1
|
Pagano A, Gualtieri C, Mutti G, Raveane A, Sincinelli F, Semino O, Balestrazzi A, Macovei A. Identification and Characterization of SOG1 (Suppressor of Gamma Response 1) Homologues in Plants Using Data Mining Resources and Gene Expression Profiling. Genes (Basel) 2022; 13:667. [PMID: 35456473 PMCID: PMC9026448 DOI: 10.3390/genes13040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.G.); (G.M.); (A.R.); (F.S.); (O.S.); (A.B.)
| |
Collapse
|
2
|
Hurem S, Gomes T, Brede DA, Lindbo Hansen E, Mutoloki S, Fernandez C, Mothersill C, Salbu B, Kassaye YA, Olsen AK, Oughton D, Aleström P, Lyche JL. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2017; 159:564-578. [PMID: 28892785 DOI: 10.1016/j.envres.2017.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Radiation Protection Authority (NRPA), Postboks 55, 1332 Østerås, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Cristian Fernandez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Carmel Mothersill
- McMaster University, Department of Biology, 1280 Main St. West Hamilton, Ontario, Canada
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ann-Karin Olsen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute of Public Health (NIPH), PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
3
|
Kaushik N, Kim MJ, Kim RK, Kumar Kaushik N, Seong KM, Nam SY, Lee SJ. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines. Sci Rep 2017; 7:43361. [PMID: 28240233 PMCID: PMC5327467 DOI: 10.1038/srep43361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24- population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Rae-Kwon Kim
- The University of Texas MD Anderson Cancer Center, So Campus Research Bldg 1 (SCR2.2208), 1515 Holcombe Blvd. Unit 0903, Houston, TX 77030, USA
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Seon-Young Nam
- Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015; 368:164-72. [DOI: 10.1016/j.canlet.2015.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
|
5
|
Simelyte E, Rosengren S, Boyle DL, Corr M, Green DR, Firestein GS. Regulation of arthritis by p53: Critical role of adaptive immunity. ACTA ACUST UNITED AC 2005; 52:1876-84. [PMID: 15934085 DOI: 10.1002/art.21099] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The p53 tumor-suppressor protein is expressed in rheumatoid arthritis synovium, and loss of p53 function through somatic mutation can occur in longstanding disease. Previous studies demonstrated that p53 is protective in murine collagen-induced arthritis (CIA). To determine if adaptive immune responses or synovial effector functions are responsible for this effect, passive models of arthritis were studied in p53 wild-type and knockout mice. METHODS Models of passive CIA, passive K/BxN serum transfer arthritis, and active CIA were induced in DBA/1 p53(-/-) or p53(+) mice. Hind paws were evaluated for histologic evidence of inflammation and joint destruction. Synovial interleukin-6 and matrix metalloproteinases 3 and 13 gene expression was analyzed by real-time quantitative polymerase chain reaction. To evaluate T cell function in p53(-/-) mice, draining lymph node (LN) cells from mice immunized with type II collagen (CII) were evaluated in vitro. RESULTS Increased disease severity in p53(-/-) mice was confirmed in the standard CIA model. However, clinical arthritis, joint destruction, and synovial gene expression in the passive CIA and K/BxN serum transfer arthritis models were similar in p53(-/-) and p53(+) mice. To determine if the p53 effect was related to T cell function, LN cells from CII-immunized mice were isolated and stimulated with antigen in vitro. CII-stimulated T cell proliferation and interferon-gamma production were significantly higher in p53(-/-) mice. An independent assessment of Th1 function using the cutaneous delayed-type hypersensitivity model confirmed that p53(-/-) mice have enhanced T cell responses in vivo. CONCLUSION Adaptive immune responses, rather than antibody-mediated responses, in p53(-/-) mice account for increased disease severity in the active CIA model.
Collapse
Affiliation(s)
- Egle Simelyte
- University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|