1
|
Wang J, Liao J, Cheng Y, Chen M, Huang A. LAPTM4B enhances the stemness of CD133 + liver cancer stem-like cells via WNT/β-catenin signaling. JHEP Rep 2025; 7:101306. [PMID: 40171299 PMCID: PMC11960653 DOI: 10.1016/j.jhepr.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 04/03/2025] Open
Abstract
Background & Aims Lysosome-associated protein transmembrane 4β (LAPTM4B) is an oncogene implicated in the malignant progression of hepatocellular carcinoma (HCC). Previous research established a strong association between LAPTM4B and HCC stemness. However, specific mechanisms by which LAPTM4B regulates and maintains the stemness of liver cancer stem cells remain unclear. Therefore, we investigated the effects of LAPTM4B on the stemness regulation of cluster of differentiation 133 (CD133)+ liver cancer stem-like cells (CSLCs). Methods We used RNA interference and overexpression techniques in both in vitro and in vivo models. The involvement of LAPTM4B in wingless/integrated (WNT)/β-catenin signaling was examined through western blotting, immunofluorescence, and immunoprecipitation. The impact of LAPTM4B on β-catenin phosphorylation and ubiquitination was analyzed to elucidate its role in promoting stemness. Clinical relevance was evaluated in an in-house cohort of 105 specimens from patients with HCC through immunohistochemical and microarray analysis, enabling investigation of correlations with clinical outcomes. Results LAPTM4B promoted the self-renewal ability, chemoresistance, and tumorigenicity of CD133+ CSLCs. Mechanistically, aberrant LAPTM4B upregulation facilitated β-catenin nuclear translocation (nucleocytoplasmic separation assay, p <0.001) and inhibited its phosphorylation (p <0.01). In addition, LAPTM4B interacts with the deubiquitinating enzymes ubiquitin carboxyl-terminal hydrolase (USP)-1 and USP14, reducing β-catenin ubiquitination. Furthermore, patients with high LAPTM4B and β-catenin expression had markedly shorter 3-year overall survival rate (42.9% vs. 74.4%; hazard ratio, 5.174; 95% CI 2.280-11.741, p <0.001). Conclusions LAPTM4B promotes CD133+ CSLC stemness by activating WNT/β-catenin signaling by inhibiting β-catenin phosphorylation and ubiquitination degradation. The role of LAPTM4B in regulating WNT/β-catenin signaling suggests that LAPTM4B serves as a therapeutic target for impairing HCC stemness and progression. Impact and implications LAPTM4B contributes significantly to CD133+ CSLC stemness and inhibits β-catenin phosphorylation and ubiquitination degradation, activating WNT/β-catenin signaling. WNT inhibitors suppress LAPTM4B-induced CD133+ CSLC stemness. Thus, targeting the LAPTM4B-WNT/β-catenin axis could improve antitumor efficacy.
Collapse
Affiliation(s)
- Jiahong Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Meirong Chen
- Department of Pathology, Quanzhou Maternity and Children’s Hospital, Quanzhou, Fujian 362000, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| |
Collapse
|
2
|
Yang Y, Li Y, Wang Y, Chen X, Yao Y, Li D, Yu G, Song X. The role and regulatory mechanism of lysosome associated protein transmembrane 4β in tumors. Front Oncol 2025; 15:1552007. [PMID: 40231269 PMCID: PMC11995161 DOI: 10.3389/fonc.2025.1552007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
The oncogene LAPTM4B (encoding lysosome-associated protein transmembrane-4β), first cloned in hepatocellular carcinoma cells, is located on chromosome 8q22.1 and encodes two isoforms, LAPTM4B-35 and LAPTM4B-24. LAPTM4B proteins have four transmembrane structural domains and are mainly distributed in lysosomal and endosomal membranes of cells. Studies have shown that LAPTM4B is overexpressed in a variety of cancers, in which the genetic polymorphism of LAPTM4B is associated with tumor susceptibility. LAPTM4B also regulates various cell signaling pathways, interacts with autophagy-related proteins and ceramides, and regulates the autophagy process and the release of exosomes, which in turn affect the survival and drug resistance of tumor cells. In conclusion, this paper summarizes recent research on LAPTM4B, aiming to explore the role and potential mechanisms of LAPTM4B in a variety of tumors.
Collapse
Affiliation(s)
- Yuteng Yang
- The 2nd Medical College of Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Dongxian Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Guohua Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
3
|
Li YY, Meng FL, Zhou SY, Du JM, Li WJ, Liu QY, Wu L, Zhao MM, Jin Y, Zhang QY, Li Y, Su GH. CDX1 improves nicotine induced cardiac fibroblasts activation and cardiomyocyte hypertrophy by alleviating autophagic flux impairment through modulation of LAPTM4B. Sci Rep 2025; 15:9985. [PMID: 40121311 PMCID: PMC11929911 DOI: 10.1038/s41598-025-94160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nicotine-induced impairment of autophagic flux promotes the onset of myocardial remodelling, thereby exacerbating heart failure. In this study, we investigated the role and molecular mechanisms of the transcription factor CDX1 in cardiac fibroblasts (CFs) activation and cardiomyocyte hypertrophy induced by nicotine. We found that CDX1 expression was increased in response to nicotine. However, a decrease in CDX1 further exacerbated the nicotine-induced blockade of autophagic flux, thereby aggravating CFs activation and cardiomyocyte hypertrophy. This effect was attributed to the suppression of the autophagic regulator LAPTM4B transcription by CDX1 and the subsequent activation of the mTOR pathway. In contrast, CDX1 overexpression promoted LAPTM4B expression, resulting in the opposite effect. In conclusion, our study demonstrated that CDX1/LAPTM4B axis could alleviate nicotine-induced autophagy flux impairment by inhibiting mTORC1 pathway activation, thereby alleviating CFs activation and cardiomyocyte hypertrophy, and exerting cardioprotective functions.
Collapse
Affiliation(s)
- Yue-Yan Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Lei Wu
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng-Meng Zhao
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Jin
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China.
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China.
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Wang M, Liao J, Wang J, Xu M, Cheng Y, Wei L, Huang A. HDAC2 promotes autophagy-associated HCC malignant progression by transcriptionally activating LAPTM4B. Cell Death Dis 2024; 15:593. [PMID: 39147759 PMCID: PMC11327261 DOI: 10.1038/s41419-024-06981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health challenge. The activation of autophagy plays an essential role in promoting the proliferation and survival of cancer cells. However, the upstream regulatory network and mechanisms governing autophagy in HCC remain unclear. This study demonstrated that histone deacetylase 2 (HDAC2) regulates autophagy in HCC. Its expression was elevated in HCC tissues, and high HDAC2 expression was strongly associated with poor prognosis in individuals with HCC. Integrated in vitro and in vivo investigations confirmed that HDAC2 promotes autophagy and autophagy-related malignant progression in HCC. Mechanistically, HDAC2 bound specifically to the lysosome-associated protein transmembrane 4-β (LAPTM4B) promoter at four distinct binding sites, enhancing its transcriptional activation and driving autophagy-related malignant progression in HCC. These findings establish LAPTM4B as a direct target gene of HDAC2. Furthermore, the selective inhibitor of HDAC2 effectively alleviated the malignant development of HCC. In addition, multivariate Cox regression analysis of 105 human HCC samples revealed that HDAC2 expression is an independent predictor of HCC prognosis. This study underscores the crucial role of the HDAC2-LAPTM4B axis in regulating autophagy in the malignant evolution of HCC and highlights the potential of targeting HDAC2 to prevent and halt the malignant progression of HCC.
Collapse
Affiliation(s)
- Meifeng Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jie Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Meifang Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
| |
Collapse
|
5
|
Yan R, Liu D, Guo H, Liu M, Lv D, Björkblom B, Wu M, Yu H, Leng H, Lu B, Li Y, Gao M, Blom T, Zhou K. LAPTM4B counteracts ferroptosis via suppressing the ubiquitin-proteasome degradation of SLC7A11 in non-small cell lung cancer. Cell Death Dis 2024; 15:436. [PMID: 38902268 PMCID: PMC11190201 DOI: 10.1038/s41419-024-06836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Dongjin Lv
- Department of Clinical Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Benny Björkblom
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Mingsong Wu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hongtao Yu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hao Leng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bingxiao Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Yuxiang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Miaomiao Gao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tomas Blom
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
6
|
Wang H, Zhou Q, Xie DF, Xu Q, Yang T, Wang W. LAPTM4B-mediated hepatocellular carcinoma stem cell proliferation and MDSC migration: implications for HCC progression and sensitivity to PD-L1 monoclonal antibody therapy. Cell Death Dis 2024; 15:165. [PMID: 38388484 PMCID: PMC10884007 DOI: 10.1038/s41419-024-06542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In hepatocellular carcinoma (HCC), immunotherapy is vital for advanced-stage patients. However, diverse individual responses and tumor heterogeneity have resulted in heterogenous treatment outcomes. Our mechanistic investigations identified LAPTM4B as a crucial gene regulated by ETV1 (a transcription factor), especially in liver cancer stem cells (LCSCs). The influence of LAPTM4B on LCSCs is mediated via the Wnt1/c-Myc/β-catenin pathway. CXCL8 secretion by LAPTM4B drove myeloid-derived suppressor cell (MDSC) migration, inducing unfavorable patient prognosis. LAPTM4B affected PD-L1 receptor expression in tumor microenvironment and enhanced tumor suppression induced by PD-L1 monoclonal antibodies in HCC patients. LAPTM4B up-regulation is correlated with adverse outcomes in HCC patients, sensitizing them to PD-L1 monoclonal antibody therapy.
Collapse
Affiliation(s)
- Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
- Capital Medical University, 100071, Beijing, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Fang Xie
- The Second Department of Medical Oncology, Xiangtan Central Hospital, Xiangtan, China
| | - Qingguo Xu
- Department of Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tongwang Yang
- The Hunan Provincial University Key Laboratory of the Fundamentaland Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China.
- Capital Medical University, 100071, Beijing, China.
| |
Collapse
|
7
|
Li W, Wang J, Tang C. A comprehensive analysis of the prognostic value and immune microenvironment of lysosome-dependent cell death in glioma: Including glioblastoma and low-grade glioma. Medicine (Baltimore) 2024; 103:e36960. [PMID: 38335383 PMCID: PMC10860935 DOI: 10.1097/md.0000000000036960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Lysosome-dependent cell death (LCD) plays a significant role in overcoming cancer apoptosis and drug resistance. However, the relationship between LCD-associated genes (LCDGs) and glioma, including glioblastoma (GBM) and low-grade glioma (LGG), remains unclear. In this study, an LCDGs risk signature was constructed for glioma patients by utilizing 4 algorithms (Extreme Gradient Boosting, Support Vector Machine, Random Forest, and Generalized Linear Models) to identify core LCDGs. Their correlation with clinical features and the immune microenvironment was also determined in glioma, GBM, and LGG. Additionally, the role of hub LCDGs in various cancers was elucidated via pan-cancer analyses. Validation of the core gene in glioma was performed using qRT-qPCR and immunofluorescence staining analysis. The results showed that the LCDGs risk signature was strongly associated with the prognosis, cancer grades, histological types, and primary therapy outcomes of glioma patients. Furthermore, it was closely linked to the overall survival of LGG patients. Mechanistic analyses revealed a significant association between the risk signature and the immune microenvironment in glioma. Based on differential expression analysis, receiver operating characteristic analysis, and interacted model algorithms, LAPTM4A was identified as a hub LCDG in glioma. It exhibited significant upregulation in glioma, GBM, and LGG samples. Moreover, LAPTM4A expression correlated with the prognosis of glioma and LGG patients, as well as age, grades, histological types, and primary therapy outcomes in glioma. Pan-cancer analysis confirmed that LAPTM4A expression was modulated in the majority of cancers and was associated with the prognosis of various cancers. Mechanistic analyses suggested a strong relationship between LAPTM4A and immune cell infiltration, as well as several drug sensitivities. In conclusion, our findings suggest that LAPTM4A may serve as a potential oncogene associated with LCD in pan-cancer, particularly in glioma, GBM, and LGG. These findings provide important insights for individualized treatment of glioma.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311199, China
| | - Jun Wang
- Department of Neurosurgery, Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311199, China
| | - Chao Tang
- Department of Neurosurgery, Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311199, China
| |
Collapse
|
8
|
Wen T, Thapa N, Cryns VL, Anderson RA. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes. Biomolecules 2023; 13:1297. [PMID: 37759697 PMCID: PMC10526805 DOI: 10.3390/biom13091297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cytoplasmic phosphoinositides (PI) are critical regulators of the membrane-cytosol interface that control a myriad of cellular functions despite their low abundance among phospholipids. The metabolic cycle that generates different PI species is crucial to their regulatory role, controlling membrane dynamics, vesicular trafficking, signal transduction, and other key cellular events. The synthesis of phosphatidylinositol (3,4,5)-triphosphate (PI3,4,5P3) in the cytoplamic PI3K/Akt pathway is central to the life and death of a cell. This review will focus on the emerging evidence that scaffold proteins regulate the PI3K/Akt pathway in distinct membrane structures in response to diverse stimuli, challenging the belief that the plasma membrane is the predominant site for PI3k/Akt signaling. In addition, we will discuss how PIs regulate the recruitment of specific scaffolding complexes to membrane structures to coordinate vesicle formation, fusion, and reformation during autophagy as well as a novel lysosome repair pathway.
Collapse
Affiliation(s)
- Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| |
Collapse
|
9
|
Liao J, Wang J, Xu Y, Wu Y, Wang M, Zhao Q, Tan X, Meng Y, Wei L, Huang A. LAPTM4B-YAP loop feedback amplification enhances the stemness of hepatocellular carcinoma. iScience 2023; 26:106754. [PMID: 37213231 PMCID: PMC10197148 DOI: 10.1016/j.isci.2023.106754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/10/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is highly heterogeneous, and stemness signatures are frequently elevated in HCC tumor cells to generate heterogeneous subtypes via multidirectional differentiation. However, the mechanisms affecting the regulation of stemness in HCC remain unclear. In this study, we identified that lysosome-associated protein transmembrane-4β (LAPTM4B) was significantly overexpressed in stem-like tumor cell populations with multidirectional differentiation potential at the single cell level, and verified that LAPTM4B was closely related to stemness of HCC using in vitro and in vivo experiments. Mechanistically, elevated LAPTM4B suppresses Yes-associated protein (YAP) phosphorylation and ubiquitination degradation. In turn, stabilized YAP localizes to the nucleus and binds to cAMP responsive element binding protein-1 (CREB1), which promotes transcription of LAPTM4B. Overall, our findings suggest that LAPTM4B forms a positive feedback loop with YAP, which maintains the stemness of HCC tumor cells and leads to an unfavorable prognosis for HCC patients.
Collapse
Affiliation(s)
- Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jiahong Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yu Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yong Wu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Meifeng Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Xiaodan Tan
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- Corresponding author
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
- Corresponding author
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Corresponding author
| |
Collapse
|
10
|
Yan R, Liu D, Wang J, Liu M, Guo H, Bai J, Yang S, Chang J, Yao Z, Yang Z, Blom T, Zhou K. miR-137-LAPTM4B regulates cytoskeleton organization and cancer metastasis via the RhoA-LIMK-Cofilin pathway in osteosarcoma. Oncogenesis 2023; 12:25. [PMID: 37147294 PMCID: PMC10163001 DOI: 10.1038/s41389-023-00471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Bai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
11
|
Gan X, Li S, Wang Y, Du H, Hu Y, Xing X, Cheng X, Yan Y, Li Z. Aspartate β-Hydroxylase Serves as a Prognostic Biomarker for Neoadjuvant Chemotherapy in Gastric Cancer. Int J Mol Sci 2023; 24:ijms24065482. [PMID: 36982561 PMCID: PMC10053938 DOI: 10.3390/ijms24065482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) has been established as being an effective treatment for advanced gastric cancer (GC), while the predictive biomarker of NACT efficacy remains under investigation. Aspartate β-hydroxylase (ASPH) represents an attractive target which is a highly conserved transmembrane enzyme overexpressed in human GC, and participates in the malignant transformation by promoting tumor cell motility. Here, we evaluated the expression of ASPH by immunohistochemistry in 350 GC tissues (including samples for NACT) and found that ASPH expression was higher in patients undergoing NACT compared with patients without NACT pre-operation. The OS and PFS time of ASPH-intensely positive patients was significantly shorter than that of the negative patients in the NACT group, while the difference was not significant in patients without NACT. We showed that ASPH knockout enhanced the inhibitory effects of chemotherapeutic drugs on the cell proliferation, migration, and invasion in vitro and suppressed tumor progression in vivo. Co-immunoprecipitation revealed that ASPH might interact with LAPTM4B to perform chemotherapeutic drug resistance. Our results suggested that ASPH might serve as a candidate biomarker to predict prognosis and a novel therapeutic target for gastric cancer patients treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xuejun Gan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Shen Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Yiding Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Ying Hu
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Yan Yan
- Department of Endoscopy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Correspondence: (Y.Y.); (Z.L.)
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Correspondence: (Y.Y.); (Z.L.)
| |
Collapse
|
12
|
Huang Y, Peng M, Qin H, Li Y, Pei L, Liu X, Zhao X. LAPTM4B promotes AML progression through regulating RPS9/STAT3 axis. Cell Signal 2023; 106:110623. [PMID: 36758682 DOI: 10.1016/j.cellsig.2023.110623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder with high morbidity and mortality under the existing treatment strategy. Here, we found that lysosome-associated protein transmembrane 4 beta (LAPTM4B) was frequently upregulated in AML, and high LAPTM4B was associated with poor outcome. Moreover, LAPTM4B promoted leukemia progression in vitro and in vivo. Mechanically, LAPTM4B interacted with RPS9, and positively regulated RPS9 protein stability, which enhanced leukemia cell progression via activating STAT3. Our findings indicate for the first time that LAPTM4B contributes to leukemia progression in a RPS9/STAT3-dependent manner, suggesting that LAPTM4B may serve as a promising target for treatment of AML.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medicine, Chongqing University, Chongqing 400044, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Meixi Peng
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Huanhuan Qin
- Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan Li
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Xindong Liu
- School of Medicine, Chongqing University, Chongqing 400044, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Xueya Zhao
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Serum LAPTM4B as a Potential Diagnostic and Prognostic Biomarker for Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6786351. [PMID: 36506911 PMCID: PMC9729050 DOI: 10.1155/2022/6786351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Background Lysosome-associated protein transmembrane-4 beta (LAPTM4B) is an integral membrane protein overexpressed in various cancers and may function as a prognostic tumor marker. The present study is aimed at understanding the clinical significance of serum LAPTM4B in breast cancer (BC). Methods Serum LAPTM4B level was evaluated in 426 BC patients, 40 benign breast disease, and 80 healthy controls by ELISA. We used the receiver operator characteristic (ROC) curve to assess the diagnostic significance. 46 BC patients were recruited to monitor the dynamic change of serum LAPTM4B during adjuvant therapy (AT). In addition, sera from a subset of 330 patients undergoing AT, including anti-HER2 treatment, were collected to evaluate the association between LAPTM4B levels and AT efficacy. Descriptive and explorative statistical analyses were used to assess LAPTM4 B's potential as a diagnostic and prognostic marker in BC. Results Serum LAPTM4B level was significantly increased in BC patients than benign group and controls. It could well discriminate BC from healthy controls with diagnostic accuracy with an AUC of 0.912, a sensitivity of 85.9%, and a specificity of 83.8%. Compared with pre-AT, serum LAPTM4B concentration remarkably decreased after AT. In addition, patients in the invalid response group (PD + SD) showed higher LAPTM4B levels than the valid response group (PR + CR). Conclusion Our results proposed that serum LAPTM4B had a high diagnostic and prognostic impact as a circulating biomarker in BC.
Collapse
|
14
|
Murai Y, Honda T, Yuyama K, Mikami D, Eguchi K, Ukawa Y, Usuki S, Igarashi Y, Monde K. Evaluation of Plant Ceramide Species-Induced Exosome Release from Neuronal Cells and Exosome Loading Using Deuterium Chemistry. Int J Mol Sci 2022; 23:ijms231810751. [PMID: 36142663 PMCID: PMC9505575 DOI: 10.3390/ijms231810751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular accumulation of aggregated amyloid-β (Aβ) in the brain leads to the early pathology of Alzheimer’s disease (AD). The administration of exogenous plant-type ceramides into AD model mice can promote the release of neuronal exosomes, a subtype of extracellular vesicles, that can mediate Aβ clearance. In vitro studies showed that the length of fatty acids in mammalian-type ceramides is crucial for promoting neuronal exosome release. Therefore, investigating the structures of plant ceramides is important for evaluating the potential in releasing exosomes to remove Aβ. In this study, we assessed plant ceramide species with D-erythro-(4E,8Z)-sphingadienine and D-erythro-(8Z)-phytosphingenine as sphingoid bases that differ from mammalian-type species. Some plant ceramides were more effective than mammalian ceramides at stimulating exosome release. In addition, using deuterium chemistry-based lipidomics, most exogenous plant ceramides were confirmed to be derived from exosomes. These results suggest that the ceramide-dependent upregulation of exosome release may promote the release of exogenous ceramides from cells, and plant ceramides with long-chain fatty acids can effectively release neuronal exosomes and prevent AD pathology.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (K.Y.)
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (K.Y.)
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Koichi Eguchi
- Innovation and Business Development Headquarters, Daicel Corporation, Niigata 944-8550, Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy, Daicel Corporation, Tokyo 108-8259, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Linking glycosphingolipids to Alzheimer's amyloid-ß: extracellular vesicles and functional plant materials. Glycoconj J 2022; 39:613-618. [PMID: 35920997 DOI: 10.1007/s10719-022-10066-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide and a carbohydrate head group. GSLs are localized in cell membranes and were recently found to be enriched in the membrane of neuron-derived exosomes, which are a type of extracellular vesicle. Our studies demonstrated that exosomal GSLs may be associated with the amyloid-ß (Aß) peptide, a principal agent of Alzheimer's disease (AD), and act to clear Aß by transporting Aß into brain phagocytic microglia. In this review, we summarize and discuss the function of exosomal GSLs in Aß homeostasis in AD pathology. Improvement in Aß clearance is a potent strategy for AD prevention and therapy. Dietary glucosylceramides (GlcCer) isolated from plants are absorbed into the body as various metabolites, including ceramides. Our recent work demonstrated that dietary GlcCer accelerates neuronal exosome production, which facilitates Aß clearance in mice. Furthermore, studies of AD model mice and human clinical trials have found that oral administration of plant-type GlcCer attenuates the Aß burden in the brain. We also introduce the development of plant-type GlcCer as functional food materials to prevent AD.
Collapse
|
16
|
Gyimesi G, Hediger MA. Systematic in silico discovery of novel solute carrier-like proteins from proteomes. PLoS One 2022; 17:e0271062. [PMID: 35901096 PMCID: PMC9333335 DOI: 10.1371/journal.pone.0271062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| | - Matthias A. Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| |
Collapse
|
17
|
Screening of four key genes in esophageal carcinoma based on TCGA and GEO data and verification of anti-proliferative effect of LAPTM4B knockdown in esophageal carcinoma cells invitro. Arch Biochem Biophys 2022; 728:109352. [PMID: 35863479 DOI: 10.1016/j.abb.2022.109352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Esophageal carcinoma (ESCA) is one of the most prevalent and aggressive malignancies of the gastrointestinal tract and constitutes sixth primary cause of cancer-related death worldwide. It is urgently needed to identify effective therapeutic targets. Differentially expressed genes (DEGs) involved in ESCA were identified via bioinformatics analysis. Four DEGs were selected for further analysis using Gene Expression Profiling Interactive Analysis, Human Protein Atlas, UALCAN web portal, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. 5-ethynyl-2'-deoxyuridine incorporation and cell counting kit-8 assays were used to evaluate cell proliferation. Western blot analysis was used to detect the protein levels of lysosomal-associated transmembrane protein 4B (LAPTM4B), Notch1, hairy and enhancer of split 1 (Hes1), and hairy and enhancer of split-related with YRPW motif 1 (Hey1). Results showed that LAPTM4B, Bcl-2 homology domain 3 (BH3)-interacting domain death agonist (BID), epithelial cell transforming sequence 2 (ECT2), and aurora kinase A (AURKA) were upregulated in several types of tumors including ESCA and correlated with tumor stage and tumor histology based on bioinformatics analysis. KEGG pathway analysis suggested that LAPTM4B-associated genes were significantly enriched in Notch pathway. Meanwhile, BID-, ECT2-, and AURKA-correlated genes were particularly enriched in p53 signaling pathway. Additionally, we found that LAPTM4B silencing inhibited cell proliferation and Notch pathway in ESCA cells. Notch1 overexpression abrogated LAPTM4B knockdown-induced proliferation reduction in ESCA cells. In conclusion, LAPTM4B silencing inhibited proliferation in ESCA cells by inactivating the Notch pathway.
Collapse
|
18
|
Liu M, Yan R, Wang J, Yao Z, Fan X, Zhou K. LAPTM4B-35 promotes cancer cell migration via stimulating integrin beta1 recycling and focal adhesion dynamics. Cancer Sci 2022; 113:2022-2033. [PMID: 35381120 PMCID: PMC9207373 DOI: 10.1111/cas.15362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metastasis is the main cause of cancer patients' death despite tremendous efforts invested in developing the related molecular mechanisms. During cancer cell migration, cells undergo dynamic regulation of filopodia, focal adhesion, and endosome trafficking. Cdc42 is imperative for maintaining cell morphology and filopodia, regulating cell movement. Integrin beta1 activates on the endosome, the majority of which distributes itself on the plasma membrane, indicating that endocytic trafficking is essential for this activity. In cancers, high expression of lysosome‐associated protein transmembrane 4B (LAPTM4B) is associated with poor prognosis. LAPTM4B‐35 has been reported as displaying plasma membrane distribution and being associated with cancer cell migration. However, the detailed mechanism of its isoform‐specific distribution and whether it relates to cell migration remain unknown. Here, we first report and quantify the filopodia localization of LAPTM4B‐35: mechanically, that specific interaction with Cdc42 promoted its localization to the filopodia. Furthermore, our data show that LAPTM4B‐35 stabilized filopodia and regulated integrin beta1 recycling via interaction and cotrafficking on the endosome. In our zebrafish xenograft model, LAPTM4B‐35 stimulated the formation and dynamics of focal adhesion, further promoting cancer cell dissemination, whereas in skin cancer patients, LAPTM4B level correlated with poor prognosis. In short, this study establishes an insight into the mechanism of LAPTM4B‐35 filopodia distribution, as well as into its biological effects and its clinical significance, providing a novel target for cancer therapeutics development.
Collapse
Affiliation(s)
- Minxia Liu
- School of Life Science, Anhui Medical University, Hefei, 230032, China.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Ruyu Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, China
| | - Xinyu Fan
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, 650031, China
| | - Kecheng Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland
| |
Collapse
|
19
|
Li B, Shi XD. Key Prognostic Value of Lysosomal Protein Transmembrane 5 in Kidney Renal Clear Cell Carcinoma. Int J Gen Med 2022; 15:2515-2527. [PMID: 35557976 PMCID: PMC9089215 DOI: 10.2147/ijgm.s357013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the significance of lysosomal protein transmembrane 5 (LAPTM5) in kidney renal clear cell carcinoma (KIRC). Methods Bioinformatics analysis as an efficient and accurate method was employed to explore the expression levels, prognostic significance, and regulatory pathways of LAPTM5 in KIRC. Finally, the association of LAPTM5 with tumor immune infiltrates was initially investigated. Results High LAPTM5 expression was observed in KIRC, and its mRNA expression was correlated with gender, stage, and grade (all P < 0.05) but regardless of age. Besides, high LAPTM5 mRNA expression predicted poor overall survival (OS) of KIRC patients (P < 0.01). Further, Cox regression analysis revealed the independent prognostic value of LAPTM5 for OS in KIRC patients (P < 0.001). In addition, the genetic alteration frequency of LAPTM5 was low and had no significant impact on KIRC patient prognosis. However, the low methylation levels of the two methylated sites in the LAPTM5 gene was closely linked to poor OS (all P < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) results showed that the common regulatory pathway was immune- and inflammatory-related pathway. Moreover, LAPTM5 was also associated with tumor immune infiltrates (all P < 0.001). Conclusion LAPTM5 served as an independent prognostic factor for KIRC patients. LAPTM5 might affect the OS of KIRC patients through the involvement of the immune-related pathway. Therefore, LAPTM5 served as a potential biomarker for OS of KIRC patients.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, Yuyao People’s Hospital of Zhejiang Province, Ningbo, Zhejiang, 315400, People’s Republic of China
| | - Xue-dong Shi
- Department of Urology, Yuyao People’s Hospital of Zhejiang Province, Ningbo, Zhejiang, 315400, People’s Republic of China
- Correspondence: Xue-dong Shi, Department of Urology, Yuyao People’s Hospital of Zhejiang Province, No. 800 Chengdong Road, Yuyao, Ningbo, Zhejiang, 315400, People’s Republic of China, Email
| |
Collapse
|
20
|
Ren Y, Hu K, Bi L, Wu H, Li Y, Han Y, Zhou W, Li H, Jin H, Wu H. Noninvasively visualize the expression of LAPTM4B protein using a novel 18F-labeled peptide PET probe in hepatocellular carcinoma. Nucl Med Biol 2021; 100-101:52-60. [PMID: 34214768 DOI: 10.1016/j.nucmedbio.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Lysosomal protein transmembrane 4 beta (LAPTM4B) is selectively expressed in hepatocellular carcinoma (HCC) cells and thus a potential biomarker for diagnosing HCC. In this study, we designed a novel 18F-labeled PET probe to non-invasively visualize LAPTM4B expression in mouse model of HCC tumor. METHODS A PET targeting tracer named [18F]FP-LAP2H was radio-synthesized using a LAPTM4B targeting peptide, LAP2H, coupled with 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NFP). Radio-stability, cell uptake, micro PET/CT imaging and ex vivo biodistribution were performed for determining its stability, cell binding specificity, and tumor targeting in vivo. RESULTS [18F]FP-LAP2H was successfully synthesized with radiochemical yields of 6-14% (decay-corrected yield) and molar activity of 10-44 GBq/μmol. The tracer showed stable (~90%) in phosphate-buffered saline, pH 7.4, and in human serum (~80%) for 2 h. In vitro cell uptake studies indicated the radioactivity accumulation in HCC cells was LAPTM4B protein-specific. Micro PET/CT demonstrated that implanted LAPTM4B positive HepG2 and BEL7402 tumors could be clearly visualized. The ex vivo biodistribution studies demonstrated that the tumor/liver ratio were 1.80 ± 0.65 and 2.09 ± 0.68 in implanted HepG2 and BEL7402 tumors respectively. Negative control and blocking experiments revealed that the radioactivity uptake in the HCC tumor was LAPTM4B protein-specific. CONCLUSIONS [18F]FP-LAP2H appears to be a potential PET tracer for imaging LAPTM4B-positive HCC tumor. Further endeavors need to do to improve tumor/liver ratio.
Collapse
Affiliation(s)
- Yunyan Ren
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hong Wu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youcai Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenlan Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
庞 泳, 张 沙, 杨 华, 周 柔. [Serum LAPTM4B-35 protein as a novel diagnostic marker for hepatocellular carcinoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:710-715. [PMID: 34393233 PMCID: PMC8365064 DOI: 10.19723/j.issn.1671-167x.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVE LAPTM4B-35 protein is one of the isoforms that are encoded by a cancer driver gene, LAPTM4B. This gene was primarily found and identified in our lab of Peking University School of Basic Medical Sciences. The LAPTM4B-35 protein and its encoded mRNA are significantly over-expressed in a variety of cancers, such as hepatocellular carcinoma (HCC), lung cancers (including non small-cell lung cancer and small-cell lung cancer), stomach cancer, colorectal carcinoma, pancreatic cancer, gallbladder cancer, cholangiocarcinoma, breast cancer, prostate cancer, ovarian cancer, cervical cancer, endometrial cancer, and so on. It has firmly demonstrated through lab experiments either in vivo or in vitro, as well as clinical studies that the over-expression of LAPTM4B-35 can promote cancer growth, metastasis, and multidrug resistance. Specially, the expressive level of LAPTM4B-35 is associa-ted with recurrence of HCC. The aim of this study is to identify the release of LAPTM4B-35 protein from hepatocellular carcinoma into blood of HCC patients and into the medium of cultured HCC cells, and to identify its possible form of LAPTM4B-35 protein existed in blood and cell culture medium, as well as to explore the possibility of LAPTM4B-35 protein as a novel HCC biomarker for diagnosis of HCC and prognosis of HCC patients. METHODS Immunobloting (Western blot) and enzyme-linked immunosorbent assay (ELISA) were used for identification of LAPTM4B-35 protein in the blood of HCC patients and normal individuals. Ultrafiltration and ultracentrifugation were used to isolate and purify exosomes from the culture medium of HCC cells. RESULTS LAPTM4B-35 protein existed in the blood from HCC patients and normal donors that were demonstrated through Western blot and ELISA. LAPTM4B-35 was also released into the culture medium of HCC cells in the form of exosomes. Preliminary experiments showed that the average and the median of LAPTM4B-35 protein level in the blood of HCC patients (n=43) were both significantly higher than that in the blood of normal donors (n=33) through sandwich ELISA. CONCLUSION It is promising that the LAPTM4B-35 protein which is released from HCC cells in the form of exosomes into their extraenvironment may be exploited as a novel cancer biomarker for HCC serological diagnosis.
Collapse
Affiliation(s)
- 泳 庞
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 沙 张
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 华 杨
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 柔丽 周
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| |
Collapse
|
22
|
Zhong H, Yuan C, He J, Yu Y, Jin Y, Huang Y, Zhao R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal Chem 2021; 93:9778-9787. [PMID: 34228920 DOI: 10.1021/acs.analchem.1c01254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Broad-spectrum detection and long-term monitoring of circulating tumor cells (CTCs) remain challenging due to the extreme rarity, heterogeneity, and dynamic nature of CTCs. Herein, a dual-affinity nanostructured platform was developed for capturing different subpopulations of CTCs and monitoring CTCs during treatment. Stepwise assembly of fibrous scaffolds, a ligand-exchangeable spacer, and a lysosomal protein transmembrane 4 β (LAPTM4B)-targeting peptide creates biomimetic, stimuli-responsive, and multivalent-binding nanointerfaces, which enable harvest of CTCs directly from whole blood with high yield, purity, and viability. The stable overexpression of the target LAPTM4B protein in CTCs and the enhanced peptide-protein binding facilitate the capture of rare CTCs in patients at an early stage, detection of both epithelial-positive and nonepithelial CTCs, and tracking of therapeutic responses. The reversible release of CTCs allows downstream molecular analysis and identification of specific liver cancer genes. The consistency of the information with clinical diagnosis presents the prospect of this platform for early diagnosis, metastasis prediction, and prognosis assessment.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiayuan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Su Q, Luo H, Zhang M, Gao L, Zhao F. LAPTM4B promotes the progression of nasopharyngeal cancer. Bosn J Basic Med Sci 2021; 21:305-312. [PMID: 32651973 PMCID: PMC8112566 DOI: 10.17305/bjbms.2020.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Lysosomal protein transmembrane 4 beta (LAPTM4B) is a protein that contains four transmembrane domains. The impact of LAPTM4B on the malignancy of nasopharyngeal carcinoma (NPC) remains unclear. In the present study, we aimed to investigate the role of LAPTM4B in NPC. NPC tissue samples were used to evaluate the expression of LAPTM4B and its relationship with patient prognosis. Furthermore, we inhibited the expression of LAPTM4B in NPC cell lines and examined the effects of LAPTM4B on NPC cell proliferation, migration, and invasion. We found that LAPTM4B protein was mainly localized in the cytoplasm and intracellular membranes of NPC cells. LAPTM4B protein was upregulated in NPC tissues and cell lines. High LAPTM4B expression was closely related to pathological subtypes and disease stages in NPC patients. NPC patients with high LAPTM4B expression had a worse prognosis. LAPTM4B knockdown inhibited the proliferation, migration, and invasion ability of NPC cells. LAPTM4B plays a cancer-promoting role in the progression of NPC and may be a potential target for NPC therapy.
Collapse
Affiliation(s)
- Qun Su
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Hongtao Luo
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Ming Zhang
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Liying Gao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Fengju Zhao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
24
|
Dichlberger A, Zhou K, Bäck N, Nyholm T, Backman A, Mattjus P, Ikonen E, Blom T. LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158855. [PMID: 33181324 DOI: 10.1016/j.bbalip.2020.158855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is a four-membrane spanning ceramide interacting protein that regulates mTORC1 signaling. Here, we show that LAPTM4B is sorted into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) and released in small extracellular vesicles (sEVs) into conditioned cell culture medium and human urine. Efficient sorting of LAPTM4B into ILV membranes depends on its third transmembrane domain containing a sphingolipid interaction motif (SLim). Unbiased lipidomic analysis reveals a strong enrichment of glycosphingolipids in sEVs secreted from LAPTM4B knockout cells and from cells expressing a SLim-deficient LAPTM4B mutant. The altered sphingolipid profile is accompanied by a distinct SLim-dependent co-modulation of ether lipid species. The changes in the lipid composition of sEVs derived from LAPTM4B knockout cells is reflected by an increased stability of membrane nanodomains of sEVs. These results identify LAPTM4B as a determinant of the glycosphingolipid profile and membrane properties of sEVs.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Kecheng Zhou
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Nils Bäck
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Thomas Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Anders Backman
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Tomas Blom
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
25
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
26
|
Yuyama K, Sun H, Mikami D, Mioka T, Mukai K, Igarashi Y. Lysosomal-associated transmembrane protein 4B regulates ceramide-induced exosome release. FASEB J 2020; 34:16022-16033. [PMID: 33090522 DOI: 10.1096/fj.202001599r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Exosomes are extracellular vesicles that mediate the transport of intracellular molecules, including neurodegenerative agents. Exogenously administrated ceramides have been implicated in the acceleration of exosome production by neurons; however, the molecular machinery involved in this process is unknown. Here, we found that ceramides, especially those consisting of long fatty acids, were internalized into the endocytic pathway in neuroblastoma SH-SY5Y cells to induce exosome secretion through lysosome-associated protein transmembrane 4B (LAPTM4B). Knockdown of LAPTM4B inhibited the ceramide-mediated increase in exosome release completely. Fluorescence microscopy observations indicated that exogenous ceramides promote the transport of multivesicular bodies to the plasma membranes in a LAPTM4B-dependent manner. Similarly, inhibition of acid ceramidase, which tends to induce intracellular ceramide accumulation, increased exosome production by SH-SY5Y cells in a LAPTM4B-dependent manner. Furthermore, the level of amyloid-ß protein (Aß) was decreased in neuronal cells following treatment with exogenous ceramide or inhibition of acid ceramidase, and this effect was attributed to the LAPTM4B-dependent efflux of Aß-containing exosomes. Overall, these findings reveal the novel machinery involved in exosome secretion regulated by ceramides and LAPTM4B, and may contribute to efforts to ameliorate the cellular accumulation of neurodegenerative agents such as Aß.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Zhou K, Dichlberger A, Ikonen E, Blom T. Lysosome Associated Protein Transmembrane 4B-24 Is the Predominant Protein Isoform in Human Tissues and Undergoes Rapid, Nutrient-Regulated Turnover. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2018-2028. [DOI: 10.1016/j.ajpath.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
|
28
|
Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X, Wei M, Cao N, Yang HT. Downregulation of LAPTM4B Contributes to the Impairment of the Autophagic Flux via Unopposed Activation of mTORC1 Signaling During Myocardial Ischemia/Reperfusion Injury. Circ Res 2020; 127:e148-e165. [PMID: 32693673 DOI: 10.1161/circresaha.119.316388] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
RATIONALE Impaired autophagic flux contributes to ischemia/reperfusion (I/R)-induced cardiomyocyte death, but the underlying molecular mechanisms remain largely unexplored. OBJECTIVE To determine the role of LAPTM4B (lysosomal-associated transmembrane protein 4B) in the regulation of autophagic flux and myocardial I/R injury. METHODS AND RESULTS LAPTM4B was expressed in murine hearts but downregulated in hearts with I/R (30 minutes/2 hours) injury and neonatal rat cardiomyocytes with hypoxia/reoxygenation (6 hours/2 hours) injury. During myocardial reperfusion, LAPTM4B-knockout (LAPTM4B-/-) mice had a significantly increased infarct size and lactate dehydrogenase release, whereas adenovirus-mediated LAPTM4B-overexpression was cardioprotective. Concomitantly, LAPTM4B-/- mice showed higher accumulation of the autophagy markers LC3-II (microtubule-associated protein 1A/1B-light chain 3), but not P62, in the I/R heart, whereas they did not alter chloroquine-induced further increases of LC3-II and P62 in both sham and I/R hearts. Conversely, LAPTM4B-overexpression had opposite effects. The hypoxia/reoxygenation-reduced viability of neonatal rat cardiomyocytes, ratio of autolysosomes/autophagosomes, and function of lysosomes were further decreased by LAPTM4B-knockdown but reversed by LAPTM4B-overexpression. Moreover, the LAPTM4B-overexpression-mediated benefits were abolished by knockdown of lysosome-associated membrane protein-2 (an autophagosome-lysosome fusion protein) in vivo and by the autophagy inhibitor bafilomycin A1 in vivo. In contrast, rapamycin (Rapa) successfully restored the impaired autophagic flux in LAPTM4B-/- mice and the subsequent myocardial I/R injury. Mechanistically, LAPTM4B regulated the activity of mTORC1 (mammalian target of rapamycin complex 1) via interacting with mTOR through its EC3 (extracelluar) domain. Thus, mTORC1 was overactivated in LAPTM4B-/- mice, leading to the repression of TFEB (transcription factor EB), a master regulator of lysosomal and autophagic genes, during myocardial I/R. The mTORC1 inhibition or TFEB-overexpression rescued the LAPTM4B-/--induced impairment in autophagic flux and I/R injury, whereas TFEB-knockdown abolished the LAPTM4B-overexpression-mediated recovery of autophagic flux and cardioprotection. CONCLUSIONS The downregulation of LAPTM4B contributes to myocardial I/R-induced impairment of autophagic flux via modulation of the mTORC1/TFEB pathway. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Shanshan Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.).,Program of Stem Cells and Regenerative Medicine, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong, P.R. China (S.G., N.C.)
| | - Jiliang Tan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Shenyan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, P.R. China (J.M., M.W., H.-T.Y.)
| | - Yanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Jinlong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Ping Sha
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Xuxia Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.)
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, P.R. China (J.M., M.W., H.-T.Y.)
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong, P.R. China (S.G., N.C.)
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS (S.G., J.T., Q.L., S.L., Y.Z., J.L., W.B., P.S., X.L., H.-T.Y.).,Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, P.R. China (J.M., M.W., H.-T.Y.).,Institute for Stem Cell and Regeneration, CAS, Beijing, P.R. China (H.-T.Y.)
| |
Collapse
|
29
|
Xu XC, Feng JG, Tang LL. Lysosomal-associated protein transmembrane-4 beta: a novel potential biomarker for cancer therapy with multiple functions. Chin Med J (Engl) 2020; 134:38-40. [PMID: 32852383 PMCID: PMC7862811 DOI: 10.1097/cm9.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xi-Chao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li-Ling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
30
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett 2020; 469:207-216. [DOI: 10.1016/j.canlet.2019.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
32
|
Li T, Liu Y, Yue S, Liao Z, Luo Z, Wang M, Cao C, Ding Y, Lin Z. Analyzing the Effects of Intrauterine Hypoxia on Gene Expression in Oocytes of Rat Offspring by Single Cell Transcriptome Sequencing. Front Genet 2019; 10:1102. [PMID: 31798625 PMCID: PMC6874118 DOI: 10.3389/fgene.2019.01102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023] Open
Abstract
Intrauterine hypoxia is one of the most frequently occurring complications during pregnancy, and the effects of antenatal hypoxia in offspring are not restricted to the perinatal period. Previous studies have reported on this phenomenon, which is usually described as multigenerational or transgenerational inheritance. However, the exact mechanism of this type of inheritance is still not clear. Therefore, in the present study, we investigated the alteration in the gene expression of oocytes, derived from intrauterine hypoxia rats and their offspring, by transcriptome sequencing. Our results showed that 11 differentially expressed genes were inherited from the F1 to F2 generation. Interestingly, these differentially expressed genes were enriched in processes predominantly involved in lipid and insulin metabolism. Overall, our data indicated that alteration in the gene expression of oocytes may be associated with some metabolic diseases and could potentially be the basis of transgenerational or multigenerational inheritance, induced by an adverse perinatal environment.
Collapse
Affiliation(s)
- Ting Li
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Liu
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shaojie Yue
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengchang Liao
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine Central South University, Changsha, China
| | - Mingjie Wang
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chuanding Cao
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Ding
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziling Lin
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Fan J, Yang J, Qiao W, Liu W, Xing C. LAPTM4B-35 expression is associated with pathological grades and clinical stages in salivary adenoid cystic carcinoma. Oncol Lett 2019; 19:317-322. [PMID: 31897144 PMCID: PMC6924106 DOI: 10.3892/ol.2019.11124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022] Open
Abstract
Salivary adenoid cystic carcinoma is one of the most common malignancies of the head and neck. The lysosome-associated protein transmembrane-4β gene (LAPTM4B) is a novel oncogene that has been found overexpressed in a number of clinically aggressive cancers. This study aimed to investigate the expression of the LAPTM4B-35 protein in normal salivary gland and salivary adenoid cystic carcinoma, a relatively indolent malignancy, and explore its clinicopathological significance in this malignancy. By immunohistochemical analysis, LAPTM4B-35 expression was evaluated in 106 cancer tissues, their adjacent non-cancerous tissues and five normal salivary glands. The correlation of LAPTM4B-35 expression with clinicopathological parameters was assessed using Chi-square or Fisher's exact test. The level of LAPTM4B-35 expression varied among different cell types of normal salivary glands. It was expressed at a fairly low level in serous and mucous acini, at low level in intercalated duct and excretory duct cells and moderately in secretory/striated ducts. In 50% of high grade tumor tissues tested, LAPTM4B-35 was markedly overexpressed. LAPTM4B-35 levels were significantly associated with histological grade and clinical stage. LAPTM4B-35 plays an important role in salivary adenoid cystic carcinoma and may serve as a diagnostic marker and a target for individualized therapy.
Collapse
Affiliation(s)
- Jianlin Fan
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jianxin Yang
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Weiping Qiao
- Department of Stomatology, Wuzhong People's Hospital, Suzhou, Jiangsu 215100, P.R. China
| | - Wei Liu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
34
|
Tao D, Liang J, Pan Y, Zhou Y, Feng Y, Zhang L, Xu J, Wang H, He P, Yao J, Zhao Y, Ning Q, Wang W, Jiang W, Zheng J, Wu X. In Vitro and In Vivo Study on the Effect of Lysosome-associated Protein Transmembrane 4 Beta on the Progression of Breast Cancer. J Breast Cancer 2019; 22:375-386. [PMID: 31598338 PMCID: PMC6769385 DOI: 10.4048/jbc.2019.22.e43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Although the effect of lysosome-associated protein transmembrane 4 beta (LAPTM4B) on the proliferation, migration, and invasion of breast cancer (BC) cells has already been studied, its specific role in BC progression is still elusive. Here, we evaluated the effect of different levels of LAPTM4B expression on the proliferation, invasion, adhesion, and tumor formation abilities of BC cells in vitro, as well as on breast tumor progression in vivo. Methods We investigated the influence of LAPTM4B expression on MCF-7 cell proliferation, invasion, adhesion, and tube formation abilities in vitro through its overexpression or knockdown and on breast tumor progression in vivo. Results Cell growth curves and colony formation assays showed that LAPTM4B promoted the proliferation of breast tumor cells. Cell cycle analysis results revealed that LAPTM4B promoted the entry of cells from the G1 into the S phase. Transwell invasion and cell extracellular matrix adhesion assays showed that LAPTM4B overexpression increased the invasion and adhesion capabilities of MCF-7 cells. More branches were observed in MCF-7 cells overexpressing LAPTM4B under an electron microscope. In comparison with LAPTM4B overexpression, LAPTM4B knockdown decreased the expression of vascular endothelial growth factor-A and significantly inhibited the vasculogenic tube formation ability of tumors. These results were also verified with western blot analysis. Conclusion LAPTM4B promoted the proliferation of MCF-7 cells through the downregulation of p21 (WAF1/CIP1) and caspase-3, and induced cell invasion, adhesion, and angiogenesis through the upregulation of hypoxia-inducible factor 1 alpha, matrix metalloproteinase 2 (MMP2), and MMP9 expression. This specific role deems LAPTM4B as a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Deyou Tao
- Department of Oncological Surgery, Enze Hospital of Taizhou Enze Medical Group, Luqiao, Zhejiang, China
| | - Junqing Liang
- The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yihong Pan
- Gynecology of Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - Yanting Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jingjing Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinjie Ning
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xia Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Ha Y, Fang Y, Romecin Duran PA, Tolosa EJ, Moser CD, Fernandez-Zapico ME, Roberts LR. Induction of Lysosome-associated Protein Transmembrane 4 Beta via Sulfatase 2 Enhances Autophagic Flux in Liver Cancer Cells. Hepatol Commun 2019; 3:1520-1543. [PMID: 31701075 PMCID: PMC6824075 DOI: 10.1002/hep4.1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been shown to be a key cellular event controlling tumor growth in different neoplasms including hepatocellular carcinoma (HCC). Although this biological role of autophagy has been clearly established, the mechanism underlying its regulation remains elusive. Here, we demonstrate a role of sulfatase 2 (SULF2), a 6‐O‐endosulfatase modulating various growth factors and cytokine‐related signaling pathways controlling tumor cell proliferation and survival, in the regulation of autophagy in HCC cells. SULF2 increased autophagosome formation, shown by increased LC3B‐II protein and green fluorescent protein–LC3 puncta. Increased fusion between autophagosomes and lysosomes/lysosomal enzymes, higher expression of lysosomal membrane protein, and an increase in autolysosomes were also shown by western blot, immunofluorescence, and electron microscopy of SULF2‐expressing cells, indicating enhanced autophagic flux. In contrast, RNA‐interference silencing of SULF2 in Huh7 cells induced lysosomal membrane permeabilization with diffuse cytosolic staining of cathepsin D and punctate staining of galectin‐3. Analysis of the mechanism showed that inhibition of lysosome‐associated protein transmembrane 4 beta (LAPTM4B), a gene induced by SULF2, resulted in decreased autophagosome formation, decreased fusion between autophagosomes and lysosomes, and increased lysosomal membrane permeabilization. Interestingly, down‐regulation of LAPTM4B also phenocopies the knockdown of SULF2, significantly reducing cell viability and colony formation. Conclusion: Our results demonstrate a role for SULF2 in the regulation of autophagic flux that is mediated through LAPTM4B induction in HCC cells, and provide a foundation for future translational efforts targeting autophagy in liver malignancies.
Collapse
Affiliation(s)
- Yeonjung Ha
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN.,Department of Gastroenterology CHA Bundang Medical Center CHA University Gyeonggi-do South Korea
| | - Yong Fang
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Paola A Romecin Duran
- Schulze Center of Novel Therapeutics Division of Oncology Research Mayo Clinic Rochester MN
| | - Ezequiel J Tolosa
- Schulze Center of Novel Therapeutics Division of Oncology Research Mayo Clinic Rochester MN
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | | | - Lewis R Roberts
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| |
Collapse
|
36
|
Li S, Xu JJ, Zhang QY. MicroRNA-132-3p inhibits tumor malignant progression by regulating lysosomal-associated protein transmembrane 4 beta in breast cancer. Cancer Sci 2019; 110:3098-3109. [PMID: 31389121 PMCID: PMC6778625 DOI: 10.1111/cas.14164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Lysosomal‐associated protein transmembrane 4 beta (LAPTM4B), a proto‐oncogene, has been shown to be a positive modulator in cancer progression. However, the mechanism of LAPTM4B regulation is not fully elucidated. Aberrant microRNAs (miRNAs) can regulate gene expression by interfering with target transcripts and/or translation to exert tumor‐suppressive or oncogenic effects in breast cancer. In the present study, miR‐132‐3p, which was predicted by relevant software, was confirmed to directly bind to the 3′ untranslated region (3′UTR) of LAPTM4B and negatively regulate its expression in luciferase reporter and western blot assays. Subsequently, we validated that miR‐132‐3p was downregulated in breast cancer tissues. Receiver‐operating characteristic curve analysis indicated that miR‐132‐3p had accurate diagnostic value, and a Kaplan‐Meier and Cox regression model showed that miR‐132‐3p was a potential prognostic marker for recurrence, showing low levels in breast cancer patients. In addition, we showed that miR‐132‐3p was inversely correlated with LAPTM4B expression in the above samples. Functionally, miR‐132‐3p suppressed the migration and invasion of breast carcinoma cells through LAPTM4B by mediating epithelial‐mesenchymal transition signals, and partially reversed the carcinogenic effects of LAPTM4B by inhibiting the PI3K‐AKT‐mTOR signaling pathway. Taken together, these findings provide the first comprehensive analysis of miR‐132‐3p as a direct LAPTM4B‐targeted miRNA, and shed light on miR‐132‐3p/LAPTM4B as a significant functional axis involved in the oncogenesis and metastasis of breast cancer.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian-Jun Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing-Yun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
37
|
Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2019; 69:91-99. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Collapse
|
38
|
Dong H, Zheng L, Duan X, Zhao W, Chen J, Liu S, Sui G. Cytotoxicity analysis of ambient fine particle in BEAS-2B cells on an air-liquid interface (ALI) microfluidics system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:108-119. [PMID: 31054440 DOI: 10.1016/j.scitotenv.2019.04.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Ambient fine particle is a crucial indicator of air pollution brought into the air by sundry natural and public events. However, a comprehensive understanding of the PM2.5-induced cytotoxicity especially the contribution of bioaerosol part is still undiscovered. Herein, an ALI microfluidics system integrated multi-omics (iTRAQ & RNA-seq) was successfully utilized to recognize the molecular mechanisms induced by microorganisms carried bioaerosol in human lung epithelial cells. The cells viability was above 98% within 21 days on this system. Moreover, the results showed that eight microorganisms-related pathways (e.g., Salmonella, amoebiasis, HTLV-1) were activated after exposure to PM2.5 for 24 h, which played a certain proportion in contributing to inflammation reaction. In addition, multi-omics demonstrated that three inflammation-related signal transduction cascades including MAPK signaling pathway, TNF signaling pathway, and TGF signaling pathway were triggered by fine particles, ultimately leading to apoptosis-related process disorder by associated cytokines like TNF, IL6, and TGF-β. Furthermore, flow cytometry analysis showed that the cell apoptosis rate increased from 3.8% to 66.7% between the cells exposed to PM2.5 (10 μg/cm2) for 24 h and untreated control cells, which indicated that the fine particles had the ability to activate apoptosis-related signal cascades and result in apoptosis. ELISA assay and western blot indicated that HO-1, JNK, IL6, TNF, NF-κB, and FGF14 were significantly increased after exposure to PM2.5 while Casp3 and FGFR were decreased, which were consistent with the multi-omics. Moreover, PM2.5 components (OC, EC, 16PAHs, As, Cu, Mn, Cl-, and NO3-) were significantly correlated to the inflammation related proteins and cytokines, which played a vital role in the inflammation and apoptosis related signaling pathways. These findings pointed to strong links among microorganisms infection, inflammation, and apoptosis in cell response to PM2.5 carried microorganisms. It also provided a new approach for understanding PM2.5-induced cytotoxicity and health risks.
Collapse
Affiliation(s)
- Heng Dong
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Lulu Zheng
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jianmin Chen
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
39
|
Zhou S, Chen H, Yuan P, Shi N, Wang X, Hu J, Liu L. Helicobacter pylori infection promotes epithelial-to-mesenchymal transition of gastric cells by upregulating LAPTM4B. Biochem Biophys Res Commun 2019; 514:893-900. [PMID: 31084933 DOI: 10.1016/j.bbrc.2019.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023]
Abstract
Helicobacter pylori infection can lead to epithelial-to-mesenchymal transition (EMT) and the progression of gastric cancer (GC); however, the underlying mechanism is poorly understood. Lysosomal-associated protein transmembrane 4β (LAPTM4B) has been implicated in carcinogenesis, including in GC, and we previously showed that LAPTM4B-35 overexpression was an independent prognostic factor in GC. In this study, we demonstrate that upregulation of LAPTM4B promotes GES-1 human gastric epithelial cell proliferation, migration, and invasion and EMT. Conversely, LAPTM4B downregulation inhibited proliferation, migration, invasion, and EMT in SGC7901 GC cells. We also found that H. pylori infection enhanced LAPTM4B expression and induced EMT in GES-1 cells. Thus, EMT in GC is promoted by a combination of LAPTM4B overexpression and H. pylori infection. These results provide a basis for the development of novel two-pronged therapeutic strategies for the treatment of GC.
Collapse
Affiliation(s)
- Shengfei Zhou
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Hui Chen
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Peihua Yuan
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Ning Shi
- Department of Gastroenterology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xiao Wang
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Jinxia Hu
- Department of Molecular Biology and Biochemistry, Binzhou Medical University, Yantai, Shandong Province, China.
| | - Luying Liu
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
40
|
Yang Z, Senninger N, Flammang I, Ye Q, Dhayat SA. Clinical impact of circulating LAPTM4B-35 in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2019; 145:1165-1178. [PMID: 30778748 DOI: 10.1007/s00432-019-02863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE LAPTM4B is upregulated in a wide range of cancers associated with poor prognosis. However, the clinical impact of LAPTM4B as diagnostic and prognostic marker in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Thus, the aim of the present study was to investigate the expression of LAPTM4B as circulating marker in PDAC. METHODS Expression analysis of LAPTM4B-35 in pancreatic tissue and preoperative blood serum samples of 169 patients with PDAC UICC Stages I-IV (n = 98), chronic pancreatitis (n = 41), and healthy controls (n = 30) by immunohistochemistry, Western blot, and ELISA. Descriptive and explorative statistical analyses of LAPTM4B-35's potential as diagnostic and prognostic marker in PDAC. RESULTS Expression of LAPTM4B-35 was significantly increased in tumor tissue and corresponding blood serum samples of patients with PDAC (each p < 0.001) and it could well discriminate PDAC from healthy controls and chronic pancreatitis (p < 0.001; p = 0.0037). LAPTM4B-35 in combination with CA.19-9 outperforms the diagnostic accuracy with an AUC of 0.903 (p < 0.001), sensitivity of 82%, and specificity of 92%. Kaplan-Meier survival analysis revealed an improved overall survival in PDAC UICC I-IV with low expression of circulating LAPTM4B-35 (17 versus 10 months, p = 0.039) as well as an improved relapse-free survival in curatively treated PDAC UICC I-III (16 versus 10 months; p = 0.037). Multivariate overall and recurrence-free survival analyses identified LAPTM4B-35 as favorable prognostic factor in PDAC patients (HR 2.73, p = 0.021; HR 3.29, p = 0.003). CONCLUSION LAPTM4B-35 is significantly deregulated in PDAC with high diagnostic and prognostic impact as circulating tumor marker.
Collapse
Affiliation(s)
- Zixuan Yang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Norbert Senninger
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Isabelle Flammang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sameer A Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany.
| |
Collapse
|
41
|
Wang F, Wu H, Zhang S, Lu J, Lu Y, Zhan P, Fang Q, Wang F, Zhang X, Xie C, Yin Z. LAPTM4B facilitates tumor growth and induces autophagy in hepatocellular carcinoma. Cancer Manag Res 2019; 11:2485-2497. [PMID: 31118766 PMCID: PMC6498979 DOI: 10.2147/cmar.s201092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most frequent cancers and the third leading cause of cancer-related deaths. It has been reported that lysosomal associated transmembrane protein LAPTM4B expression is significantly upregulated in human cancers and closely associated with tumor initiation and progression. Purpose: We aimed to reveal the relevance of LAPTM4B and the pathogenesis of HCC. Methods: Cell viability assessment, colony formation assay, in vivo xenograrft model, microarray, real-time PCR, immunofluorescence and western blot analysis were applied. Results: Our results demonstrated that LAPTM4B promoted HCC cell proliferation in vitro and tumorigenesis in vivo. Additionally, upon starvation conditions, LAPTM4B facilitated cell survival, inhibited apoptosis and induced autophagic flux. Expression profiling coupled with gene ontology (GO) analysis revealed that 159 gene downregulated by LAPTM4B silencing was significantly enriched in response to nutrient and some metabolic processes. Moreover, LAPTM4B activated ATG3 transcription to modulate HCC cell apoptosis and autophagy. Conclusion: Our findings demonstrate that LAPTM4B acts as an oncogene that promotes HCC tumorigenesis and autophagy, and indicate that LAPTM4B may be used as a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Huita Wu
- Department of Oncology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei, People's Republic of China
| | - Jing Lu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yuyan Lu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Ping Zhan
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qinliang Fang
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiuming Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
42
|
Zhong T, Wu M, Ma S. Examination of Independent Prognostic Power of Gene Expressions and Histopathological Imaging Features in Cancer. Cancers (Basel) 2019; 11:E361. [PMID: 30871256 PMCID: PMC6468814 DOI: 10.3390/cancers11030361] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer prognosis is of essential interest, and extensive research has been conducted searching for biomarkers with prognostic power. Recent studies have shown that both omics profiles and histopathological imaging features have prognostic power. There are also studies exploring integrating the two types of measurements for prognosis modeling. However, there is a lack of study rigorously examining whether omics measurements have independent prognostic power conditional on histopathological imaging features, and vice versa. In this article, we adopt a rigorous statistical testing framework and test whether an individual gene expression measurement can improve prognosis modeling conditional on high-dimensional imaging features, and a parallel analysis is conducted reversing the roles of gene expressions and imaging features. In the analysis of The Cancer Genome Atlas (TCGA) lung adenocarcinoma and liver hepatocellular carcinoma data, it is found that multiple individual genes, conditional on imaging features, can lead to significant improvement in prognosis modeling; however, individual imaging features, conditional on gene expressions, only offer limited prognostic power. Being among the first to examine the independent prognostic power, this study may assist better understanding the "connectedness" between omics profiles and histopathological imaging features and provide important insights for data integration in cancer modeling.
Collapse
Affiliation(s)
- Tingyan Zhong
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
Rehman Z, Fahim A, Bhatti A, Sadia H, John P. Co-expression of HIF-1α, MDR1 and LAPTM4B in peripheral blood of solid tumors. PeerJ 2019; 7:e6309. [PMID: 30746305 PMCID: PMC6368972 DOI: 10.7717/peerj.6309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
The hypoxic tumor microenvironment is the major contributor of chemotherapy resistance in solid tumors. One of the key regulators of hypoxic responses within the cell is the hypoxia inducible factor-1α (HIF-1α) that is involved in transcription of genes promoting cell survival and chemotherapy resistance. Multidrug resistance gene-1 (MDR1) and Lysosome-associated protein transmembrane 4B-35 (LAPTM4B-35) are among those notable players which augment their responses to cellular hypoxia. MDR1 is the hypoxia responsive gene involved in multidrug resistance phenotype while LAPTM4B-35 is involved in chemotherapy resistance by stabilizing HIF-1α and overexpressing MDR1. Overexpression of HIF-1α, MDR1 and LAPTM4B has been associated with poor disease outcome in many cancers when studied individually at tissue level. However, accessibility of the tissues following the course of chemotherapy for ascertaining chemotherapy resistance is difficult and sometimes not clinically feasible. Therefore, indication of hypoxic biomarkers in patient’s blood can significantly alter the clinical outcome. Hence there is a need to identify a blood based marker to understand the disease progression. In the current study the expression of hypoxia associated chemotherapy resistance genes were studied in the peripheral blood lymphocytes of solid tumor patients and any potential correlation with disease progression were explored. The expression of HIF-1α, MDR1 and LAPTM4B was studied in blood of 72 breast, 42 ovarian, 32 colon and 21 prostate cancer patients through real time PCR analysis using delta cycle threshold method. The statistical scrutiny was executed through Fisher’s Exact test and the Spearman correlation method. There was 12–13 fold increased in expression of HIF-1α, two fold increased in MDR1 and 13–14 fold increased in LAPTM4B mRNA level in peripheral blood of breast, ovarian, prostate and colon cancer patients. In the current study there was an association of HIF-1α, MDR1 and LAPTM4B expression with advanced tumor stage, metastasis and chemotherapy treated group in breast, ovarian, prostate and colon cancer patients. The Spearman analysis also revealed a positive linear association among HIF-1α, MDR1 and LAPTM4B in all the studied cancer patients. The elevated expression of HIF-1α, MDR1 and LAPTM4B in peripheral blood of solid tumor patients can be a predictor of metastasis, disease progression and treatment response in these cancers. However, larger studies are needed to further strengthen their role as a potential biomarker for cancer prognosis.
Collapse
Affiliation(s)
- Zaira Rehman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ammad Fahim
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hajra Sadia
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
44
|
Zhou L, Dai C, Tian T, Wang M, Lin S, Deng Y, Xu P, Hao Q, Wu Y, Yang T, Zhu W, Dai Z. Prognostic Values of LAPTM4B-35 in Human Cancer: A Meta-analysis. J Cancer 2018; 9:4355-4362. [PMID: 30519340 PMCID: PMC6277661 DOI: 10.7150/jca.26902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Lysosome-associated protein transmembrane-4β-35(LAPTM4B-35) has been observed overexpressed in multiple malignant tumors. However, the prognostic value of LAPTM4B-35 remains controversial. Therefore, we conducted a meta-analysis to evaluate the prognostic value of LAPTM4B-35 in human cancers. Methods: The relevant publications were obtained by systematically searching the PubMed, Web of Science, Embase, Wanfang, and China National Knowledge Infrastructure (CNKI) databases. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated for the prognosis value of LAPTM4B-35 for cancer patient. Results: Our result suggest that LAPTM4B-35 overexpression is significantly associated with poor overall survival (OS) (HR = 2.49, 95% CI = 1.87-3.32, p < 0.001), disease-free survival (DFS) (HR = 2.43, 95% CI = 1.35-4.35, p = 0.003), and progression-free survival (PFS) (HR = 4.12, 95% CI = 2.30-7.37, p < 0.001). Moreover, subgroup analysis revealed significant association with poor OS in lung (HR = 2.05, 95% CI = 1.37-3.06, p < 0.001), gastric carcinoma (HR = 1.88, 95% CI = 1.01-3.50, p < 0.047) and ovarian cancer (HR = 4.94, 95% CI = 1.44-16.94, p = 0.011). Conclusion: LAPTM4B-35 may be a novel predictive biomarker and a potential target for treatment.
Collapse
Affiliation(s)
- Linghui Zhou
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tielin Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Zhijun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
45
|
Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018; 51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.
Collapse
|
46
|
Roy G, Roy P, Bhattacharjee A, Shahid M, Misbah M, Gupta S, Husain M. Expression signature of lysosomal-associated transmembrane protein 4B in hepatitis C virus-induced hepatocellular carcinoma. Int J Biol Markers 2018; 33:283-292. [PMID: 29882487 DOI: 10.1177/1724600818773631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is a lethal disease worldwide and therefore the establishment of novel diagnostic biomarkers is imperative. In this study, it was hypothesized that an abnormal expression of the lysosomal-associated protein transmembrane 4 beta ( LAPTM4B) gene is crucial in the pathogenesis of hepatitis C virus-mediated hepatocellular carcinoma; hence we investigated the expression profile of LAPTM4B in hepatitis C virus-induced hepatocellular carcinoma. METHODS A group of 189 consecutive patients (hepatitis C virus-related hepatocellular carcinoma as tumor cases; n=93, hepatitis C virus-related cirrhotics as disease controls; n=96) opting for living donor liver transplantation as a therapeutic surgical regimen were recruited with informed consent. Additionally, paired adjacent non-tumorous tissues (n=93) obtained from cases were also included. Serum LAPTM4B protein concentrations were assessed by third-generation enzyme-linked immunosorbent assay and LAPTM4B mRNA, and protein expressions at tissue level were determined by quantitative real time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry techniques, respectively. RESULTS LAPTM4B protein concentrations in sera of patients were higher ( p<0.001) in tumor cases (1.25±0.25 ng/ml) compared to disease controls (0.53±0.28 ng/ml). Our study also depicts positive clinicopathological correlations between alpha-fetoprotein titers (b=0.65; p<0.001), quantitative hepatitis C virus RNA copies (b=0.33; p<0.001), and LAPTM4B protein concentrations, all in sera of patients. In addition, qRT-PCR and immunohistochemistry analyses revealed a significantly higher ( p<0.05) tissue LAPTM4B mRNA and protein expression, respectively, in tumor cases rather than in non-tumorous tissues and disease controls. CONCLUSIONS Together, our results illustrate the LAPTM4B gene as a diagnostic biomarker in patients with hepatocellular carcinoma having documented evidence of chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Gaurav Roy
- 1 Department of Biotechnology, Molecular Virology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Papai Roy
- 2 Molecular Genetics and Development, Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | - Atanu Bhattacharjee
- 3 Centre for Cancer Epidemiology, The Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mudassar Shahid
- 1 Department of Biotechnology, Molecular Virology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Misbah
- 1 Department of Biotechnology, Molecular Virology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Subash Gupta
- 4 Max Centre for Liver and Biliary Sciences, Max Super Speciality Hospital, New Delhi, India
| | - Mohammad Husain
- 1 Department of Biotechnology, Molecular Virology Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
47
|
Zhou K, Dichlberger A, Martinez-Seara H, Nyholm TKM, Li S, Kim YA, Vattulainen I, Ikonen E, Blom T. A Ceramide-Regulated Element in the Late Endosomal Protein LAPTM4B Controls Amino Acid Transporter Interaction. ACS CENTRAL SCIENCE 2018; 4:548-558. [PMID: 29806001 PMCID: PMC5968438 DOI: 10.1021/acscentsci.7b00582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 05/22/2023]
Abstract
Membrane proteins are functionally regulated by the composition of the surrounding lipid bilayer. The late endosomal compartment is a central site for the generation of ceramide, a bioactive sphingolipid, which regulates responses to cell stress. The molecular interactions between ceramide and late endosomal transmembrane proteins are unknown. Here, we uncover in atomistic detail the ceramide interaction of Lysosome Associated Protein Transmembrane 4B (LAPTM4B), implicated in ceramide-dependent cell death and autophagy, and its functional relevance in lysosomal nutrient signaling. The ceramide-mediated regulation of LAPTM4B depends on a sphingolipid interaction motif and an adjacent aspartate residue in the protein's third transmembrane (TM3) helix. The interaction motif provides the preferred contact points for ceramide while the neighboring membrane-embedded acidic residue confers flexibility that is subject to ceramide-induced conformational changes, reducing TM3 bending. This facilitates the interaction between LAPTM4B and the amino acid transporter heavy chain 4F2hc, thereby controlling mTORC signaling. These findings provide mechanistic insights into how transmembrane proteins sense and respond to ceramide.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Andrea Dichlberger
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
- Laboratory
of Physics, Tampere University of Technology, 33101 Tampere, Finland
| | - Thomas K. M. Nyholm
- Biochemistry,
Faculty of Science and Engineering, Åbo
Akademi University, 20520 Turku, Finland
| | - Shiqian Li
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Young Ah Kim
- Department
of Chemistry and Biochemistry, Queens College,
City University of New York, Flushing, New York 11367, United States
| | - Ilpo Vattulainen
- Laboratory
of Physics, Tampere University of Technology, 33101 Tampere, Finland
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Ikonen
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Tomas Blom
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
- E-mail: . Phone: +358-50-4484795
| |
Collapse
|
48
|
Li S, Wang L, Meng Y, Chang Y, Xu J, Zhang Q. Increased levels of LAPTM4B, VEGF and survivin are correlated with tumor progression and poor prognosis in breast cancer patients. Oncotarget 2018; 8:41282-41293. [PMID: 28476037 PMCID: PMC5522199 DOI: 10.18632/oncotarget.17176] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Objective This study explored the relationships among the expression of LAPTM4B, VEGF, and survivin and clinicopathological characteristics and prognosis in breast cancer patients. Methods The expression of these three molecules in 110 stage I-III breast cancer patients with clinicopathological and follow-up data was detected via immunohistochemistry. Kaplan-Meier and Cox proportional hazard regression analyses were performed to assess the prognostic significance of these markers in breast cancer. Moreover, expression levels of these markers were evaluated in 5 breast cell lines via Western blot analysis. Results LAPTM4B, VEGF, and survivin were over-expressed in breast cancer specimens and highly expressed in MDA-MB-231 cells. VEGF and nuclear survivin expression was significantly correlated with LAPTM4B expression, and high levels of all three were associated with a tumor size >2cm, TNM stage II+III and lymph node metastasis, which had worse impacts on overall survival and progression-free survival in breast cancer patients. A multivariate Cox analysis identified LAPTM4B over-expression as an independent prognostic marker in breast cancer. Conclusions These findings suggest that LAPTM4B, VEGF, and nuclear survivin expression are significantly correlated in breast cancer, which may be predictive of prognosis as well as effective therapeutic targets for new anticancer therapies.
Collapse
Affiliation(s)
- Sha Li
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lu Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yue Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanli Chang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianjun Xu
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qingyun Zhang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
49
|
Li M, Zhou R, Shan Y, Li L, Wang L, Liu G. Targeting a novel cancer-driving protein (LAPTM4B-35) by a small molecule (ETS) to inhibit cancer growth and metastasis. Oncotarget 2018; 7:58531-58542. [PMID: 27542271 PMCID: PMC5295449 DOI: 10.18632/oncotarget.11325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous studies demonstrated that LAPTM4B-35 is overexpressed in a variety of solid cancers including hepatocellular carcinoma (HCC), and is an independent factor for prognosis. LAPTM4B-35 overexpression causes carcinogenesis and enhances cancer growth, metastasis and multidrug resistance, and thus may be a candidate for therapeutic targeting. The present study shows ethylglyoxal bisthiosemicarbazon (ETS) has effective anticancer activity through LAPTM4B-35 targeting. Bel-7402 and HepG2 cell lines from human HCC were used as cell models in which LAPTM4B-35 is highly expressed, and a human fetal liver cell line was used as a control. The results showed ETS has a specific and pronounced lethal effect on HCC cells, but not on fetal liver cells in culture. ETS also attenuated growth and metastasis of human HCC xenograft in nude mice, and extended the life span of mice with HCC. ETS induced HCC cell apoptosis, and upregulated a large number of proapoptotic genes and downregulated antiapoptotic genes. When endogenous overexpression of LAPTM4B-35 was knocked down with RNAi, the killing effect of ETS on HepG2 cells was significantly attenuated. ETS also inhibited phosphorylation of LAPTM4B-35 Tyr285, which involves in activation of the PI3K/Akt signaling pathway induced by LAPTM4B-35 overexpression. In addition, the induction of alterations in quantity of c-Myc, Bcl-2, Bax, cyclinD1 and Akt-p molecules in HepG2 cells by LAPTM4B-35 overexpression could be reversed by ETS. CONCLUSION ETS is a promising candidate for treatment of HCC through LAPTM4B-35 protein targeting.
Collapse
Affiliation(s)
- Maojin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing 100191, China
| | - Rouli Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing 100191, China
| | - Yi Shan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing 100191, China
| | - Li Li
- Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Wang
- Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
50
|
Meng Y, Wang L, Xu J, Zhang Q. AP4 positively regulates LAPTM4B to promote hepatocellular carcinoma growth and metastasis, while reducing chemotherapy sensitivity. Mol Oncol 2018; 12:373-390. [PMID: 29337428 PMCID: PMC5830630 DOI: 10.1002/1878-0261.12171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Polymorphisms of the lysosomal-associated protein transmembrane-4 beta (LAPTM4B) gene are related to various forms of tumour susceptibility, which led us to hypothesize that some unique transcription factors targeting this polymorphism region may affect the biological function of LAPTM4B in tumour progression. In this study, we found that the transcription factor AP4 directly binds to the polymorphism region of the LAPTM4B gene promoter and induces its transcription. In addition, we demonstrated that AP4 promotes hepatocellular carcinoma (HCC) cell proliferation and metastasis and depresses chemotherapy sensitivity via LAPTM4B by activating the PI3K/AKT signalling pathway and caspase-dependent pathway. Interestingly, we found that AP4 could not only regulate LAPTM4B by directly binding to the promoter, but also be regulated via a positive feedback mechanism involving LAPTM4B acting on c-myc. Finally, we showed that AP4 and LAPTM4B are highly coexpressed in HCC tissues, and their coexpression may be a marker of poor prognosis. These findings provide evidence of the expression and functional coupling between AP4 and LAPTM4B and shed light on the regulation of LAPTM4B and its function in liver cancer.
Collapse
Affiliation(s)
- Yue Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianjun Xu
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qingyun Zhang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|