RF, Xing X, Li D, Kaufman CK, Johnson SL, Wang T. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biol 2021; 22:282. [PMID: 34607603 PMCID: PMC8489059 DOI: 10.1186/s13059-021-02493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Zebrafish pigment cell differentiation provides an attractive model for studying cell fate progression as a neural crest progenitor engenders diverse cell types, including two morphologically distinct pigment cells: black melanophores and reflective iridophores. Nontrivial classical genetic and transcriptomic approaches have revealed essential molecular mechanisms and gene regulatory circuits that drive neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to pigment cell differentiation, especially in the context of iridophore cell fate, is poorly understood. RESULTS We chart the global changes in the epigenetic landscape, including DNA methylation and chromatin accessibility, during neural crest differentiation into melanophores and iridophores to identify epigenetic determinants shaping cell type-specific gene expression. Motif enrichment in the epigenetically dynamic regions reveals putative transcription factors that might be responsible for driving pigment cell identity. Through this effort, in the relatively uncharacterized iridophores, we validate alx4a as a necessary and sufficient transcription factor for iridophore differentiation and present evidence on alx4a's potential regulatory role in guanine synthesis pathway. CONCLUSIONS Pigment cell fate is marked by substantial DNA demethylation events coupled with dynamic chromatin accessibility to potentiate gene regulation through cis-regulatory control. Here, we provide a multi-omic resource for neural crest differentiation into melanophores and iridophores. This work led to the discovery and validation of iridophore-specific alx4a transcription factor.
Collapse
Affiliation(s)
- Hyo Sik Jang
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
- Present address: Department of Epigenetics, Van Andel Institute, Grand Rapids, MI USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Jiaxin Ge
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Alicia N. Wilkening
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - You Rim Choi
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Rebecca F. Lowdon
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Charles K. Kaufman
- Department of Medicine, Division of Medical Oncology, and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
19
|
Azam MS, Kim JI, Choi CG, Choi J, Lee B, Kim HR. Sargahydroquinoic Acid Suppresses Hyperpigmentation by cAMP and ERK1/2-Mediated Downregulation of MITF in α-MSH-Stimulated B16F10 Cells. Foods 2021; 10:foods10102254. [PMID: 34681303 PMCID: PMC8534327 DOI: 10.3390/foods10102254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Hyperpigmentation diseases of the skin require topical treatment with depigmenting agents. We investigated the hypopigmented mechanisms of sargahydroquinoic acid (SHQA) in alpha-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells. SHQA reduced cellular tyrosinase (TYR) activity and melanin content in a concentration-dependent manner and attenuated the expression of TYR and tyrosinase-related protein 1 (TRP1), along with their transcriptional regulator, microphthalmia-associated transcription factor (MITF). SHQA also suppressed α-MSH-induced cellular production of cyclic adenosine monophosphate (cAMP), which inhibited protein kinase A (PKA)-dependent cAMP-responsive element-binding protein (CREB) activation. Docking simulation data showed a potential binding affinity of SHQA to the regulatory subunit RIIβ of PKA, which may also adversely affect PKA and CREB activation. Moreover, SHQA activated ERK1/2 signaling in B16F10 cells, stimulating the proteasomal degradation of MITF. These data suggest that SHQA ameliorated hyperpigmentation in α-MSH-stimulated B16F10 cells by downregulating MITF via PKA inactivation and ERK1/2 phosphorylation, indicating that SHQA is a potent therapeutic agent against skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (M.S.A.); (J.-I.K.); (J.C.)
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (M.S.A.); (J.-I.K.); (J.C.)
| | - Chang Geun Choi
- Department of Ecological Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea;
| | - Jinkyung Choi
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (M.S.A.); (J.-I.K.); (J.C.)
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (M.S.A.); (J.-I.K.); (J.C.)
- Correspondence: (B.L.); (H.-R.K.)
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (M.S.A.); (J.-I.K.); (J.C.)
- Correspondence: (B.L.); (H.-R.K.)
| |
Collapse
|
20
|
Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo. Clin Cosmet Investig Dermatol 2021; 14:1089-1103. [PMID: 34511958 PMCID: PMC8423189 DOI: 10.2147/ccid.s319061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
Purpose Vitiligo is an acquired depigmentation skin disease, which affects an average of 1% of the world’s population. The purpose of this study is to identify the key genes and pathways responsible for vitiligo and find new therapeutic targets. Methods The datasets GSE65127, GSE53146, and GSE75819 were downloaded from the Gene Expression Omnibus (GEO) database. R language was used to identify the differentially expressed genes (DEGs) between lesional skin of vitiligo and non-lesional skin. Next, the key pathways were obtained by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein–protein interaction (PPI) networks were conducted by STRING database and Cytoscape software. Subsequently, module analysis was performed by Cytoscape. Among these results, the Wnt/β-catenin pathway and melanogenesis pathway caught our attention. The expression level of β-catenin, microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) was detected by immunofluorescence in vitiligo lesions and healthy skin. Moreover, zebrafish was treated with XAV-939, an inhibitor of the Wnt/β-catenin pathway. After that, the area of melanin granules as a percentage of the head area was measured. The mRNA expression of β-catenin, lymphoid-enhancing factor 1(lef1), tyr and mitf were detected by q-PCR (quantitative polymerase chain reaction) in zebrafish (Danio rerio). Results A total of 2442 DEGs were identified, including 1068 upregulated and 1374 downregulated DEGs. The key pathways were identified by GO and KEGG analyses, such as “NOD-like receptor signaling pathway”, “Wnt signaling pathway”, “Melanogenesis”, “mTOR signaling pathway”, “PI3K-Akt signaling pathway”, “Calcium signaling pathway” and “Rap1 signaling pathway”. The immunofluorescence results showed that the level of β-catenin, MITF and TYR was significantly downregulated in vitiligo lesional skin. In zebrafish, the mean percentage area of melanin granules and the expression of β-catenin, lef1, tyr and mitf were decreased after treated with XAV-939. Conclusion The present study identified key genes and signaling pathways associated with the pathophysiology of vitiligo. Among them, the Wnt/β-catenin pathway played an essential role in pigmentation and could be a breakthrough point in vitiligo treatment.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Hong Jia
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xiu-Lian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Qian Zhang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Medicine 3, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen Nuremberg, Erlangen, Bavaria, Germany
| | - Juan Ji
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Sun L, Arbesman J. Canonical Signaling Pathways in Melanoma. Clin Plast Surg 2021; 48:551-560. [PMID: 34503716 DOI: 10.1016/j.cps.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma is the most lethal type of skin cancer, originating from the uncontrolled proliferation of melanocytes. The transformation of normal melanocytes into malignant tumor cells has been a focus of research seeking to better understand melanoma's pathogenesis and develop new therapeutic targets. Over the past few decades, a conglomeration of studies has pinpointed several driver mutations and their associated signaling pathways. In this review, we summarize the key signaling pathways and the driver mutations involved in melanoma tumorigenesis and also discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Lillian Sun
- Cleveland Clinic, Lerner College of Medicine at Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Joshua Arbesman
- Department of Dermatology, Cleveland Clinic, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Vidács DL, Veréb Z, Bozó R, Flink LB, Polyánka H, Németh IB, Póliska S, Papp BT, Manczinger M, Gáspár R, Mirdamadi S, Kemény L, Bata-Csörgő Z. Phenotypic plasticity of melanocytes derived from human adult skin. Pigment Cell Melanoma Res 2021; 35:38-51. [PMID: 34467641 DOI: 10.1111/pcmr.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
We previously described a novel in vitro culture technique for dedifferentiated human adult skin melanocytes. Melanocytes cultured in a defined, cholera toxin and PMA free medium became bipolar, unpigmented, and highly proliferative. Furthermore, TRP-1 and c-Kit expression disappeared and EGFR receptor and nestin expression were induced in the cells. Here, we further characterized the phenotype of these dedifferentiated cells and by comparing them to mature pigmented melanocytes we detected crucial steps in their phenotype change. Our data suggest that normal adult melanocytes easily dedifferentiate into pluripotent stem cells given the right environment. This dedifferentiation process described here for normal melanocyte is very similar to what has been described for melanoma cells, indicating that phenotype switching driven by environmental factors is a general characteristic of melanocytes that can occur independent of malignant transformation.
Collapse
Affiliation(s)
- Dániel László Vidács
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Hilda Polyánka
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Genomic Medicine and Bioinformatics Core Facility, The University of Debrecen, Debrecen, Hungary
| | - Benjamin Tamás Papp
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Seyedmohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
23
|
Bian C, Li R, Wen Z, Ge W, Shi Q. Phylogenetic Analysis of Core Melanin Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in Fish. Front Genet 2021; 12:707228. [PMID: 34422008 PMCID: PMC8371935 DOI: 10.3389/fgene.2021.707228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin is the most prevalent pigment in animals. Its synthesis involves a series of functional genes. Particularly, teleosts have more copies of these genes related to the melanin synthesis than tetrapods. Despite the increasing number of available vertebrate genomes, a few systematically genomic studies were reported to identify and compare these core genes for the melanin synthesis. Here, we performed a comparative genomic analysis on several core genes, including tyrosinase genes (tyr, tyrp1, and tyrp2), premelanosome protein (pmel), microphthalmia-associated transcription factor (mitf), and solute carrier family 24 member 5 (slc24a5), based on 90 representative vertebrate genomes. Gene number and mutation identification suggest that loss-of-function mutations in these core genes may interact to generate an albinism phenotype. We found nonsense mutations in tyrp1a and pmelb of an albino golden-line barbel fish, in pmelb of an albino deep-sea snailfish (Pseudoliparis swirei), in slc24a5 of cave-restricted Mexican tetra (Astyanax mexicanus, cavefish population), and in mitf of a transparent icefish (Protosalanx hyalocranius). Convergent evolution may explain this phenomenon since nonsense mutations in these core genes for melanin synthesis have been identified across diverse albino fishes. These newly identified nonsense mutations and gene loss will provide molecular guidance for ornamental fish breeding, further enhancing our in-depth understanding of human skin coloration.
Collapse
Affiliation(s)
- Chao Bian
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyong Wen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ge
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
A Novel Mutation in Cse1l Disrupts Brain and Eye Development with Specific Effects on Pax6 Expression. J Dev Biol 2021; 9:jdb9030027. [PMID: 34287339 PMCID: PMC8293161 DOI: 10.3390/jdb9030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Forward genetics in the mouse continues to be a useful and unbiased approach to identifying new genes and alleles with previously unappreciated roles in mammalian development and disease. Here, we report a new mouse allele of Cse1l that was recovered from an ENU mutagenesis screen. Embryos homozygous for the anteater allele of Cse1l display a number of variable phenotypes, with craniofacial and ocular malformations being the most obvious. We provide evidence that Cse1l is the causal gene through complementation with a novel null allele of Cse1l generated by CRISPR-Cas9 editing. While the variability in the anteater phenotype was high enough to preclude a detailed molecular analysis, we demonstrate a very penetrant reduction in Pax6 levels in the developing eye along with significant ocular developmental phenotypes. The eye gene discovery tool iSyTE shows Cse1l to be significantly expressed in the lens from early eye development stages in embryos through adulthood. Cse1l has not previously been shown to be required for organogenesis as homozygosity for a null allele results in very early lethality. Future detailed studies of Cse1l function in craniofacial and neural development will be best served with a conditional allele to circumvent the variable phenotypes we report here. We suggest that human next-generation (whole genome or exome) sequencing studies yielding variants of unknown significance in CSE1L could consider these findings as part of variant analysis.
Collapse
|
25
|
Park CH, Kim G, Lee Y, Kim H, Song MJ, Lee DH, Chung JH. A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway. J Dermatol Sci 2021; 103:16-24. [PMID: 34030962 DOI: 10.1016/j.jdermsci.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Melanin plays important roles in determining human skin color and protecting human skin cells against harmful ultraviolet light. However, abnormal hyperpigmentation in some areas of the skin may become aesthetically unpleasing, resulting in the need for effective agents or methods to regulate undesirable hyperpigmentation. OBJECTIVE We investigated the effect of harmine, a natural harmala alkaloid belonging to the beta-carboline family, on melanin synthesis and further explored the signaling pathways involved in its mechanism of action. METHODS Human MNT-1 melanoma cells and human primary melanocytes were treated with harmine, chemical inhibitors, small interfering RNAs, or mammalian expression vectors. Cell viability, melanin content, and expression of various target molecules were assessed. RESULTS Harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells. Inhibition of DYRK1A, a harmine target, decreased melanin synthesis and tyrosinase expression. Further studies revealed that nuclear translocation of NFATC3, a potential DYRK1A substrate, was induced via the harmine/DYRK1A pathway and that NFATC3 knockdown increased melanin synthesis and tyrosinase expression. Suppression of melanin synthesis and tyrosinase expression via the harmine/DYRK1A pathway was significantly attenuated by NFATC3 knockdown. Furthermore, harmine also decreased melanin synthesis and tyrosinase expression through regulation of NFATC3 in human primary melanocytes. CONCLUSION Our results indicate that harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway and suggest that the DYRK1A/NFATC3 pathway may be a potential target for the development of depigmenting agents.
Collapse
Affiliation(s)
- Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Goeun Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Hu S, Bai S, Dai Y, Yang N, Li J, Zhang X, Wang F, Zhao B, Bao G, Chen Y, Wu X. Deubiquitination of MITF-M Regulates Melanocytes Proliferation and Apoptosis. Front Mol Biosci 2021; 8:692724. [PMID: 34179099 PMCID: PMC8221579 DOI: 10.3389/fmolb.2021.692724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Microphthalmia-associated transcription factor-M (MITF-M) is the key gene in the proliferation and differentiation of melanocytes, which undergoes an array of post-translation modifications. As shown in our previous study, deubiquitinase USP13 is directly involved in melanogenesis. However, it is still ambiguous that the effect of USP13-mediated MITF-M expression on melanocytes proliferation and apoptosis. Herein, we found that MITF-M overexpressing melanocytes showed high cell proliferation, reduced apoptosis, and increased melanin levels. Besides, melanin-related genes, TYR, DCT, GPNMB, and PMEL, were significantly up-regulated in MITF-M overexpressing melanocytes. Furthermore, Exogenous USP13 significantly upregulated the endogenous MITF-M protein level, downregulated USP13 significantly inhibited MITF-M protein levels, without altering MITF-M mRNA expression. In addition, USP13 upregulation mitigated the MITF-M degradation and significantly increased the half-life of MITF-M. Also, USP13 stabilized the exogenous MITF protein levels. In conclusion, the MITF-M level was regulated by USP13 deubiquitinase in melanocytes, affecting melanocytes proliferation and apoptosis. This study provides the theoretical basis for coat color transformation that could be useful in the development of the new breed in fur animals.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guolian Bao
- Animal Husbandry and Veterinary Research Institute Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Goenka S, Simon SR. Novel Chemically Modified Curcumin (CMC) Analogs Exhibit Anti-Melanogenic Activity in Primary Human Melanocytes. Int J Mol Sci 2021; 22:ijms22116043. [PMID: 34205035 PMCID: PMC8199869 DOI: 10.3390/ijms22116043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpigmentation is a dermatological condition characterized by the overaccumulation and/or oversecretion of melanin pigment. The efficacy of curcumin as an anti-melanogenic therapeutic has been recognized, but the poor stability and solubility that have limited its use have inspired the synthesis of novel curcumin analogs. We have previously reported on comparisons of the anti-melanogenic activity of four novel chemically modified curcumin (CMC) analogs, CMC2.14, CMC2.5, CMC2.23 and CMC2.24, with that of parent curcumin (PC), using a B16F10 mouse melanoma cell model, and we have investigated mechanisms of inhibition. In the current study, we have extended our findings using normal human melanocytes from a darkly pigmented donor (HEMn-DP) and we have begun to study aspects of melanosome export to human keratinocytes. Our results showed that all the CMCs downregulated the protein levels of melanogenic paracrine mediators, endothelin-1 (ET-1) and adrenomedullin (ADM) in HaCaT cells and suppressed the phagocytosis of FluoSphere beads that are considered to be melanosome mimics. All the three CMCs were similarly potent (except CMC2.14, which was highly cytotoxic) in inhibiting melanin production; furthermore, they suppressed dendricity in HEMn-DP cells. CMC2.24 and CMC2.23 robustly suppressed cellular tyrosinase activity but did not alter tyrosinase protein levels, while CMC2.5 did not suppress tyrosinase activity but significantly downregulated tyrosinase protein levels, indicative of a distinctive mode of action for the two structurally related CMCs. Moreover, HEMn-DP cells treated with CMC2.24 or CMC2.23 partially recovered their suppressed tyrosinase activity after cessation of the treatment. All the three CMCs were nontoxic to human dermal fibroblasts while PC was highly cytotoxic. Our results provide a proof-of-principle for the novel use of the CMCs for skin depigmentation, since at low concentrations, ranging from 5 to 25 µM, the CMCs (CMC2.24, CMC2.23 and CMC2.5) were more potent anti-melanogenic agents than PC and tetrahydrocurcumin (THC), both of which were ineffective at melanogenesis at similar doses, as tested in HEMn-DP cells (with PC being highly toxic in dermal fibroblasts and keratinocytes). Further studies to evaluate the efficacy of CMCs in human skin tissue and in vivo studies are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Correspondence:
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
28
|
Zhang J, Mou Y, Gong H, Chen H, Xiao H. Microphthalmia-Associated Transcription Factor in Senescence and Age-Related Diseases. Gerontology 2021; 67:708-717. [PMID: 33940580 DOI: 10.1159/000515525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/27/2021] [Indexed: 02/05/2023] Open
Abstract
Although microphthalmia-associated transcription factor (MITF) has been known for decades as a key regulator for melanocytic differentiation, recent studies expanded its other roles in multiple biological processes. Among these newfound roles, the relationship between MITF and aging is attractive; however, the underlying mechanism remains elusive. Here, we review the documented cues that highlight the implication of MITF in the aging process and particularly discuss the possible mechanisms underlying the participation of MITF in cellular senescence. First, it summarizes the association of MITF with melanocytic senescence, including the roles of MITF in cell cycle regulation, DNA damage repair, oxidative stress response, and the generation of senescence-associated secretory phenotype. Then, it collects the information involving MITF-related senescent changes in nonmelanocytes, such as retinal pigment epithelium cells, osteoclasts, and cardiomyocytes. This review may deepen the understanding of MITF function and be helpful to develop new strategies for improving geriatric health.
Collapse
Affiliation(s)
- Jian Zhang
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Mou
- Geroscience and Chronic Disease Department, The 8th Municipal Hospital for the People, Chengdu, China
| | - Hui Gong
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Honghan Chen
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Xiao
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Novel Chemically Modified Curcumin (CMC) Derivatives Inhibit Tyrosinase Activity and Melanin Synthesis in B16F10 Mouse Melanoma Cells. Biomolecules 2021; 11:biom11050674. [PMID: 33946371 PMCID: PMC8145596 DOI: 10.3390/biom11050674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Skin hyperpigmentation disorders arise due to excessive production of the macromolecular pigment melanin catalyzed by the enzyme tyrosinase. Recently, the therapeutic use of curcumin for inhibiting tyrosinase activity and production of melanin have been recognized, but poor stability and solubility have limited its use, which has inspired synthesis of curcumin analogs. Here, we investigated four novel chemically modified curcumin (CMC) derivatives (CMC2.14, CMC2.5, CMC2.23 and CMC2.24) and compared them to the parent compound curcumin (PC) for inhibition of in vitro tyrosinase activity using two substrates for monophenolase and diphenolase activities of the enzyme and for diminution of cellular melanogenesis. Enzyme kinetics were analyzed using Lineweaver-Burk and Dixon plots and nonlinear curve-fitting to determine the mechanism for tyrosinase inhibition. Copper chelating activity, using pyrocatechol violet dye indicator assay, and antioxidant activity, using a DPPH radical scavenging assay, were also conducted. Next, the capacity of these derivatives to inhibit tyrosinase-catalyzed melanogenesis was studied in B16F10 mouse melanoma cells and the mechanisms of inhibition were elucidated. Inhibition mechanisms were studied by measuring intracellular tyrosinase activity, cell-free and intracellular α-glucosidase enzyme activity, and effects on MITF protein level and cAMP maturation factor. Our results showed that CMC2.24 showed the greatest efficacy as a tyrosinase inhibitor of all the CMCs and was better than PC as well as a popular tyrosinase inhibitor-kojic acid. Both CMC2.24 and CMC2.23 inhibited tyrosinase enzyme activity by a mixed mode of inhibition with a predominant competitive mode. In addition, CMC2.24 as well as CMC2.23 showed a comparable robust efficacy in inhibiting melanogenesis in cultured melanocytes. Furthermore, after removal of CMC2.24 or CMC2.23 from the medium, we could demonstrate a partial recovery of the suppressed intracellular tyrosinase activity in the melanocytes. Our results provide a proof-of-principle for the novel use of the CMCs that shows them to be far superior to the parent compound, curcumin, for skin depigmentation.
Collapse
|
30
|
Anti-Melanogenic Effects of Paederia foetida L. Extract via MAPK Signaling-Mediated MITF Downregulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, in order to explore the anti-melanogenic effect of PFE (Paederia foetida L. extract) and suggest its availability, B16F10 cells, which are murine melanoma cells, were stimulated with alpha-Melanocyte-stimulating hormone (α-MSH) to conduct an in vitro experiment. Treatment with PFE in B16F10 cells with activated melanogenesis due to stimulants showed that PFE significantly inhibits melanin content as well as intracellular tyrosinase activity within a range that does not cause cytotoxicity. In addition, Western blot assay demonstrated that PFE strongly inhibited the protein expression of not only tyrosinase-related protein (TRP)-1, -2, and tyrosinase, but also microphthalmia-associated transcription factor (MITF). Moreover, mechanism studies have shown that PFE processing inhibited the activation of melanin production by regulating the phosphorylation of each mitogen-activated protein kinase (MAPK) family in the MAPK signaling pathway. To test the biocompatibility of PFE on human skin, a primary skin irritation test was performed. The results revealed that PFE did not have any side effects on human skin. These findings suggest that PFE holds great potential as a skin whitening agent and in the prevention of hyperpigmentation disorders.
Collapse
|
31
|
Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun Rev 2021; 20:102761. [PMID: 33476816 DOI: 10.1016/j.autrev.2021.102761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) are a subset of T cells responsible for the regulation of immune responses, thereby maintaining immune homeostasis and providing immune tolerance to both self and non-self-antigens. An increasing number of studies revealed Treg numbers and functions in a variety of autoimmune diseases. Treg deficiency can cause the development of several autoimmune skin diseases including vitiligo, alopecia areata, pemphigoid and pemphigus, psoriasis, and systemic sclerosis. Many clinical trials have been performed for autoimmune conditions using polyclonal Tregs, but efficiency can be significantly improved using antigen-specific Tregs engineered using T cell receptor (TCR) or chimeric antigen receptor (CAR) constructs. In this review, we systematically reviewed altered frequencies, impaired functions, and phenotypic features of Tregs in autoimmune skin conditions. We also summarized new advances in TCR and CAR based antigen-specific Tregs tested both in animal models and in clinics. The advantages and limitations of each approach were carefully discussed emphasizing possible clinical relevance to patients with autoimmune skin diseases. Moreover, we have reviewed potential approaches for engineering antigen-specific Tregs, and strategies for overcoming possible hurdles in clinical applications. Thereby, antigen-specific Tregs can be infused using autologous adoptive cell transfer to restore Treg numbers and to provide local immune tolerance for autoimmune skin disorders.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
32
|
Identification of the ceRNA networks in α-MSH-induced melanogenesis of melanocytes. Aging (Albany NY) 2020; 13:2700-2726. [PMID: 33318297 PMCID: PMC7880406 DOI: 10.18632/aging.202320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
α-MSH is known for melanogenesis stimulation, and ceRNA is a new method involved in physiological regulation. However, whether ceRNA participates in α-MSH-induced melanogenesis remains unknown. We used ceRNA array to detect the expression profiles of lncRNAs, circRNAs, and mRNAs in melanocytes after α-MSH treatment. Moreover, the melanogenesis-related ceRNA regulatory networks were screened and validated. The expression profile analysis showed that 20 lncRNAs and 49 circRNAs changed five-fold after α-MSH treatment, while 933 mRNAs changed two-fold. Based on differentially expressed genes, GO and KEGG analysis were conducted and revealed that 14 genes were enriched in melanogenesis. Then, multiple lncRNA or circRNA-miRNA-mRNA ceRNA networks and lncRNA/circRNA-miRNA-mRNA quaternary ceRNA networks were identified. Thereinto, ENST00000606533, circ_0091223, and TYR expression were upregulated in α-MSH-treated melanocytes, while their complementary miR-1291 was decreased. Dual-luciferase reporter assay further verified that ENST00000606533 and circ_0091223 could bind to miR-1291. ENST00000606533 and circ_0091223 siRNAs decreased circ_0091223, ENST00000606533, and TYR expression, but increased miR-1291 expression. Conversely, miR-1291 mimics inhibited ENST00000606533, circ_0091223, and TYR expression. Moreover, miR-1291 inhibitor could reverse the inhibitory effect of the two siRNAs on TYR expression. Hence, the "ENST00000606533/circ_0091223-miR-1291-TYR" ceRNA network is involved in α-MSH-induced melanogenesis, and ceRNA networks may be potential therapeutic targets for skin pigmentation disorders.
Collapse
|
33
|
Molecular Plasticity in Animal Pigmentation: Emerging Processes Underlying Color Changes. Integr Comp Biol 2020; 60:1531-1543. [DOI: 10.1093/icb/icaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis
Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.
Collapse
|
34
|
Banik I, Cheng PF, Dooley CM, Travnickova J, Merteroglu M, Dummer R, Patton EE, Busch-Nentwich EM, Levesque MP. NRAS Q61K melanoma tumor formation is reduced by p38-MAPK14 activation in zebrafish models and NRAS-mutated human melanoma cells. Pigment Cell Melanoma Res 2020; 34:150-162. [PMID: 32910840 DOI: 10.1111/pcmr.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Oncogenic BRAF and NRAS mutations drive human melanoma initiation. We used transgenic zebrafish to model NRAS-mutant melanoma, and the rapid tumor onset allowed us to study candidate tumor suppressors. We identified P38α-MAPK14 as a potential tumor suppressor in The Cancer Genome Atlas melanoma cohort of NRAS-mutant melanomas, and overexpression significantly increased the time to tumor onset in transgenic zebrafish with NRAS-driven melanoma. Pharmacological activation of P38α-MAPK14 using anisomycin reduced in vitro viability of melanoma cultures, which we confirmed by stable overexpression of p38α. We observed that the viability of MEK inhibitor resistant melanoma cells could be reduced by combined treatment of anisomycin and MEK inhibition. Our study demonstrates that activating the p38α-MAPK14 pathway in the presence of oncogenic NRAS abrogates melanoma in vitro and in vivo. SIGNIFICANCE: The significance of our study is in the accountability of NRAS mutations in melanoma. We demonstrate here that activation of p38α-MAPK14 pathway can abrogate NRAS-mutant melanoma which is contrary to the previously published role of p38α-MAPK14 pathway in BRAF mutant melanoma. These results implicate that BRAF and NRAS-mutant melanoma may not be identical biologically. We also demonstrate the translational benefit of our study by using a small molecule compound-anisomycin (already in use for other diseases in clinical trials) to activate p38α-MAPK14 pathway.
Collapse
Affiliation(s)
- Ishani Banik
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christopher M Dooley
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jana Travnickova
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Munise Merteroglu
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Reinhard Dummer
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elizabeth E Patton
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
35
|
Perdomo J, Quintana C, González I, Hernández I, Rubio S, Loro JF, Reiter RJ, Estévez F, Quintana J. Melatonin Induces Melanogenesis in Human SK-MEL-1 Melanoma Cells Involving Glycogen Synthase Kinase-3 and Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21144970. [PMID: 32674468 PMCID: PMC7404125 DOI: 10.3390/ijms21144970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin is present in all living organisms where it displays a diversity of physiological functions. Attenuation of melanogenesis by melatonin has been reported in some mammals and also in rodent melanoma cells. However, melatonin may also stimulate melanogenesis in human melanoma cells through mechanisms that have not yet been revealed. Using the human melanoma cells SK-MEL-1 as a model, an increase in both tyrosinase activity and melanin was already observed at 24 h after melatonin treatment with maximal levels of both being detected at 72 h. This effect was associated with the induction in the expression of the enzymes involved in the synthesis of melanin. In this scenario, glycogen synthase kinase-3β seems to play a significant function since melatonin decreased its phosphorylation and preincubation with specific inhibitors of this protein kinase (lithium or BIO) reduced the expression and activity of tyrosinase. Blocking of PI3K/AKT pathway stimulated melanogenesis and the effect was suppressed by the inhibitors of glycogen synthase kinase-3β. Although melatonin is a recognized antioxidant, we found that it stimulates reactive oxygen species generation in SK-MEL-1 cells. These chemical species seem to be an important signal in activating the melanogenic process since the antioxidants N-acetyl-l-cysteine and glutathione decreased both the level and activity of tyrosinase stimulated by melatonin. Our results support the view that regulation of melanogenesis involves a cross-talk between several signaling pathways.
Collapse
Affiliation(s)
- Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - Carlos Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - Ignacio González
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - Inmaculada Hernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - Sara Rubio
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - Juan F. Loro
- Departamento de Ciencias Clínicas, Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science at San Antonio, San Antonio, TX 78229, USA;
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (J.P.); (C.Q.); (I.G.); (I.H.); (S.R.); (F.E.)
- Correspondence: ; Tel.: +34-928458792
| |
Collapse
|
36
|
Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134732. [PMID: 32630811 PMCID: PMC7369948 DOI: 10.3390/ijms21134732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.
Collapse
|
37
|
Induction of Melanogenesis by Fosfomycin in B16F10 Cells Through the Upregulation of P-JNK and P-p38 Signaling Pathways. Antibiotics (Basel) 2020; 9:antibiotics9040172. [PMID: 32290383 PMCID: PMC7235749 DOI: 10.3390/antibiotics9040172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin disodium salt (FDS), which is a water-soluble extract, is a bactericidal drug used to inhibit the synthesis of cells. Moreover, it has been found to be effective in the treatment of urinary tract infections. The present study was conducted to investigate the melanogenesis-stimulating effect of FDS in B16F10 cells. Several experiments were performed on B16F10 cells: the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, the melanin content assay, the cellular tyrosinase activity assay, and Western blotting. FDS upregulated the activity of tyrosinase in a dose-dependent manner at a wide concentration range of 0–1 mg/mL, which showed no cytotoxicity. It also increased the melanin content and the activity of the microphthalmia-associated transcription factor (MITF), tyrosinase related protein 1 (TRP-1), and tyrosinase related protein 2 (TRP-2) enzymes in a dose-dependent manner. Western blotting results showed that FDS clearly upregulated the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 pathways. These data are clear evidence of the melanogenesis-inducing effect of FDS in B16F10 murine melanoma cells.
Collapse
|
38
|
Bian C, Chen W, Ruan Z, Hu Z, Huang Y, Lv Y, Xu T, Li J, Shi Q, Ge W. Genome and Transcriptome Sequencing of casper and roy Zebrafish Mutants Provides Novel Genetic Clues for Iridophore Loss. Int J Mol Sci 2020; 21:ijms21072385. [PMID: 32235607 PMCID: PMC7177266 DOI: 10.3390/ijms21072385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals.
Collapse
Affiliation(s)
- Chao Bian
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| |
Collapse
|
39
|
Markiewicz E, Idowu OC. Melanogenic Difference Consideration in Ethnic Skin Type: A Balance Approach Between Skin Brightening Applications and Beneficial Sun Exposure. Clin Cosmet Investig Dermatol 2020; 13:215-232. [PMID: 32210602 PMCID: PMC7069578 DOI: 10.2147/ccid.s245043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Human skin demonstrates a striking variation in tone and color that is evident among multiple demographic populations. Such characteristics are determined predominantly by the expression of the genes controlling the quantity and quality of melanin, which can alter significantly due to the presence of small nucleotide polymorphism affecting various steps of the melanogenesis process and generally linked to the lighter skin phenotypes. Genetically determined, constitutive skin color is additionally complemented by the facultative melanogenesis and tanning responses; with high levels of melanin and melanogenic factors broadly recognized to have a protective effect against the UVR-induced molecular damage in darker skin. Long-term sun exposure, together with a genetic makeup responsible for the ability to tan or the activity of constitutive melanogenic factors, triggers defects in pigmentation across all ethnic skin types. However, sun exposure also has well documented beneficial effects that manifest at both skin homeostasis and the systemic level, such as synthesis of vitamin D, which is thought to be less efficient in the presence of high levels of melanin or potentially linked to the polymorphism in the genes responsible for skin darkening triggered by UVR. In this review, we discuss melanogenesis in a context of constitutive pigmentation, defined by gene polymorphism in ethnic skin types, and facultative pigmentation that is not only associated with the capacity to protect the skin against photo-damage but could also have an impact on vitamin D synthesis through gene polymorphism. Modulating the activities of melanogenic genes, with the focus on the markers specifically altered by polymorphism combined with differential requirements of sun exposure in ethnic skin types, could enhance the applications of already existing skin brightening factors and provide a novel approach toward improved skin tone and health in personalized skincare.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab Limited, The Core, Newcastle Helix, Newcastle Upon Tyne NE4 5TF, UK
| | | |
Collapse
|
40
|
Bahrami A, Bianconi V, Pirro M, Orafai HM, Sahebkar A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci 2020; 244:117341. [PMID: 31972208 DOI: 10.1016/j.lfs.2020.117341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/29/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved "self-eating" recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Theophylline enhances melanogenesis in B16F10 murine melanoma cells through the activation of the MEK 1/2, and Wnt/β-catenin signaling pathways. Food Chem Toxicol 2020; 137:111165. [DOI: 10.1016/j.fct.2020.111165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 11/18/2022]
|
42
|
Wang Y, Lan Y, Lu H. Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes via Mitochondrial Pathway. Photochem Photobiol 2020; 96:83-93. [PMID: 31730232 PMCID: PMC7004086 DOI: 10.1111/php.13178] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
G protein‐coupled receptors (GPCRs) are core switches connecting excellular survival or death signals with cellular signaling pathways in a context‐dependent manner. Opsin 3 (OPN3) belongs to the GPCR superfamily. However, whether OPN3 can control the survival or death of human melanocytes is not known. Here, we try to investigate the inherent function of OPN3 on the survival of melanocytes. Our results demonstrate that OPN3 knockdown by RNAi‐OPN3 in human epidermal melanocytes leads to cell apoptosis. The downregulation of OPN3 markedly reduces intracellular calcium levels and decreases phosphorylation of BAD. Attenuated BAD phosphorylation and elevated BAD protein level alter mitochondria membrane permeability, which trigger activation of BAX and inhibition of BCL‐2 and raf‐1. Activated BAX results in the release of cytochrome c and the loss of mitochondrial membrane potential. Cytochrome c complexes associate with caspase 9, forming a postmitochondrial apoptosome that activate effector caspases including caspase 3 and caspase 7. The release of apoptotic molecules eventually promotes the occurrence of apoptosis. In conclusion, we hereby are the first to prove that OPN3 is a key signal responsible for cell survival through a calcium‐dependent G protein‐coupled signaling and mitochondrial pathway.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
43
|
Melanogenic Effects of Maclurin Are Mediated through the Activation of cAMP/PKA/CREB and p38 MAPK/CREB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9827519. [PMID: 31949887 PMCID: PMC6942912 DOI: 10.1155/2019/9827519] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Melanogenesis is the biological process which the skin pigment melanin is synthesized to protect the skin against ultraviolet irradiation and other external stresses. Abnormal biology of melanocytes is closely associated with depigmented skin disorders such as vitiligo. In this study, we examined the effects of maclurin on melanogenesis and cytoprotection. Maclurin enhanced cellular tyrosinase activity as well as cellular melanin levels. We found that maclurin treatment increased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein- (TRP-) 1, TRP-2, and tyrosinase. Mechanistically, maclurin promoted melanogenesis through cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein-dependent upregulation of MITF. CREB activation was found to be mediated by p38 mitogen-activated protein kinase (MAPK) or cAMP-protein kinase A (PKA) signaling. In addition, maclurin-induced CREB phosphorylation was mediated through the activation of both the cAMP/PKA and the p38 MAPK signaling pathways. Maclurin-induced suppression of p44/42 MAPK activation also contributed to its melanogenic activity. Furthermore, maclurin showed protective effects against H2O2 treatment and UVB irradiation in human melanocytes. These findings indicate that the melanogenic effects of maclurin depend on increased MITF gene expression, which is mediated by the activation of both p38 MAPK/CREB and cAMP/PKA/CREB signaling. Our results thus suggest that maclurin could be useful as a protective agent against hypopigmented skin disorders.
Collapse
|
44
|
Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019; 122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, consumers' demand for cosmeceutical products with protective and therapeutic functions derived from natural sources have caused this industry to search for alternative active ingredients. Bioactive peptides have a wide spectrum of bioactivities, which make them ideal candidates for development of these cosmeceutical products. In vitro studies have demonstrated that bioactive peptides (obtained as extracts, hydrolysates, and/or individual peptides) exhibit biological properties including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes such as elastase, collagenase, tyrosinase and hyaluronidase. Some studies report multifunctional bioactive peptides that can simultaneously affect, beneficially, multiple physiological pathways in the skin. Moreover, in vivo studies have revealed that topical application or consumption of bioactive peptides possess remarkable skin protection. These properties suggest that bioactive peptides may contribute in the improvement of skin health by providing specific physiological functions, even though the mechanisms underlying the protective effect have not been completely elucidated. This review provides an overview of in vitro, in silico and in vivo properties of bioactive peptides with potential use as functional ingredients in the cosmeceutical field. It also describes the possible mechanisms involved as well as opportunities and challenges associated with their application.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States.
| |
Collapse
|
45
|
Russo R, Chiaramonte M, Lampiasi N, Zito F. MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus. Genetica 2019; 147:369-379. [PMID: 31625006 DOI: 10.1007/s10709-019-00077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a member of MYC superfamily, associated with melanocyte cells, as it was discovered in depigmented mice. However, over the last years it was found to be involved in many cellular signaling pathways, among which oncogenesis, osteoclast differentiation, and stress response. In mammals, Mitf gene mutations can cause diverse syndromes affecting pigmentation of eyes or skin, bone defects and melanomas. As MITF protein homologs were also found in some invertebrates, we have isolated and characterized the MITF cDNAs from the sea urchin Paracentrotus lividus, referred to as Pl-Mitf. The in silico study of the secondary and tertiary structure of Pl-Mitf protein showed high conserved regions mostly lying in the DNA binding domain. To understand the degree of evolutionary conservation of MITF, a phylogenetic analysis was performed comparing the Pl-Mitf deduced protein with proteins from different animal species. Moreover, the analysis of temporal and spatial expression pattern of Pl-Mitf mRNA showed that it was expressed from the onset of gastrulation of the sea urchin embryo to the pluteus larva, specifically in primary mesenchymes cells (PMCs), the sea urchin skeletogenic cells, and in the forming archenteron, the larval gut precursor. In silico protein-protein interactions analysis was used to understand the association of MITF with other proteins. Our results put in evidence the conservation of the MITF protein among vertebrates and invertebrates and may provide new perspectives on the pathways underlying sea urchin development, even if further functional analyses are needed.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Marco Chiaramonte
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
46
|
Hartman ML, Czyz M. TYRP1 mRNA level is stable and MITF-M-independent in drug-naïve, vemurafenib- and trametinib-resistant BRAF V600E melanoma cells. Arch Dermatol Res 2019; 312:385-392. [PMID: 31624899 PMCID: PMC7248034 DOI: 10.1007/s00403-019-01995-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
TYRP1 mRNA is of interest due to its potential non-coding role as a sponge sequestering tumor-suppressive miRs in melanoma. To our knowledge, there is no report on changes in TYRP1 expression in melanomas after development of resistance to targeted therapies. We used patient-derived drug-naïve RASQ61R and BRAFV600E melanoma cell lines. In BRAFV600E melanoma cells, resistance to vemurafenib and trametinib was developed. A time-lapse fluorescence microscope was used to rate proliferation, qRT-PCR and Western blotting were used to assess TYRP1 expression and MITF-M level and activity. A high TYRP1 protein level in RASQ61R cells corresponded with high TYRP1 mRNA level, whereas undetectable TYRP1 protein in BRAFV600E cells was accompanied by medium mRNA level, also in cells carrying NF1R135W variant in addition. TYRP1 expression was MITF-M-independent, since similar transcript status was found in MITF-Mhigh and MITF-Mlow cells. For the first time, we showed that TYRP1 expression remained unaltered in melanoma cells that became resistant to vemurafenib or trametinib, including those cells losing MITF-M. Also drug discontinuation in resistant cells did not substantially affect TYRP1 expression. To verify in vitro results, publicly available microarray data were analyzed. TYRP1 transcript levels stay unaltered in the majority of paired melanoma samples from patients before treatment and after relapse caused by resistance to targeted therapies. As TYRP1 mRNA level remains unaltered in melanoma cells during development of resistance to vemurafenib or trametinib, therapies developed to terminate a sponge activity of TYRP1 transcript may be extended to patients that relapse with resistant disease.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
47
|
Golan T, Parikh R, Jacob E, Vaknine H, Zemser-Werner V, Hershkovitz D, Malcov H, Leibou S, Reichman H, Sheinboim D, Percik R, Amar S, Brenner R, Greenberger S, Kung A, Khaled M, Levy C. Adipocytes sensitize melanoma cells to environmental TGF-β cues by repressing the expression of miR-211. Sci Signal 2019; 12:12/591/eaav6847. [PMID: 31337739 DOI: 10.1126/scisignal.aav6847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β (TGF-β) superfamily members are critical signals in tissue homeostasis and pathogenesis. Melanoma grows in the epidermis and invades the dermis before metastasizing. This disease progression is accompanied by increased sensitivity to microenvironmental TGF-β. Here, we found that skin fat cells (adipocytes) promoted metastatic initiation by sensitizing melanoma cells to TGF-β. Analysis of melanoma clinical samples revealed that adipocytes, usually located in the deeper hypodermis layer, were present in the upper dermis layer within proximity to in situ melanoma cells, an observation that correlated with disease aggressiveness. In a coculture system, adipocytes secreted the cytokines IL-6 and TNF-α, which induced a proliferative-to-invasive phenotypic switch in melanoma cells by repressing the expression of the microRNA miR-211. In a xenograft model, miR-211 exhibited a dual role in melanoma progression, promoting cell proliferation while inhibiting metastatic spread. Bioinformatics and molecular analyses indicated that miR-211 directly targeted and repressed the translation of TGFBR1 mRNA, which encodes the type I TGF-β receptor. Hence, through this axis of cytokine-mediated repression of miR-211, adipocytes increased the abundance of the TGF-β receptor in melanoma cells, thereby enhancing cellular responsiveness to TGF-β ligands. The induction of TGF-β signaling, in turn, resulted in a proliferative-to-invasive phenotypic switch in cultured melanoma cells. Pharmacological inhibition of TGF-β prevented these effects. Our findings further reveal a molecular link between fat cells and metastatic progression in melanoma that might be therapeutically targeted in patients.
Collapse
Affiliation(s)
- Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Etai Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | | | - Dov Hershkovitz
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Leibou
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Reichman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Institute of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sarah Amar
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | - Ronen Brenner
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | | | - Andrew Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
48
|
Field MG, Kuznetsov JN, Bussies PL, Cai LZ, Alawa KA, Decatur CL, Kurtenbach S, Harbour JW. BAP1 Loss Is Associated with DNA Methylomic Repatterning in Highly Aggressive Class 2 Uveal Melanomas. Clin Cancer Res 2019; 25:5663-5673. [PMID: 31285370 DOI: 10.1158/1078-0432.ccr-19-0366] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The strong association between BAP1 mutations and metastasizing Class 2 uveal melanoma (UM) suggests that epigenetic alterations may play a significant role in tumor progression. Thus, we characterized the impact of BAP1 loss on the DNA methylome in UM.Experimental Design: Global DNA methylation was analyzed in 47 Class 1 and 45 Class 2 primary UMs and in UM cells engineered to inducibly deplete BAP1. RNA-Seq was analyzed in 80 UM samples and engineered UM cells. RESULTS Hypermethylation on chromosome 3 correlated with downregulated gene expression at several loci, including 3p21, where BAP1 is located. Gene set analysis of hypermethylated and downregulated genes identified axon guidance and melanogenesis as deregulated pathways, with several of these genes located on chromosome 3. A novel hypermethylated site within the BAP1 locus was found in all Class 2 tumors, suggesting that BAP1 itself is epigenetically regulated. Highly differentially methylated probes were orthogonally validated using bisulfite sequencing, and they successfully distinguished Class 1 and Class 2 tumors in 100% of cases. In functional validation experiments, BAP1 knockdown in UM cells induced methylomic repatterning similar to UM tumors, enriched for genes involved in axon guidance, melanogenesis, and development. CONCLUSIONS This study, coupled with previous work, suggests that the initial event in the divergence of Class 2 UM from Class 1 UM is loss of one copy of chromosome 3, followed by mutation of BAP1 on the remaining copy of chromosome 3, leading to the methylomic repatterning profile characteristic of Class 2 UMs.
Collapse
Affiliation(s)
- Matthew G Field
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffim N Kuznetsov
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Parker L Bussies
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Louie Z Cai
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Karam A Alawa
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Christina L Decatur
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - J William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
49
|
Goenka S, Ceccoli J, Simon SR. Anti-melanogenic activity of ellagitannin casuarictin in B16F10 mouse melanoma cells. Nat Prod Res 2019; 35:1830-1835. [PMID: 31274002 DOI: 10.1080/14786419.2019.1636242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ellagitannins such as casuarictin (CAS), isolated from clove extracts, have been shown to have superior benefits such as antioxidant and anti-inflammatory activity, but there have been no reports on their capacity to inhibit melanogenesis. Inhibition of melanogenesis by novel natural products has gained attention for cosmetic applications such as skin lightening. Here, we report the effects of CAS on melanogenesis in B16F10 mouse melanoma cells. Our results showed that CAS (30 µM) significantly inhibited intracellular melanogenesis while being nontoxic to B16F10 cells or to HaCaT cells at that concentration. CAS (30 μM) also inhibited intracellular tyrosinase activity as well as mushroom tyrosinase activity; possessed robust copper chelating ability comparable to that of 500 µM kojic acid; and downregulated MITF protein levels, all of which contribute to the inhibitory mechanisms underlying its anti-melanogenic activity. In summary, our results demonstrate that CAS might hold promise as a depigmenting agent for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | | | - Sanford R Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Department of Pathology, Stony Brook University, Stony Brook, New York, USA.,Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
50
|
Chung YC, Kim YB, Kim BS, Hyun CG. Anti-Melanogenic Effects of Bergamottin via Mitogen-Activated Protein Kinases and Protein Kinase B Signaling Pathways. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19862105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we examined the inhibitory effects of bergamottin on melanogenesis in B16F10 murine melanoma cells, together with its effects on the mechanism of melanin synthesis. α-Melanocyte stimulating hormone-stimulated B16F10 cells were treated with various concentrations of bergamottin, with arbutin as a positive control. Bergamottin significantly decreased the melanin content and tyrosinase activity without showing any cytotoxicity. In addition, bergamottin treatment significantly downregulated the expression of tyrosinase-related protein-1,2 and tyrosinase by suppressing the expression of microphthalmia-associated transcription factor. The phosphorylation status of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was examined to determine the mechanism underlying the antimelanogenic effects of bergamottin. Bergamottin treatment increased the phosphorylation of extracellular signal-regulated kinase (ERK) and AKT, but decreased the phosphorylation of p38 and c-Jun N-terminal kinase in the B16F10 cells. Moreover, the use of PD98059 (ERK inhibitor) and LY294002 (AKT inhibitor) corroborated these findings, indicating that bergamottin inhibits melanogenesis via the MAPKase and AKT signaling pathway. Thus, bergamottin has potential for treating hyperpigmentation disorders and can be a promising chemical for skin-whitening in the cosmetic industry.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Yun Beom Kim
- NewMedion Co.,Ltd., Jeju City, Jeju, Republic of Korea
| | - Bong Seok Kim
- Bio-Convergence Center, Jeju Technopark, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|