1
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
2
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
3
|
Vriend J, Klonisch T. Genes of the Ubiquitin Proteasome System Qualify as Differential Markers in Malignant Glioma of Astrocytic and Oligodendroglial Origin. Cell Mol Neurobiol 2023; 43:1425-1452. [PMID: 35896929 PMCID: PMC10079750 DOI: 10.1007/s10571-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada.
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada
| |
Collapse
|
4
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
5
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
6
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
7
|
Kori M, Arga KY. Pathways involved in viral oncogenesis: New perspectives from virus-host protein interactomics. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165885. [PMID: 32574835 DOI: 10.1016/j.bbadis.2020.165885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses are among the apparent causes of cancer-associated mortality. It was estimated that 12% to 15% of human malignancies are linked to oncoviruses. Although modernist strategies and traditional genetic studies have defined host-pathogen interactions of the oncoviruses, their host functions which are critical for the establishment of infection still remain mysterious. However, over the last few years, it has become clear that infections hijack and modify cellular pathways for their benefit. In this context, we constructed the virus-host protein interaction networks of seven oncoviruses (EBV, HBV, HCV, HTLV-1, HHV8, HPV16, and HPV18), and revealed cellular pathways hijacking as a result of oncogenic virus infection. Several signaling pathways/processes such as TGF-β signaling, cell cycle, retinoblastoma tumor suppressor protein, and androgen receptor signaling were mutually targeted by viruses to induce oncogenesis. Besides, cellular pathways specific to a certain virus were detected. By this study, we believe that we improve the understanding of the molecular pathogenesis of viral oncogenesis and provide information in setting new targets for treatment, prognosis, and diagnosis.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
8
|
Hassani A, Khan G. Epstein-Barr Virus and miRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front Immunol 2019; 10:695. [PMID: 31001286 PMCID: PMC6456696 DOI: 10.3389/fimmu.2019.00695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression post transcriptionally. In healthy individuals, miRNAs contribute to maintaining gene expression homeostasis. However, the level of miRNAs expressed is markedly altered in different diseases, including multiple sclerosis (MS). The impact of such changes is being investigated, and thought to shape the immune system into the inflammatory autoimmune phenotype. Much is yet to be learned about the contribution of miRNAs in the molecular pathology of MS. Epstein-Barr virus (EBV) infection is a major risk factor for the development of MS. EBV encodes more than 40 miRNAs, most of which have been studied in the context of EBV associated cancers. These viral miRNAs regulate genes involved in cell apoptosis, antigen presentation and recognition, as well as B cell transformation. If EBV infection contributes to the pathology of MS, it is plausible that EBV miRNAs may be involved. Unfortunately, there are limited studies addressing how EBV miRNAs are involved in the pathogenesis of MS. This review summarizes what has been reported regarding cellular and viral miRNA profiles in MS and proposes possible interactions between the two in the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Wang L, Howell MEA, Sparks-Wallace A, Hawkins C, Nicksic CA, Kohne C, Hall KH, Moorman JP, Yao ZQ, Ning S. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog 2019; 15:e1007541. [PMID: 31017975 PMCID: PMC6502431 DOI: 10.1371/journal.ppat.1007541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Caroline Hawkins
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Carissa Kohne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Kenton H. Hall
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
10
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
11
|
Immune defects caused by mutations in the ubiquitin system. J Allergy Clin Immunol 2017; 139:743-753. [PMID: 28270366 DOI: 10.1016/j.jaci.2016.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail.
Collapse
|
12
|
The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7. J Virol 2017; 91:JVI.01138-16. [PMID: 27903798 DOI: 10.1128/jvi.01138-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, linear ubiquitin assembly complex (LUBAC)-mediated linear ubiquitination has come into focus due to its emerging role in activation of NF-κB in different biological contexts. However, the role of LUBAC in LMP1 signaling leading to NF-κB and interferon regulatory factor 7 (IRF7) activation has not been investigated. We show here that RNF31, the key component of LUBAC, interacts with LMP1 and IRF7 in Epstein-Barr virus (EBV)-transformed cells and that LUBAC stimulates linear ubiquitination of NEMO and IRF7. Consequently, LUBAC is required for LMP1 signaling to full activation of NF-κB but inhibits LMP1-stimulated IRF7 transcriptional activity. The protein levels of RNF31 and LMP1 are correlated in EBV-transformed cells. Knockdown of RNF31 in EBV-transformed IB4 cells by RNA interference negatively regulates the expression of the genes downstream of LMP1 signaling and results in a decrease of cell proliferation. These lines of evidence indicate that LUBAC-mediated linear ubiquitination plays crucial roles in regulating LMP1 signaling and functions. IMPORTANCE We show here that LUBAC-mediated linear ubiquitination is required for LMP1 activation of NF-κB but inhibits LMP1-mediated IRF7 activation. Our findings provide novel mechanisms underlying EBV-mediated oncogenesis and may have a broad impact on IRF7-mediated immune responses.
Collapse
|
13
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|
14
|
Yamakawa N, Fujimoto M, Kawabata D, Terao C, Nishikori M, Nakashima R, Imura Y, Yukawa N, Yoshifuji H, Ohmura K, Fujii T, Kitano T, Kondo T, Yurugi K, Miura Y, Maekawa T, Saji H, Takaori-Kondo A, Matsuda F, Haga H, Mimori T. A clinical, pathological, and genetic characterization of methotrexate-associated lymphoproliferative disorders. J Rheumatol 2013; 41:293-9. [PMID: 24334644 DOI: 10.3899/jrheum.130270] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Methotrexate-associated lymphoproliferative disorders (MTX-LPD) often regress spontaneously during MTX withdrawal, but the prognostic factors remain unclear. The aim of our study was to clarify the clinical, histological, and genetic factors that predict outcomes in patients with MTX-LPD. METHODS Patients with MTX-LPD diagnosed between 2000 and 2012 were analyzed retrospectively regarding their clinical course, site of biopsy, histological typing, Epstein-Barr virus (EBV) in situ hybridization and immunostaining, and HLA type. RESULTS Twenty-one patients, including 20 with rheumatoid arthritis (RA) and 1 with polymyositis, were analyzed. The mean dose of MTX was 6.1 mg/week and the mean duration of treatment was 71.1 months. Clinically, 5 patients were diagnosed with EBV-positive mucocutaneous ulcer (EBVMCU) and had polymorphic histological findings. The proportion of those patients successfully treated solely by withdrawal of MTX was significantly greater than that of those without EBVMCU (75% vs 7.7%, p = 0.015). The HLA-B15:11 haplotype was more frequent in patients with EBV+ RA with MTX-LPD than in healthy Japanese controls (p = 0.0079, Bonferroni's method). EBV latency classification and HLA typing were not associated with the prognosis of MTX-LPD in our cohort. CONCLUSION Our data demonstrate that patients in the EBVMCU, a specific clinical subgroup of MTX-LPD, had a better clinical outcome when MTX was withdrawn than did other patients with MTX-LPD.
Collapse
Affiliation(s)
- Noriyuki Yamakawa
- From the Department of Rheumatology and Clinical Immunology, the Department of Diagnostic Pathology, the Center for Genomic Medicine, and the Department of Hematology and Oncology, Kyoto University Graduate School of Medicine; the Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital; the HLA Foundation Laboratory, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Merulla J, Fasana E, Soldà T, Molinari M. Specificity and Regulation of the Endoplasmic Reticulum-Associated Degradation Machinery. Traffic 2013; 14:767-77. [DOI: 10.1111/tra.12068] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Elisa Fasana
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | | |
Collapse
|
16
|
Scarpa ES, Bonfili L, Eleuteri AM, La Teana A, Brugè F, Bertoli E, Littarru GP, Cacciamani T. ATP independent proteasomal degradation of NQO1 in BL cell lines. Biochimie 2012; 94:1242-9. [PMID: 22586705 DOI: 10.1016/j.biochi.2012.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present. This polymorphism produces a null phenotype in the homozygous condition and reduced enzyme activity in the heterozygous one. We previously demonstrated that two cell lines of haematopoietic origin, HL60 and Raji cells, possess the same heterozygous genotype, but different phenotypes; as expected for a heterozygous condition the HL60 cell line showed a low level of enzyme activity, while the Raji cell line appeared as null phenotype. The level of NQO1 mRNA was similar in the two cell lines and the different phenotype was not due to additional mutations or to expression of alternative splicing products. Here we show that in Raji BL cell line with heterozygous genotype the null NQO1 phenotype is due to 20S proteasome degradation of wild type and mutant protein isoforms and is not directly linked to C609T polymorphism. This finding may have important implications in B-cell differentiation, in leukaemia risk evaluation and in chemotherapy based on proteasome inhibitors.
Collapse
Affiliation(s)
- Emanuele S Scarpa
- Università Politecnica delle Marche, Dipartimento di Scienze della Vita e dell’Ambiente, via Brecce Bianche, 60131 Ancona, Italia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fatima G, Mathan G, Kumar V. The HBx protein of hepatitis B virus regulates the expression, intracellular distribution and functions of ribosomal protein S27a. J Gen Virol 2011; 93:706-715. [PMID: 22158882 DOI: 10.1099/vir.0.035691-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pleiotropic HBx protein of hepatitis B virus is linked functionally to the development of hepatocellular carcinoma (HCC) via effectors and signalling pathways of the host. To identify such effectors in a macrocarcinogenic environment, a PCR-based cDNA subtraction analysis was carried out in the X15-myc oncomouse model of HCC. Altogether, 19 categories of genes, mainly involved in protein biosynthesis and the electron-transport chain, were found to be upregulated in the liver of these mice. Ribosomal protein S27a (RPS27a), which is a natural fusion protein of N-terminal ubiquitin and C-terminal extension protein (CEP), topped the list of expressed genes, with >20-fold higher expression compared with its normal level. Sustained and elevated expression of RPS27a in the mouse liver and its moderate expression in cell culture in the presence of HBx suggested an indirect role of RPS27a in hepatocarcinogenesis. Nevertheless, a remarkable change in the intracellular distribution of ubiquitin from cytoplasm to late-endosomal lysosomes, and of CEP from nucleoli to the perinucleolar region/nuclear foci, was observed in the presence of HBx. RPS27a accelerated the progression of the cell cycle and cooperated with HBx in this process. Further, the knockdown of RPS27a expression by RNA interference in an HBx microenvironment led to retarded cell-cycle progression and reduced cell size. Thus, these results suggest strongly that RPS27a could be an effector of HBx-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Grace Fatima
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ganeshan Mathan
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
18
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
19
|
Li N, Thompson S, Jiang H, Lieberman PM, Luo C. Development of drugs for Epstein-Barr virus using high-throughput in silico virtual screening. Expert Opin Drug Discov 2010; 5:1189-203. [PMID: 22822721 PMCID: PMC3816986 DOI: 10.1517/17460441.2010.524640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is causally associated with endemic forms of Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects > 90% of the adult population and is responsible for ∼ 1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. AREAS COVERED IN THIS REVIEW In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes as well as proteins that are expressed exclusively during latent infection, such as EBV nuclear antigen 1 (EBNA-1) and latent membrane protein 1. As the atomic structure of the EBNA-1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, such as EBNA-1, to treat EBV infection and disease. WHAT THE READER WILL GAIN The reader is familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. TAKE HOME MESSAGE Despite the impressive efficacy of nucleoside analogs for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. As EBV latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High-throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease.
Collapse
Affiliation(s)
- Ning Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Systems Biology, Soochow University, Jiangsu 215006, China
| |
Collapse
|
20
|
Rolén U, Freda E, Xie J, Pfirrmann T, Frisan T, Masucci MG. The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. J Cell Mol Med 2010; 13:1666-1678. [PMID: 20187292 DOI: 10.1111/j.1582-4934.2008.00501.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme that catalyses the hydrolysis of polyubiquitin precursors and small ubiquitin adducts. UCH-L1 has been detected in a variety of malignant and metastatic tumours but its biological function in these cells is unknown. We have previously shown that UCH-L1 is highly expressed in Burkitt's lymphoma (BL) and is up-regulated upon infection of B lymphocytes with Epstein-Barr virus (EBV). Here we show that knockdown of UCH-L1 by RNAi inhibits the proliferation of BL cells in suspension and semisolid agar and activates strong LFA-1-dependent homotypic adhesion. Induction of cell adhesion correlated with cation-induced binding to ICAM-1, clustering of LFA-1 into lipid rafts and constitutive activation of the Rap1 and Rac1 GTPases. Expression of a catalytically active UCH-L1 promoted the proliferation of a UCH-L1-negative EBV transformed lymphoblastoid cell line (LCL) and inhibited cell adhesion, whereas a catalytic mutant had no effect, confirming the requirement of UCH-L1 enzymatic activity for the regulation of these phenotypes. Our results identify UCH-L1 as a new player in the signalling pathways that promote the proliferation and invasive capacity of malignant B cells.
Collapse
Affiliation(s)
- Ulrika Rolén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elio Freda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Department of Pediatrics, University of Rome, Tor Vergata, Rome, Italy
| | - Jianjun Xie
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Hematology Branch, Heart Lung and Blood Institute, Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Thorsten Pfirrmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Wenner-Grens Institute for Cell Biology, Stockholm University, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Veksler-Lublinsky I, Shemer-Avni Y, Kedem K, Ziv-Ukelson M. Gene bi-targeting by viral and human miRNAs. BMC Bioinformatics 2010; 11:249. [PMID: 20465802 PMCID: PMC3583137 DOI: 10.1186/1471-2105-11-249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/13/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs (20-24 nts) that can affect gene expression by post-transcriptional regulation of mRNAs. They play important roles in several biological processes (e.g., development and cell cycle regulation). Numerous bioinformatics methods have been developed to identify the function of miRNAs by predicting their target mRNAs. Some viral organisms also encode miRNAs, a fact that contributes to the complex interactions between viruses and their hosts. A need arises to understand the functional relationship between viral and host miRNAs and their effect on viral and host genes. Our approach to meet this challenge is to identify modules where viral and host miRNAs cooperatively regulate host gene expression. RESULTS We present a method to identify groups of viral and host miRNAs that cooperate in post-transcriptional gene regulation, and their target genes that are involved in similar biological processes. We call these groups (genes and miRNAs of human and viral origin) - modules. The modules are found in a new two-stage procedure, which we call bi-targeting, and is presented in this paper. The stages are (i) a new and efficient target prediction, and (ii) a new method for clustering objects of three different data types. In this work we integrate multiple information sources, including miRNA-target binding information, miRNA expression profiles, and GO annotations. Our hypotheses and the methods have been tested on human and Epstein Barr virus (EBV) miRNAs and human genes, for which we found 34 modules. We provide supporting evidence from biological and medical literature for two of our modules. Our code and data are available at http://www.cs.bgu.ac.il/~vaksler/BiTargeting.htm CONCLUSIONS The presented algorithm, which makes use of diverse biological data, is demonstrated to be an efficient approach for finding bi-targeting modules of viral and human miRNAs. These modules can contribute to a better understanding of viral-host interactions and the role that miRNAs play in them.
Collapse
Affiliation(s)
| | - Yonat Shemer-Avni
- Virology and Developmental Genetics/Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Klara Kedem
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Michal Ziv-Ukelson
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
22
|
Thompson CM, Grafström RC. Commentary: mechanistic considerations for associations between formaldehyde exposure and nasopharyngeal carcinoma. Environ Health 2009; 8:53. [PMID: 19939253 PMCID: PMC2788541 DOI: 10.1186/1476-069x-8-53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/25/2009] [Indexed: 05/05/2023]
Abstract
Occupational exposure to formaldehyde has been linked to nasopharyngeal carcinoma. To date, mechanistic explanations for this association have primarily focused on formaldehyde-induced cytotoxicity, regenerative hyperplasia and DNA damage. However, recent studies broaden the potential mechanisms as it is now well established that formaldehyde dehydrogenase, identical to S-nitrosoglutathione reductase, is an important mediator of cGMP-independent nitric oxide signaling pathways. We have previously described mechanisms by which formaldehyde can influence nitrosothiol homeostasis thereby leading to changes in pulmonary physiology. Considering evidences that nitrosothiols govern the Epstein-Barr virus infection cycle, and that the virus is strongly implicated in the etiology of nasopharyngeal carcinoma, studies are needed to examine the potential for formaldehyde to reactivate the Epstein-Barr virus as well as additively or synergistically interact with the virus to potentiate epithelial cell transformation.
Collapse
Affiliation(s)
- Chad M Thompson
- ToxStrategies, Inc, 23501 Cinco Ranch Blvd, Suite G265, Katy, TX 77494, USA
| | - Roland C Grafström
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- VTT Technical Research Centre of Finland, Medical Biotechnology, PO Box 106, FI-20521 Turku, Finland
| |
Collapse
|
23
|
Marescotti D, Destro F, Baldisserotto A, Marastoni M, Coppotelli G, Masucci M, Gavioli R. Characterization of an human leucocyte antigen A2-restricted Epstein-Barr virus nuclear antigen-1-derived cytotoxic T-lymphocyte epitope. Immunology 2009; 129:386-95. [PMID: 19922423 DOI: 10.1111/j.1365-2567.2009.03190.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is regularly expressed in all proliferating virus-infected cells and is therefore an interesting target for immunotherapy. Alleles of the human leucocyte antigen (HLA) -A2 family are dominantly expressed in Caucasians so we sought to identify EBNA1-specific cytotoxic T-lymphocyte (CTL) responses restricted through this allele. We report on the characterization of the LQTHIFAEV (LQT) epitope. LQT-specific memory CTL responses were reactivated in three of 14 healthy EBV seropositive donors (21%) whereas responses to HLA-A2-restricted epitopes, two derived from LMP2 and one from EBNA3A, were detected in 93%, 71% and 42% of the donors, respectively. The LQT-specific CTL clones did not lyse EBV-carrying lymphoblastoid cell lines and Burkitt's lymphoma cell lines nor EBNA1-transfected Burkitt's lymphoma cells but specifically released interferon-gamma upon stimulation with HLA-matched EBNA1-expressing cells and this response was enhanced by deletion of the Gly-Ala repeat domain that inhibits proteasomal degradation. The poor presentation of the endogenously expressed LQT epitope was not affected by inhibition of peptidases that trim antigenic peptides in the cytosol but full presentation was achieved in cells expressing a trojan antigen construct that releases the epitope directly into the endoplasmic reticulum. Hence, inefficient proteasomal processing appears to be mainly responsible for the poor presentation of this epitope.
Collapse
Affiliation(s)
- Diego Marescotti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Dawson III DR, Wang C, Danaher RJ, Lin Y, Kryscio RJ, Jacob RJ, Miller CS. Salivary levels of Epstein-Barr virus DNA correlate with subgingival levels, not severity of periodontitis. Oral Dis 2009; 15:554-9. [DOI: 10.1111/j.1601-0825.2009.01585.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
26
|
Luo H, Wong J, Wong B. Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc Res 2009; 85:347-56. [PMID: 19578074 PMCID: PMC7109953 DOI: 10.1093/cvr/cvp225] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The primary intracellular protein degradation systems, including the ubiquitin-proteasome and the lysosome pathways, have been emerging as central regulators of viral infectivity, inflammation, and viral pathogenicity. Viral myocarditis is an inflammatory disease of the myocardium caused by virus infection in the heart. The disease progression of viral myocarditis occurs in three distinct stages: acute viral infection, immune cell infiltration, and cardiac remodelling. Growing evidence suggests a crucial role for host proteolytic machineries in the regulation of the pathogenesis and progression of viral myocarditis in all three stages. Cardiotropic viruses evolve different strategies to subvert host protein degradation systems to achieve successful viral replication. In addition, these proteolytic systems play important roles in the activation of innate and adaptive immune responses during viral infection. Recent evidence also suggests a key role for the ubiquitin-proteasome and lysosome systems as the primary effectors of protein quality control in the regulation of cardiac remodelling. This review summarizes the recent advances in understanding the direct interaction between cardiotropic viruses and host proteolytic systems, with an emphasis on coxsackievirus B3, one of the primary aetiological agents causing viral myocarditis, and highlights possible roles of the host degradation systems in the pathogenesis of viral myocarditis and its progression to dilated cardiomyopathy.
Collapse
Affiliation(s)
- Honglin Luo
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Heart+Lung Institute, St Paul's Hospital-University of British Columbia, 1081 Burrard Street, Vancouver, BC, Canada.
| | | | | |
Collapse
|
27
|
Su ZL, Mo XL, Feng ZY, Lin HL, Ding YG. UBE1 expression in extranodal NK/T cell lymphoma, nasal type. Leuk Lymphoma 2008; 49:1821-2. [PMID: 18661401 DOI: 10.1080/10428190802187171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Epstein-Barr virus renders the infected natural killer cell line, NKL resistant to doxorubicin-induced apoptosis. Br J Cancer 2008; 99:1816-22. [PMID: 18985034 PMCID: PMC2600699 DOI: 10.1038/sj.bjc.6604764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We established two Epstein–Barr virus (EBV)-infected NKL sublines, which acquired stress resistant phenotype against DNA damage and starvation compared with EBV-negative NKL. EBV-rendered doxorubicin resistance at least partially through NF-κB activation and the resultant sustenance of antiapoptotic proteins including Bcl-XL and FLIPL/S.
Collapse
|
29
|
Abstract
Manipulation of the ubiquitin proteasome system (UPS) is emerging as a common theme in viral pathogenesis. Some viruses have been shown to encode functional homologs of UPS enzymes, suggesting that a systematic identification of these products may provide new insights into virus-host cell interactions. Ubiquitin-specific proteases, collectively known as deubiquitinating enzymes (DUBs), regulate the activity of the UPS by hydrolyzing ubiquitin peptide or isopeptide bonds. The prediction of viral DUBs based on sequence similarity with known enzymes is hampered by the diversity of viral genomes. In this study sequence alignments, pattern searches, and hidden Markov models were developed for the conserved C- and H-boxes of the known DUB families and used to search the open reading frames (ORFs) of Epstein-Barr virus (EBV), a large gammaherpesvirus that has been implicated in the pathogenesis of a broad spectrum of human malignancies of lymphoid and epithelial cell origin. The searches identified a limited number of EBV ORFs that contain putative DUB catalytic domains. DUB activity was confirmed by functional assays and mutation analysis for three high scoring candidates, supporting the usefulness of this bioinformatics approach in predicting distant homologues of cellular enzymes.
Collapse
|
30
|
Cordova C, Munker R. The presence or absence of latent Epstein-Barr virus does not alter the sensitivity of Burkitt's lymphoma cell lines to proteasome inhibitors. Acta Haematol 2008; 119:241-3. [PMID: 18594134 DOI: 10.1159/000142613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/06/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Cory Cordova
- Feist Weiller Cancer Center, Division of Hematology/Oncology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
31
|
Rohr JC, Wagner HJ, Lauten M, Wacker HH, Jüttner E, Hanke C, Pohl M, Niemeyer CM. Differentiation of EBV-induced post-transplant Hodgkin lymphoma from Hodgkin-like post-transplant lymphoproliferative disease. Pediatr Transplant 2008; 12:426-31. [PMID: 18466428 DOI: 10.1111/j.1399-3046.2007.00816.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of lymphomas after SOT is a well-known complication of the immunosuppressive therapy necessary to prevent graft rejection. Epstein-Barr virus plays a central role in the pathogenesis of lymphomas because of its ability to transform infected cells. Differentiating PTLD from malignant lymphomas, especially HL can be challenging. We report on two patients, who developed EBV-associated lymphomas several years after SOT. A histological examination of lymph nodes led to a diagnosis of HL in both patients, who were started on chemotherapy according to current treatment protocols. A rapid and complete remission in one patient prompted us to analyze the expression pattern of EBV-latency genes. In this patient, the EBV expression profile revealed a latency type III suggesting the diagnosis of Hodgkin-like PTLD. The other patient required six courses of chemotherapy plus radiotherapy to reach a complete remission. In his tumor cells, a restricted EBV-latency type II pattern was found, suggesting a diagnosis of classical HL. These two cases demonstrate that in post-transplant lymphomas with histological features of HL, an analysis of the expression pattern of EBV proteins might aid in the differentiation between PTLD and HL.
Collapse
Affiliation(s)
- Jan C Rohr
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gao G, Zhang J, Si X, Wong J, Cheung C, McManus B, Luo H. Proteasome inhibition attenuates coxsackievirus-induced myocardial damage in mice. Am J Physiol Heart Circ Physiol 2008; 295:H401-8. [PMID: 18515649 DOI: 10.1152/ajpheart.00292.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coxsackievirus B3 (CVB3) is one of the most prevalent pathogens of viral myocarditis, which may persist chronically and progress to dilated cardiomyopathy. We previously demonstrated a critical role of the ubiquitin-proteasome system (UPS) in the regulation of coxsackievirus replication in mouse cardiomyocytes. In the present study, we extend our interest to an in vivo animal model to examine the regulation and role of the UPS in CVB3-induced murine myocarditis. Male myocarditis-susceptible A/J mice at age 4-5 wk were randomized to four groups: sham infection + vehicle (n = 10), sham infection + proteasome inhibitor (n = 10), virus + vehicle (n = 20), and virus + proteasome inhibitor (n = 20). Proteasome inhibitor was administered subcutaneously once a day for 3 days. Mice were killed on day 9 after infection, and infected hearts were harvested for Western blot analysis, plaque assay, immunostaining, and histological examination. We showed that CVB3 infection led to an accumulation of ubiquitin conjugates at 9 days after infection. Protein levels of ubiquitin-activating enzyme E1A/E1B, ubiquitin-conjugating enzyme UBCH7, as well as deubiquitinating enzyme UCHL1 were markedly increased in CVB3-infected mice compared with sham infection. However, there was no significant alteration in proteasome activities at 9 days after infection. Immunohistochemical staining revealed that increased expression of E1A/E1B was mainly localized to virus-damaged cells. Finally, we showed that application of a proteasome inhibitor significantly reduced CVB3-induced myocardial damage. This observation reveals a novel mechanism of coxsackieviral pathogenesis, and suggests that the UPS may be an attractive therapeutic target against coxsackievirus-induced myocarditis.
Collapse
Affiliation(s)
- Guang Gao
- Department of Pathology and Laboratory Medicine, Univ. of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Hawkes CH, Del Tredici K, Braak H. Parkinson's disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 2007; 33:599-614. [PMID: 17961138 PMCID: PMC7194308 DOI: 10.1111/j.1365-2990.2007.00874.x] [Citation(s) in RCA: 706] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 06/15/2007] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that sporadic Parkinson's disease has a long prodromal period during which several non-motor features develop, in particular, impairment of olfaction, vagal dysfunction and sleep disorder. Early sites of Lewy pathology are the olfactory bulb and enteric plexus of the stomach. We propose that a neurotropic pathogen, probably viral, enters the brain via two routes: (i) nasal, with anterograde progression into the temporal lobe; and (ii) gastric, secondary to swallowing of nasal secretions in saliva. These secretions might contain a neurotropic pathogen that, after penetration of the epithelial lining, could enter axons of the Meissner's plexus and, via transsynaptic transmission, reach the preganglionic parasympathetic motor neurones of the vagus nerve. This would allow retrograde transport into the medulla and, from here, into the pons and midbrain until the substantia nigra is reached and typical aspects of disease commence. Evidence for this theory from the perspective of olfactory and autonomic dysfunction is reviewed, and the possible routes of pathogenic invasion are considered. It is concluded that the most parsimonious explanation for the initial events of sporadic Parkinson's disease is pathogenic access to the brain through the stomach and nose - hence the term 'dual-hit'.
Collapse
Affiliation(s)
- C H Hawkes
- Essex Neuroscience Centre, Queen's Hospital, Romford, Essex UK.
| | | | | |
Collapse
|
34
|
Shackelford J, Pagano JS. Role of the ubiquitin system and tumor viruses in AIDS-related cancer. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S8. [PMID: 18047745 PMCID: PMC2106372 DOI: 10.1186/1471-2091-8-s1-s8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tumor viruses are linked to approximately 20% of human malignancies worldwide. This review focuses on examples of human oncogenic viruses that manipulate the ubiquitin system in a subset of viral malignancies; those associated with AIDS. The viruses include Kaposi's sarcoma herpesvirus, Epstein-Barr virus and human papilloma virus, which are causally linked to Kaposi's sarcoma, certain B-cell lymphomas and cervical cancer, respectively. We discuss the molecular mechanisms by which these viruses subvert the ubiquitin system and potential viral targets for anti-cancer therapy from the perspective of this system. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Julia Shackelford
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
35
|
Cupić M, Lazarević I, Kuljić-Kapulica N. [Oncogenic viruses and their role in tumour formation]. SRP ARK CELOK LEK 2006; 133:384-7. [PMID: 16623266 DOI: 10.2298/sarh0508384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oncogenic viruses trigger persistent infections, which can stimulate uncontrolled cell growth by inducing cell transformation. Different oncogenic viruses use different mechanisms for infecting cells. Most oncogenic DNA viruses integrate transforming sets of genes into the host chromosome and encode proteins that bind and inactivate cell growth regulatory proteins, such as p53 and retinoblastoma gene product. Tumourous RNA viruses use different oncogenic mechanisms. Some of them encode oncogenic proteins that are almost identical to the cellular proteins involved in the control of cellular growth. The overproduction or altered function of these oncogenic materials stimulates cell growth. These RNA viruses can cause tumours rapidly. The second group of oncoviruses integrates their promoter sequences and viral enhancers near to the cellular growth-stimulating gene, initiating the transformation of the cell. The third group of RNA tumour viruses encodes a protein tax that transactivates the expression of cellular genes. Virus-induced malignant transformation of the cell represents the first step in the complex process of oncogenesis.
Collapse
|
36
|
Mei YP, Zhu XF, Zhou JM, Huang H, Deng R, Zeng YX. siRNA targeting LMP1-induced apoptosis in EBV-positive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett 2006; 232:189-98. [PMID: 16458115 DOI: 10.1016/j.canlet.2005.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/12/2005] [Indexed: 11/22/2022]
Abstract
Epstein-Barr Virus (EBV) is closely associated with B cell malignancies. However, whether EBV appears to be absolutely required for cell proliferation and survival in lymphoma cells is still unknown. In this study, small interfering RNA (siRNA) targeting LMP1 was employed to investigate the effect of LMP1 on cell proliferation in EBV-positive lymphoblastoid B-cell line. A plasmid stable encoding 21-nt small RNA specifically and efficiently interfering LMP1 was constructed, resulting in a substantial loss of LMP1 mRNA and a significantly decreased LMP1 protein expression. Our data demonstrated that cell proliferation was completely inhibited and apoptosis was induced after knockdown of LMP1 gene in lymphoblastoid B-cell line. Also, we found that suppression of LMP1 caused downregulation of telomerase protein expression and decreased telomerase activity in lymphoma cells. In EBV-negative NPC cell line, transfection of plasmid expressing LMP1 greatly enhanced telomerase protein expression. Our results suggested that siRNA targeting LMP1 can induce apoptosis in EBV-positive lymphoma cells and is associated with inhibition of telomerase activity and expression. siRNA-directed LMP1 silencing may be of the therapeutic value for preventing and treating those EBV-associated tumors.
Collapse
Affiliation(s)
- Yu-Ping Mei
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, 651 DongFeng Road East, GuangZhou 510060, China
| | | | | | | | | | | |
Collapse
|
37
|
Chang MS, Kim WH. Epstein-Barr virus in human malignancy: a special reference to Epstein-Barr virus associated gastric carcinoma. Cancer Res Treat 2005; 37:257-67. [PMID: 19956524 PMCID: PMC2785932 DOI: 10.4143/crt.2005.37.5.257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Bar virus (EBV), a human herpesvirus, establishes a life-long persistent infection in 90 approximately 95% of human adult population worldwide. EBV is the etiologic agent of infectious mononucleosis, and EBV is associated with a variety of human malignancy including lymphoma and gastric carcinoma. Recently, EBV has been classified as group 1 carcinogen by the WHO International Agency for Research on Cancer. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated malignancy. At present, the precise mechanisms by which EBV transforms B lymphocytes have been disclosed. Encouragingly, they have had enough success so far to keep them enthusiastic about novel therapeutic trial in the field of EBV-associated lymphoma. However, information on EBV-associated gastric carcinoma is still at dawn. This article reviews EBV biology, immunological response of EBV infection, unique oncogenic property of EBV, peculiarity of EBV-associated gastric carcinoma, and lastly, EBV-targeted therapy and vaccination.
Collapse
Affiliation(s)
- Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Abstract
The ability of viruses to co-opt cell signalling pathways has, over millions of years of co-evolution, come to pervade nearly every facet of cellular functions. Recognition of the extent to which the ubiquitin–proteasome system can be directed or subverted by viruses is relatively recent. Viral products interact with, and adjust, the ubiquitin–proteasome machinery precisely and at many levels, and they do so at distinct stages of viral life-cycles. The implications for both cells and viruses are fundamental, and understanding viral strategies in this context opens up fascinating new areas for research that span from basic cell biology to therapeutic interventions against both viruses and malignancies.
Collapse
|
39
|
Farràs R, Bossis G, Andermarcher E, Jariel-Encontre I, Piechaczyk M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol 2005; 54:31-51. [PMID: 15780906 DOI: 10.1016/j.critrevonc.2004.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2004] [Indexed: 02/04/2023] Open
Abstract
The proteasome is the main proteolytic machinery of the cell. It is responsible for the basal turnover of many intracellular polypeptides, the elimination of abnormal proteins and the generation of the vast majority of peptides presented by class I major histocompatibility complex molecules. Proteasomal proteolysis is also involved in the control of virtually all cellular functions and major decisions through the spatially and timely regulated destruction of essential cell regulators. Therefore, the elucidation of its molecular mechanisms is crucial for the full understanding of the physiology of cells and whole organisms. Conversely, it is increasingly clear that proteasomal degradation is either altered in numerous pathological situations, including many cancers and diseases resulting from aberrant cell differentiation, or instrumental for the development of these pathologies. This, consequently, makes it an attractive target for therapeutical intervention. There is ample evidence that most cell proteins must be polyubiquitylated prior to proteasomal degradation. If the structure and the mode of functioning of the proteasome, as well as the enzymology of ubiquitylation, are relatively well understood, how substrates are delivered to and recognized by the proteolytic machine has remained mysterious till recently. The recent literature indicates that the mechanisms involved are multiple, complex and exquisitely regulated and provides new potential targets for anti-cancer pharmacological intervention.
Collapse
Affiliation(s)
- Rosa Farràs
- Institute of Molecular Genetics of Montpellier (IGMM), UMR 5535-IFR122, CNRS, Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|