1
|
Phan H, Schläppi M. The RAD6-like Ubiquitin Conjugase Gene OsUBC7 Has a Positive Role in the Early Cold Stress Tolerance Response of Rice. Genes (Basel) 2025; 16:66. [PMID: 39858613 PMCID: PMC11764743 DOI: 10.3390/genes16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms. METHODS We mapped OsUBC7, a Radiation-sensitive 6 (RAD6)-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress. RESULTS OsUBC7 is cold responsive and has higher expression levels in cold-tolerant japonica than cold-sensitive indica. Overexpression of OsUBC7 enhances LTSS of indica and freezing tolerance of Arabidopsis, increases levels of soluble sugars and chlorophyll A, boosts leaf development after cold exposure, and increases leaf cell numbers and plants size, but it does not affect membrane stability after cold stress exposure. Additionally, OsUBC7 has a positive role for germinability in the presence of salt and for flowering and yield-related traits. The OsUBC7 protein physically interacts with the developmental stage-specific and histone-modifying E3 ligases OsRFPH2-12 and OsHUB1/2, respectively, and potential target genes such as cell cycle dependent kinases were identified. CONCLUSIONS OsUBC7 might contribute to cold resilience by regulating sugar metabolism to provide energy for promoting cellular homeostasis restoration after cold stress exposure via new cell growth, particularly in leaf cells crucial for photosynthesis and metabolic activity, possibly by interacting with cell cycle regulating proteins. Overall, the present study suggests that OsUBC7 may be involved in plant development, reproduction, and stress adaptation, and contributes to a deeper understanding of rice plant cold stress tolerance response mechanisms. OsUBC7 may be a promising candidate for improving crop productivity and resilience to stressful environments.
Collapse
Affiliation(s)
| | - Michael Schläppi
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA;
| |
Collapse
|
2
|
Khatib JB, Nicolae CM, Moldovan GL. Role of Translesion DNA Synthesis in the Metabolism of Replication-associated Nascent Strand Gaps. J Mol Biol 2024; 436:168275. [PMID: 37714300 PMCID: PMC10842951 DOI: 10.1016/j.jmb.2023.168275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. https://twitter.com/JudeBKhatib
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
3
|
Haynes BM, Cunningham K, Shekhar MPV. RAD6 inhibition enhances paclitaxel sensitivity of triple negative breast cancer cells by aggravating mitotic spindle damage. BMC Cancer 2022; 22:1073. [PMID: 36258187 PMCID: PMC9578210 DOI: 10.1186/s12885-022-10119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Paclitaxel (PTX), a first-line therapy for triple negative breast cancers (TNBC) induces anti-tumor activity by microtubule stabilization and inhibition of cell division. Its dose-limiting toxicity and short half-life, however, pose clinical challenges underscoring the need for strategies that increase its efficiency. RAD6, a E2 ubiquitin conjugating enzyme, is associated with centrosomes at all phases of cell cycle. Constitutive overexpression of the RAD6B homolog in normal breast cells induces centrosome amplification and multipolar spindle formation, indicating its importance in centrosome regulation. Methods TNBC centrosome numbers were scored by pericentrin immunostaining. PTX sensitivities and interactions with SMI#9, a RAD6-selective small molecule inhibitor, on TNBC cell survival were analyzed by MTT and colony forming assays and an isogenic MDA-MB-468 TNBC model of PTX resistance. The molecular mechanisms underlying PTX and SMI#9 induced cytotoxicity were determined by flow cytometry, immunoblot analysis of cyclin B1 and microtubule associated protein TAU, and dual immunofluorescence staining of TAU and α-tubulin. Results Our data show aberrant centrosome numbers and that PTX sensitivities are not correlated with TNBC BRCA1 status. Combining PTX with SMI#9 synergistically enhances PTX sensitivities of BRCA1 wild-type and mutant TNBC cells. Whereas SMI#9/PTX combination treatment increased cyclin B1 levels in MDA-MB-468 cells, it induced cyclin B1 loss in HCC1937 cells with accumulation of reproductively dead giant cells, a characteristic of mitotic catastrophe. Cell cycle analysis revealed drug-induced accumulation of tetraploid cells in S and G2/M phases, and robust increases in cells with 4 N DNA content in HCC1937 cells. TAU overexpression is associated with reduced PTX efficacy. Among the six TAU isoforms, both SMI#9 and PTX downregulated 1N3R TAU in MDA-MB-468 and HCC1937 cells, suggesting a common mechanism of 1N3R regulation. Dual TAU and α-tubulin immunostaining showed that SMI#9 induces monopolar mitotic spindles. Using the isogenic model of PTX resistance, we show that SMI#9 treatment restores PTX sensitivity. Conclusions These data support a common mechanism of microtubule regulation by SMI#9 and PTX and suggest that combining PTX with RAD6 inhibitor may be beneficial for increasing TNBC sensitivities to PTX and alleviating toxicity. This study demonstrates a new role for RAD6 in regulating microtubule dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10119-z.
Collapse
Affiliation(s)
- Brittany M Haynes
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.,Present address: Office of Policy Communications, and Education, National Center for Advancing Translational Sciences, Besthesda, USA
| | - Kristen Cunningham
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA. .,Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Huang B, Deng W, Chen P, Mao Q, Chen H, Zhuo Z, Huang Z, Chen K, Huang J, Luo Y. Development and validation of a novel ubiquitination-related gene prognostic signature based on tumor microenvironment for colon cancer. Transl Cancer Res 2022; 11:3724-3740. [PMID: 36388031 PMCID: PMC9641125 DOI: 10.21037/tcr-22-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2024]
Abstract
BACKGROUND Colon cancer (CC) is one of the most common cancers with high morbidity globally. Ubiquitination is involved in the characterization of multiple biological processes, and some ubiquitinated enzymes are associated with the prognosis of CC. However, the prognostic model associated with ubiquitination-related genes (URGs) for CC is unavailable. METHODS Gene expression data, somatic mutations, transcriptome profiles, microsatellite instability status (MSI) status, and clinical information for CC were obtained from The Cancer Genome Atlas (TCGA) dataset. Seven URGs were used for establishing a prognostic prediction model, which was constructed and validated in GSE17538. Besides, genomic variance analysis (GSVA) was used to explore further the differences in biological pathway activation status between the high-risk and low-risk groups. Finally, the single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithm analysis were used to characterize the cellular infiltration in the microenvironment. RESULTS A seven-URG prognostic signature was established, based on which patients in the training and test groups could be divided into high-risk and low-risk groups. The results demonstrated that the model has a solid ability to predict the prognosis of CC patients. CONCLUSIONS We established a prognostic prediction model for CC based on ubiquitination. Then we analyzed the genetic characteristics associated with ubiquitination and the tumor microenvironment (TME) cell infiltration in CC. These results are worthy of exploring new clinical treatment strategies for CC.
Collapse
Affiliation(s)
- Baoyi Huang
- Department of Clinical Medicine, The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Weiping Deng
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuxian Mao
- Prenatal Diagnostic Department, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zena Huang
- Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Huizhou Municipal Central People’s Hospital, Huizhou, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Zhang S, Zhou T, Wang Z, Yi F, Li C, Guo W, Xu H, Cui H, Dong X, Liu J, Song X, Cao L. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int J Biol Sci 2021; 17:4047-4059. [PMID: 34671219 PMCID: PMC8495385 DOI: 10.7150/ijbs.64628] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.
Collapse
Affiliation(s)
- Siyi Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Tingting Zhou
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Fei Yi
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Chunlu Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Wendong Guo
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongyan Cui
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiang Dong
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Jingwei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
6
|
Ubiquitin-Conjugating Enzymes in Cancer. Cells 2021; 10:cells10061383. [PMID: 34199813 PMCID: PMC8227520 DOI: 10.3390/cells10061383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-mediated degradation system is responsible for controlling various tumor-promoting processes, including DNA repair, cell cycle arrest, cell proliferation, apoptosis, angiogenesis, migration and invasion, metastasis, and drug resistance. The conjugation of ubiquitin to a target protein is mediated sequentially by the E1 (activating)‒E2 (conjugating)‒E3 (ligating) enzyme cascade. Thus, E2 enzymes act as the central players in the ubiquitination system, modulating various pathophysiological processes in the tumor microenvironment. In this review, we summarize the types and functions of E2s in various types of cancer and discuss the possibility of E2s as targets of anticancer therapeutic strategies.
Collapse
|
7
|
Haynes B, Gajan A, Nangia-Makker P, Shekhar MP. RAD6B is a major mediator of triple negative breast cancer cisplatin resistance: Regulation of translesion synthesis/Fanconi anemia crosstalk and BRCA1 independence. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165561. [PMID: 31639439 DOI: 10.1016/j.bbadis.2019.165561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with few therapy options besides chemotherapy. Although platinum-based drugs have shown initial activity in BRCA1-mutated TNBCs, chemoresistance remains a challenge. Here we show that RAD6B (UBE2B), a principal mediator of translesion synthesis (TLS), is overexpressed in BRCA1 wild-type and mutant TNBCs, and RAD6B overexpression correlates with poor survival. Pretreatment with a RAD6-selective inhibitor, SMI#9, enhanced cisplatin chemosensitivity of BRCA1 wild-type and mutant TNBCs. SMI#9 attenuated cisplatin-induced PCNA monoubiquitination (TLS marker), FANCD2 (Fanconi anemia (FA) activation marker), and TLS polymerase POL η. SMI#9-induced decreases in γH2AX levels were associated with concomitant inhibition of H2AX monoubiquitination, suggesting a key role for RAD6 in modulating cisplatin-induced γH2AX via H2AX monoubiquitination. Concordantly, SMI#9 inhibited γH2AX, POL η and FANCD2 foci formation. RAD51 foci formation was unaffected by SMI#9, however, its recruitment to double-strand breaks was inhibited. Using the DR-GFP-based assay, we showed that RAD6B silencing or SMI#9 treatment impairs homologous recombination (HR) in HR-proficient cells. DNA fiber assays confirmed that restart of cisplatin-stalled replicating forks is inhibited by SMI#9 in both BRCA1 wild-type and mutant TNBC cells. Consistent with the in vitro data, SMI#9 and cisplatin combination treatment inhibited BRCA1 wild-type and mutant TNBC growth as compared to controls. These RAD6B activities are unaffected by BRCA1 status of TNBCs suggesting that the RAD6B function in TLS/FA crosstalk could occur in HR-dependent and independent modes. Collectively, these data implicate RAD6 as an important therapeutic target for TNBCs irrespective of their BRCA1 status.
Collapse
Affiliation(s)
- Brittany Haynes
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Ambikai Gajan
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Malathy P Shekhar
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA; Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Barroso S, Herrera‐Moyano E, Muñoz S, García‐Rubio M, Gómez‐González B, Aguilera A. The DNA damage response acts as a safeguard against harmful DNA-RNA hybrids of different origins. EMBO Rep 2019; 20:e47250. [PMID: 31338941 PMCID: PMC6726908 DOI: 10.15252/embr.201847250] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Despite playing physiological roles in specific situations, DNA-RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA-RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA-RNA hybrid accumulation and a significant increase in hybrid-dependent DNA breakage. We identify post-replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA-RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post-replicative ssDNA gaps in normal cells. We show that DNA-RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA-RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA-RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.
Collapse
Affiliation(s)
- Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Emilia Herrera‐Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Sergio Muñoz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María García‐Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Belén Gómez‐González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
9
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
10
|
Saadat N, Liu F, Haynes B, Nangia-Makker P, Bao X, Li J, Polin LA, Gupta S, Mao G, Shekhar MP. Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy. Mol Cancer Ther 2018; 17:2586-2597. [PMID: 30242094 DOI: 10.1158/1535-7163.mct-18-0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
The triple-negative breast cancer (TNBC) subtype, regardless of their BRCA1 status, has the poorest outcome compared with other breast cancer subtypes, and currently there are no approved targeted therapies for TNBC. We have previously demonstrated the importance of RAD6-mediated translesion synthesis pathway in TNBC development/progression and chemoresistance, and the potential therapeutic benefit of targeting RAD6 with a RAD6-selective small-molecule inhibitor, SMI#9. To overcome SMI#9 solubility limitations, we recently developed a gold nanoparticle (GNP)-based platform for conjugation and intracellular release of SMI#9, and demonstrated its in vitro cytotoxic activity toward TNBC cells. Here, we characterized the in vivo pharmacokinetic and therapeutic properties of PEGylated GNP-conjugated SMI#9 in BRCA1 wild-type and BRCA1-mutant TNBC xenograft models, and investigated the impact of RAD6 inhibition on TNBC metabolism by 1H-NMR spectroscopy. GNP conjugation allowed the released SMI#9 to achieve higher systemic exposure and longer retention as compared with the unconjugated drug. Systemically administered SMI#9-GNP inhibited the TNBC growth as effectively as intratumorally injected unconjugated SMI#9. Inductively coupled mass spectrometry analysis showed highest GNP concentrations in tumors and liver of SMI#9-GNP and blank-GNP-treated mice; however, tumor growth inhibition occurred only in the SMI#9-GNP-treated group. SMI#9-GNP was tolerated without overt signs of toxicity. SMI#9-induced sensitization was associated with perturbation of a common set of glycolytic pathways in BRCA1 wild-type and BRCA1-mutant TNBC cells. These data reveal novel SMI#9 sensitive markers of metabolic vulnerability for TNBC management and suggest that nanotherapy-mediated RAD6 inhibition offers a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Nadia Saadat
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, Michigan
| | - Brittany Haynes
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Xun Bao
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jing Li
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa A Polin
- Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Smiti Gupta
- Department of Nutrition and Food Sciences, Wayne State University College of Liberal Arts and Science, Detroit, Michigan
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, Michigan.
| | - Malathy P Shekhar
- Karmanos Cancer Institute, Detroit, Michigan. .,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
11
|
Clark DW, Mani C, Palle K. RAD6 promotes chemoresistance in ovarian cancer. Mol Cell Oncol 2017; 5:e1392403. [PMID: 29404391 DOI: 10.1080/23723556.2017.1392403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Mortality in ovarian cancer is predominantly due to acquired chemoresistance and tumor recurrence. UBIQUITIN CONJUGATING ENZYME E2 or RAD6 expression increases in cell lines and patient tumors in response to platinum-based chemotherapy and promotes both activation of DNA damage response pathways and expression of stemness genes and a stem cell-like phenotype driving ovarian cancer chemoresistance.
Collapse
Affiliation(s)
- David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama, USA
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama, USA
| |
Collapse
|
12
|
Somasagara RR, Spencer SM, Tripathi K, Clark DW, Mani C, da Silva LM, Scalici J, Kothayer H, Westwell AD, Rocconi RP, Palle K. RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene 2017; 36:6680-6690. [PMID: 28806395 PMCID: PMC5709226 DOI: 10.1038/onc.2017.279] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most deadly gynecological cancer and unlike most other neoplasms, survival rates for OC have not significantly improved in recent decades. We show that RAD6, an ubiquitin-conjugating enzyme, is significantly overexpressed in ovarian tumors and its expression increases in response to carboplatin chemotherapy. RAD6 expression correlated strongly with acquired chemoresistance and malignant behavior of OC cells, expression of stem cell genes and poor prognosis of OC patients, suggesting an important role for RAD6 in ovarian tumor progression. Upregulated RAD6 enhances DNA damage tolerance and repair efficiency of OC cells and promotes their survival. Increased RAD6 levels cause histone 2B ubiquitination-mediated epigenetic changes that stimulate transcription of stem cell genes, including ALDH1A1 and SOX2, leading to a cancer stem cell phenotype, which is implicated in disease recurrence and metastasis. Downregulation of RAD6 or its inhibition using a small molecule inhibitor attenuated DNA repair signaling and expression of cancer stem cells markers and sensitized chemoresistant OC cells to carboplatin. Together, these results suggest that RAD6 could be a therapeutic target to prevent and treat acquired chemoresistance and disease recurrence in OC and enhance the efficacy of standard chemotherapy.
Collapse
Affiliation(s)
- Ranganatha R. Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Sebastian M. Spencer
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - David W. Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Luciana Madeira da Silva
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Jennifer Scalici
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| | - Rodney P. Rocconi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| |
Collapse
|
13
|
Sanders MA, Haynes B, Nangia-Makker P, Polin LA, Shekhar MP. Pharmacological targeting of RAD6 enzyme-mediated translesion synthesis overcomes resistance to platinum-based drugs. J Biol Chem 2017; 292:10347-10363. [PMID: 28490629 DOI: 10.1074/jbc.m117.792192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Platinum drug-induced cross-link repair requires the concerted activities of translesion synthesis (TLS), Fanconi anemia (FA), and homologous recombination repair pathways. The E2 ubiquitin-conjugating enzyme RAD6 is essential for TLS. Here, we show that RAD6 plays a universal role in platinum-based drug tolerance. Using a novel RAD6-selective small-molecule inhibitor (SMI#9) targeting the RAD6 catalytic site, we demonstrate that SMI#9 potentiates the sensitivities of cancer cells with innate or acquired cisplatin or oxaliplatin resistance. 5-Iododeoxyuridine/5-chlorodeoxyuridine pulse-labeling experiments showed that RAD6 is necessary for overcoming cisplatin-induced replication fork stalling, as replication-restart was impaired in both SMI#9-pretreated and RAD6B-silenced cells. Consistent with the role of RAD6/TLS in late-S phase, SMI#9-induced DNA replication inhibition occurred preferentially in mid/late-S phase. The compromised DNA repair and chemosensitization induced by SMI#9 or RAD6B depletion were associated with decreased platinum drug-induced proliferating cell nuclear antigen (PCNA) and FANCD2 monoubiquitinations (surrogate markers of TLS and FA pathway activation, respectively) and with attenuated FANCD2, RAD6, γH2AX, and POL η foci formation and cisplatin-adduct removal. SMI#9 pretreatment synergistically increased cisplatin inhibition of MDA-MB-231 triple-negative breast cancer cell proliferation and tumor growth. Using an isogenic HCT116 colon cancer model of oxaliplatin resistance, we further show that γH2AX and monoubiquitinated PCNA and FANCD2 are constitutively up-regulated in oxaliplatin-resistant HCT116 (HCT116-OxR) cells and that γH2AX, PCNA, and FANCD2 monoubiquitinations are induced by oxaliplatin in parental HCT116 cells. SMI#9 pretreatment sensitized HCT116-OxR cells to oxaliplatin. These data deepen insights into the vital role of RAD6/TLS in platinum drug tolerance and reveal clinical benefits of targeting RAD6 with SMI#9 for managing chemoresistant cancers.
Collapse
Affiliation(s)
- Matthew A Sanders
- From the Karmanos Cancer Institute and.,the Departments of Oncology and
| | - Brittany Haynes
- From the Karmanos Cancer Institute and.,the Departments of Oncology and
| | - Pratima Nangia-Makker
- From the Karmanos Cancer Institute and.,Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Lisa A Polin
- From the Karmanos Cancer Institute and.,the Departments of Oncology and
| | - Malathy P Shekhar
- From the Karmanos Cancer Institute and .,the Departments of Oncology and.,Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
14
|
Cheng CM, Shiah SG, Huang CC, Hsiao JR, Chang JY. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B. J Pathol 2016; 240:38-49. [PMID: 27235675 DOI: 10.1002/path.4752] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 05/14/2016] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are involved in the tumourigenesis of various cancers by regulating their downstream targets. To identify the changes of miRNAs in oral squamous cell carcinoma (OSCC), we investigated the expression profiles of miRNAs in 40 pairs of OSCC specimens and their matched non-tumour epithelial tissues. Our data revealed higher miR-455-5p expression in the tumour tissues than in the normal tissues; the expression was also higher in oral cancer cell lines than in normal keratinocyte cell lines. MiR-455-5p knockdown reduced both the anchorage-independent growth and the proliferative ability of oral cancer cells, and these factors increased in miR-455-5p-overexpressing cells. Furthermore, by analysing the array data of patients with cancer and cell lines, we identified ubiquitin-conjugating enzyme E2B (UBE2B) as a target of miR-455-5p, and further validated this using 3'-untranslated region luciferase reporter assays and western blot analysis. We also demonstrated that UBE2B suppression rescued the impaired growth ability of miR-455-5p-knockdown cells. Furthermore, we observed that miR-455-5p expression was regulated, at least in part, by the transforming growth factor-β (TGF-β) pathway through the binding of SMAD3 to specific promoter regions. Notably, miR-455-5p expression was associated with the nodal status, stage, and overall survival in our patients, suggesting that miR-455-5p is a potential marker for predicting the prognosis of patients with oral cancer. In conclusion, we reveal that miR-455-5p expression is regulated by the TGF-β-dependent pathway, which subsequently leads to UBE2B down-regulation and contributes to oral cancer tumourigenesis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chao-Min Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Chien-Chang Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jang-Yang Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
15
|
Haynes B, Zhang Y, Liu F, Li J, Petit S, Kothayer H, Bao X, Westwell AD, Mao G, Shekhar MPV. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:745-757. [PMID: 26563438 PMCID: PMC4809765 DOI: 10.1016/j.nano.2015.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022]
Abstract
We recently developed a small molecule inhibitor SMI#9 for Rad6, a protein overexpressed in aggressive breast cancers and involved in DNA damage tolerance. SMI#9 induces cytotoxicity in cancerous cells but spares normal breast cells; however, its therapeutic efficacy is limited by poor solubility. Here we chemically modified SMI#9 to enable its conjugation and hydrolysis from gold nanoparticle (GNP). SMI#9-GNP and parent SMI#9 activities were compared in mesenchymal and basal triple negative breast cancer (TNBC) subtype cells. Whereas SMI#9 is cytotoxic to all TNBC cells, SMI#9-GNP is endocytosed and cytotoxic only in mesenchymal TNBC cells. SMI#9-GNP endocytosis in basal TNBCs is compromised by aggregation. However, when combined with cisplatin, SMI#9-GNP is imported and synergistically increases cisplatin sensitivity. Like SMI#9, SMI#9-GNP spares normal breast cells. The released SMI#9 is active and induces cell death via mitochondrial dysfunction and PARP-1 stabilization/hyperactivation. This work signifies the development of a nanotechnology-based Rad6-targeting therapy for TNBCs. FROM THE CLINICAL EDITOR Protein Rad6 is overexpressed in breast cancer cells and its blockade may provide a new treatment against 3N breast cancer. The authors conjugated a small molecule inhibitor SMI#9 for Rad6 to gold nanoparticles in this study and showed that this new formulation specifically targeted chemo-resistant breast cancer cells and highlighted the importance of nanotechnology in drug carrier development.
Collapse
Affiliation(s)
- Brittany Haynes
- Karmanos Cancer Institute, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yanhua Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Jing Li
- Karmanos Cancer Institute, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sarah Petit
- Karmanos Cancer Institute, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hend Kothayer
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK; Faculty of Pharmacy, Zagazig University, Egypt
| | - Xun Bao
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, MI, USA.
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Kothayer H, Spencer SM, Tripathi K, Westwell AD, Palle K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg Med Chem Lett 2016; 26:2030-4. [PMID: 26965855 DOI: 10.1016/j.bmcl.2016.02.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 01/30/2023]
Abstract
Series of 4-amino-6-(arylamino)-1,3,5-triazine-2-carbohydrazides (3a-e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-triazine-2-carbohydrazides (6a-e), for ease of readership, we will abbreviate our compound names as 'new triazines', have been synthesized, based on the previously reported Rad6B-inhibitory diamino-triazinylmethyl benzoate anticancer agents TZ9 and 4-amino-N'-phenyl-6-(arylamino)-1,3,5-triazine-2-carbohydrazides. Synthesis of the target compounds was readily accomplished in two steps from either bis-aryl/aryl biguanides via reaction of phenylhydrazine or hydrazinehydrate with key 4-amino-6-bis(arylamino)/(arylamino)-1,3,5-triazine-2-carboxylate intermediates. These new triazine derivatives were evaluated for their abilities to inhibit Rad6B ubiquitin conjugation and in vitro anticancer activity against several human cancer cell lines: ovarian (OV90 and A2780), lung (H1299 and A549), breast (MCF-7 and MDA-MB231) and colon (HT29) cancer cells by MTS assays. All the 10 new triazines exhibited superior Rad6B inhibitory activities in comparison to selective Rad6 inhibitor TZ9 that was reported previously. Similarly, new triazines also showed better IC50 values in survival assays of various tumor cell lines. Particularly, new triazines 6a-c, exhibited lower IC50 (3.3-22 μM) values compared to TZ9.
Collapse
Affiliation(s)
- Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Sebastian M Spencer
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| | - Komaraiah Palle
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
17
|
Somasagara RR, Tripathi K, Spencer SM, Clark DW, Barnett R, Bachaboina L, Scalici J, Rocconi RP, Piazza GA, Palle K. Rad6 upregulation promotes stem cell-like characteristics and platinum resistance in ovarian cancer. Biochem Biophys Res Commun 2015; 469:449-55. [PMID: 26679603 DOI: 10.1016/j.bbrc.2015.11.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Ovarian cancer is the fifth most deadly cancer in women in the United States and despite advances in surgical and chemotherapeutic treatments survival rates have not significantly improved in decades. The poor prognosis for ovarian cancer patients is largely due to the extremely high (80%) recurrence rate of ovarian cancer and because the recurrent tumors are often resistant to the widely utilized platinum-based chemotherapeutic drugs. In this study, expression of Rad6, an E2 ubiquitin-conjugating enzyme, was found to strongly correlate with ovarian cancer progression. Furthermore, in ovarian cancer cells Rad6 was found to stabilize β-catenin promoting stem cell-related characteristics, including expression of stem cell markers and anchorage-independent growth. Cancer stem cells can promote chemoresistance, tumor recurrence and metastasis, all of which are limiting factors in treating ovarian cancer. Thus it is significant that Rad6 overexpression led to increased resistance to the chemotherapeutic drug carboplatin and correlated with tumor cell invasion. These findings show the importance of Rad6 in ovarian cancer and emphasize the need for further studies of Rad6 as a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Sebastian M Spencer
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Reagan Barnett
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Lavanya Bachaboina
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Rodney P Rocconi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Gary A Piazza
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA.
| |
Collapse
|
18
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
19
|
Abstract
Replicative polymerases (pols) cannot accommodate damaged template bases, and these pols stall when such offenses are encountered during S phase. Rather than repairing the damaged base, replication past it may proceed via one of two DNA damage tolerance (DDT) pathways, allowing replicative DNA synthesis to resume. In translesion DNA synthesis (TLS), a specialized TLS pol is recruited to catalyze stable, yet often erroneous, nucleotide incorporation opposite damaged template bases. In template switching, the newly synthesized sister strand is used as a damage-free template to synthesize past the lesion. In eukaryotes, both pathways are regulated by the conjugation of ubiquitin to the PCNA sliding clamp by distinct E2/E3 pairs. Whereas monoubiquitination by Rad6/Rad18 mediates TLS, extension of this ubiquitin to a polyubiquitin chain by Ubc13-Mms2/Rad5 routes DDT to the template switching pathway. In this review, we focus on the monoubiquitination of PCNA by Rad6/Rad18 and summarize the current knowledge of how this process is regulated.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
20
|
Haynes B, Saadat N, Myung B, Shekhar MPV. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:258-66. [PMID: 25795124 DOI: 10.1016/j.mrrev.2014.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
Bifunctional alkylating and platinum based drugs are chemotherapeutic agents used to treat cancer. These agents induce DNA adducts via formation of intrastrand or interstrand (ICL) DNA crosslinks, and DNA lesions of the ICL type are particularly toxic as they block DNA replication and/or DNA transcription. However, the therapeutic efficacies of these drugs are frequently limited due to the cancer cell's enhanced ability to repair and tolerate these toxic DNA lesions. This ability to tolerate and survive the DNA damage is accomplished by a set of specialized low fidelity DNA polymerases called translesion synthesis (TLS) polymerases since high fidelity DNA polymerases are unable to replicate the damaged DNA template. TLS is a crucial initial step in ICL repair as it synthesizes DNA across the lesion thus preparing the damaged DNA template for repair by the homologous recombination (HR) pathway and Fanconi anemia (FA) network, processes critical for ICL repair. Here we review the molecular features and functional roles of TLS polymerases, discuss the collaborative interactions and cross-regulation of the TLS DNA damage tolerance pathway, the FA network and the BRCA-dependent HRR pathway, and the impact of TLS hyperactivation on development of chemoresistance. Finally, since TLS hyperactivation results from overexpression of Rad6/Rad18 ubiquitinating enzymes (fundamental components of the TLS pathway), increased PCNA ubiquitination, and/or increased recruitment of TLS polymerases, the potential benefits of selectively targeting critical components of the TLS pathway for enhancing anti-cancer therapeutic efficacy and curtailing chemotherapy-induced mutagenesis are also discussed.
Collapse
Affiliation(s)
- Brittany Haynes
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Nadia Saadat
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Brian Myung
- Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Malathy P V Shekhar
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Department of Pathology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States.
| |
Collapse
|
21
|
Melanoma Development and Progression Are Associated with Rad6 Upregulation and β -Catenin Relocation to the Cell Membrane. J Skin Cancer 2014; 2014:439205. [PMID: 24891954 PMCID: PMC4033428 DOI: 10.1155/2014/439205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
We have previously demonstrated that Rad6 and β -catenin enhance each other's expression through a positive feedback loop to promote breast cancer development/progression. While β -catenin has been implicated in melanoma pathogenesis, Rad6 function has not been investigated. Here, we examined the relationship between Rad6 and β -catenin in melanoma development and progression. Eighty-eight cutaneous tumors, 30 nevi, 29 primary melanoma, and 29 metastatic melanomas, were immunostained with anti- β -catenin and anti-Rad6 antibodies. Strong expression of Rad6 was observed in only 27% of nevi as compared to 100% of primary and 96% of metastatic melanomas. β -Catenin was strongly expressed in 97% of primary and 93% of metastatic melanomas, and unlike Rad6, in 93% of nevi. None of the tumors expressed nuclear β -catenin. β -Catenin was exclusively localized on the cell membrane of 55% of primary, 62% of metastatic melanomas, and only 10% of nevi. Cytoplasmic β -catenin was detected in 90% of nevi, 17% of primary, and 8% of metastatic melanoma, whereas 28% of primary and 30% of metastatic melanomas exhibited β -catenin at both locations. These data suggest that melanoma development and progression are associated with Rad6 upregulation and membranous redistribution of β -catenin and that β -catenin and Rad6 play independent roles in melanoma development.
Collapse
|
22
|
Shen J, Wei J, Wang H, Yang Y, Yue G, Wang L, Yu L, Xie L, Sun X, Bian X, Zou Z, Qian X, Guan W, Liu B. SULF2 methylation is associated with in vitro cisplatin sensitivity and clinical efficacy for gastric cancer patients treated with a modified FOLFOX regimen. PLoS One 2013; 8:e75564. [PMID: 24124496 PMCID: PMC3790846 DOI: 10.1371/journal.pone.0075564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Biomarkers capable of discriminating the patients who are likely to respond to certain chemotherapeutic agents could improve the clinical efficiency. The sulfatases(SULFs) play a critical role in the pathogenesis of a variety of human cancers. Here, we focused our investigation on the prognostic and predictive impact of SULF2 methylation in gastric cancer. METHODS Promoter CpG island methylation of SULF2 was analyzed in 100 gastric cancer samples. The in vitro sensitivity to cisplatin, docetaxel, gemcitabine, irinotecan and pemetrexed were determined by histoculture drug response assay(HDRA). Additionally, 56 gastric cancer patients treated with a modified FOLFOX regimen(biweekly oxaliplatin plus 5-FU and folinic acid) were retrospectively analyzed to further evaluate the prognostic and predictive impact of SULF2 methylation in gastric cancer. RESULTS Methylated SULF2(SULF2M) was detected in 28 patients, while the remaining 72 patients showed unmethylated SULF2(SULF2U, methylation rate: 28%). Samples with SULF2U were more sensitive to cisplatin than those with SULF2M(inhibition rate: 48.80% vs. 38.15%, P = 0.02), while samples with SULF2M were more sensitive to irinotecan than SULF2U(inhibition rate: 53.61% vs. 40.92%, P = 0.01). There were no association between SULF2 methylation and in vitro sensitivity to docetaxel, gemcitabine and pemetrexed. SULF2 methylation was found to have a significant association with cisplatin efficacy(SULF2M: 57.14%, SULF2U: 80.56%, P = 0.02) and irinotecan efficacy(SULF2M: 89.29%, SULF2U: 62.50%, P = 0.01). Among the 56 patients receiving the modified FOLFOX regimen, a significant association was observed between survival and SULF2 methylation status(SULF2M: 309 days, 95% CI = 236 to 382 days; SULF2U: 481 days, 95% CI = 418 to 490 days; P = 0.02). Multivariate analysis revealed that SULF2 methylation was an independent prognostic factor of overall survival in gastric cancer patients treated with platinum-based chemotherapy. CONCLUSION SULF2 methylation is negatively associated with cisplatin sensitivity in vitro. SULF2 methylation may be a novel prognostic biomarker for gastric cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jie Shen
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Guofeng Yue
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Wang
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lixia Yu
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xia Sun
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xinyu Bian
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (WG); (BL)
| | - Baorui Liu
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (WG); (BL)
| |
Collapse
|
23
|
Sousa MML, Zub KA, Aas PA, Hanssen-Bauer A, Demirovic A, Sarno A, Tian E, Liabakk NB, Slupphaug G. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells. PLoS One 2013; 8:e55493. [PMID: 23405159 PMCID: PMC3566207 DOI: 10.1371/journal.pone.0055493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/23/2012] [Indexed: 12/02/2022] Open
Abstract
Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs). Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel candidate biomarkers for Melphalan sensitivity that will be included in targeted quantitation studies in larger patient cohorts to validate their value in prognosis as well as targets for replacement- or adjuvant therapies.
Collapse
Affiliation(s)
- Mirta M. L. Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kamila Anna Zub
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The KG Jebsen Center for Myeloma Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aida Demirovic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erming Tian
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nina B. Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- The KG Jebsen Center for Myeloma Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
24
|
Sanders MA, Brahemi G, Nangia-Makker P, Balan V, Morelli M, Kothayer H, Westwell AD, Shekhar MPV. Novel inhibitors of Rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization. Mol Cancer Ther 2013; 12:373-83. [PMID: 23339190 DOI: 10.1158/1535-7163.mct-12-0793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2-M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDA-MB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs.
Collapse
Affiliation(s)
- Matthew A Sanders
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ghali Brahemi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Vitaly Balan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Matteo Morelli
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Hend Kothayer
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK.,Faculty of Pharmacy, Zagazig University, Sharkeya, Egypt
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
25
|
Abstract
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
RAD6 regulates the dosage of p53 by a combination of transcriptional and posttranscriptional mechanisms. Mol Cell Biol 2011; 32:576-87. [PMID: 22083959 DOI: 10.1128/mcb.05966-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintaining an appropriate cellular concentration of p53 is critical for cell survival and normal development in various organisms. In this study, we provide evidence that the human E2 ubiquitin-conjugating enzyme RAD6 plays a critical role in regulating p53 protein levels under both normal and stress conditions. Knockdown and overexpression of RAD6 affected p53 turnover and transcription. We showed that RAD6 can form a ternary complex with MDM2 and p53 that contributes to the degradation of p53. Chromatin immunoprecipitation (ChIP) analysis showed that RAD6 also binds to the promoter and coding regions of the p53 gene and modulates the levels of H3K4 and K79 methylation on local chromatin. When the cells were exposed to stress stimuli, the RAD6-MDM2-p53 ternary complex was disrupted; RAD6 was then recruited to the chromatin of the p53 gene, resulting in an increase in histone methylation and p53 transcription. Further studies showed that stress-induced p53 transcriptional activation, cell apoptosis, and disrupted cell cycle progression are all RAD6 dependent. Overall, this work demonstrates that RAD6 regulates p53 levels in a "yin-yang" manner through a combination of two distinct mechanisms in mammalian cells.
Collapse
|
27
|
Latham JA, Chosed RJ, Wang S, Dent SYR. Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell 2011; 146:709-19. [PMID: 21884933 DOI: 10.1016/j.cell.2011.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 06/15/2011] [Accepted: 07/19/2011] [Indexed: 11/25/2022]
Abstract
Histone H3K4 trimethylation by the Set1/MLL family of proteins provides a hallmark for transcriptional activity from yeast to humans. In S. cerevisiae, H3K4 methylation is mediated by the Set1-containing COMPASS complex and is regulated in trans by prior ubiquitination of histone H2BK123. All of the events that regulate H2BK123ub and H3K4me are thought to occur at gene promoters. Here we report that this pathway is indispensable for methylation of the only other known substrate of Set1, K233 in Dam1, at kinetochores. Deletion of RAD6, BRE1, or Paf1 complex members abolishes Dam1 methylation, as does mutation of H2BK123. Our results demonstrate that Set1-mediated methylation is regulated by a general pathway regardless of substrate that is composed of transcriptional regulatory factors functioning independently of transcription. Moreover, our data identify a node of regulatory crosstalk in trans between a histone modification and modification on a nonhistone protein, demonstrating that changing chromatin states can signal functional changes in other essential cellular proteins and machineries.
Collapse
Affiliation(s)
- John A Latham
- Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
28
|
Chen S, Wei HM, Lv WW, Wang DL, Sun FL. E2 ligase dRad6 regulates DMP53 turnover in Drosophila. J Biol Chem 2011; 286:9020-30. [PMID: 21205821 PMCID: PMC3058994 DOI: 10.1074/jbc.m110.190314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/27/2010] [Indexed: 11/06/2022] Open
Abstract
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Collapse
Affiliation(s)
- Su Chen
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Hui-Min Wei
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Wen-Wen Lv
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Da-Liang Wang
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Fang-Lin Sun
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Shekhar MPV, Biernat LA, Pernick N, Tait L, Abrams J, Visscher DW. Utility of DNA postreplication repair protein Rad6B in neoadjuvant chemotherapy response. Med Oncol 2009; 27:466-73. [PMID: 19466589 DOI: 10.1007/s12032-009-9235-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 05/12/2009] [Indexed: 01/23/2023]
Abstract
Neoadjuvant chemotherapy is a standard therapy for patients with locally advanced breast cancer (LABC) and is increasingly used for early stage operable breast cancer. Not all patients benefit from it, and reliable markers for predicting response are needed. The cytotoxic effects of chemotherapy are mediated by induction of DNA damage in tumor cells. There is evidence that resistance to chemotherapy is related to enhanced repair of DNA lesions. The postreplication DNA repair (PRR) or translesion synthesis backup DNA repair pathway is critical for cell viability, conferring tolerance to DNA damaging drugs, and maintenance of genomic integrity. However, despite its importance in conferring tolerance to a variety of DNA damaging drugs including cytotoxic chemotherapy, the involvement of this backup repair pathway in chemotherapy response has not been studied. The Rad6B protein is a fundamental component of PRR. We have shown previously that the ability of breast cells to tolerate chemotherapeutic drugs correlates with Rad6B expression levels and PRR capacity. To determine whether Rad6B expression/distribution can be used singly or in combination with p53, Mdr-1/PgP, PCNA or beta-catenin as predictors of response to neoadjuvant chemotherapy, we analyzed posttreatment samples from 20 patients with LABC in a retrospective study. Only preferential Rad6B nuclear localization was associated with response to neoadjuvant chemotherapy. Nuclear exclusion with cytoplasmic overexpression of Rad6B was observed in some patients who failed to respond, but the association with response is not statistically significant. This is the first study to report that the postreplication DNA repair protein Rad6B could be used as an independent marker for determining response to neoadjuvant chemotherapy. This is an exploratory study and larger studies utilizing interim evaluations of Rad6B expression, its subcellular localization and repair activity are required to confirm its utility as a predictor of chemotherapeutic response.
Collapse
Affiliation(s)
- Malathy P V Shekhar
- Breast Cancer Program, Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137:459-71. [PMID: 19410543 PMCID: PMC2678028 DOI: 10.1016/j.cell.2009.02.027] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/09/2008] [Accepted: 02/06/2009] [Indexed: 12/13/2022]
Abstract
H2B ubiquitylation has been implicated in active transcription but is not well understood in mammalian cells. Beyond earlier identification of hBRE1 as the E3 ligase for H2B ubiquitylation in human cells, we now show (1) that hRAD6 serves as the cognate E2-conjugating enzyme; (2) that hRAD6, through direct interaction with hPAF-bound hBRE1, is recruited to transcribed genes and ubiquitylates chromatinized H2B at lysine 120; (3) that hPAF-mediated transcription is required for efficient H2B ubiquitylation as a result of hPAF-dependent recruitment of hBRE1-hRAD6 to the Pol II transcription machinery; (4) that H2B ubiquitylation per se does not affect the level of hPAF-, SII-, and p300-dependent transcription and likely functions downstream; and (5) that H2B ubiquitylation directly stimulates hSET1-dependent H3K4 di- and trimethylation. These studies establish the natural H2B ubiquitylation factors in human cells and also detail the mechanistic basis for H2B ubiquitylation and function during transcription.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology The Rockefeller University, New York, NY 10065
| | - Mohamed Guermah
- Laboratory of Biochemistry and Molecular Biology The Rockefeller University, New York, NY 10065
| | - Robert K. McGinty
- Laboratory of Synthetic Protein Chemistry The Rockefeller University, New York, NY 10065
| | - Jung-Shin Lee
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology The Rockefeller University, New York, NY 10065
| | - Thomas A. Milne
- Laboratory of Chromatin Biology The Rockefeller University, New York, NY 10065
| | - Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Tom W. Muir
- Laboratory of Synthetic Protein Chemistry The Rockefeller University, New York, NY 10065
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology The Rockefeller University, New York, NY 10065
| |
Collapse
|
31
|
Pellegrini M, Cheng JC, Voutila J, Judelson D, Taylor J, Nelson SF, Sakamoto KM. Expression profile of CREB knockdown in myeloid leukemia cells. BMC Cancer 2008; 8:264. [PMID: 18801183 PMCID: PMC2647550 DOI: 10.1186/1471-2407-8-264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 09/18/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. METHODS To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. RESULTS By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. CONCLUSION We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle.
Collapse
Affiliation(s)
- Matteo Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chan EY, Qian WJ, Diamond DL, Liu T, Gritsenko MA, Monroe ME, Camp DG, Smith RD, Katze MG. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol 2007; 81:7571-83. [PMID: 17494070 PMCID: PMC1933372 DOI: 10.1128/jvi.00288-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/01/2007] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.
Collapse
Affiliation(s)
- Eric Y Chan
- Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shekhar MPV, Tait L, Gerard B. Essential role of T-cell factor/beta-catenin in regulation of Rad6B: a potential mechanism for Rad6B overexpression in breast cancer cells. Mol Cancer Res 2007; 4:729-45. [PMID: 17050667 DOI: 10.1158/1541-7786.mcr-06-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that the postreplication DNA repair gene Rad6B plays a critical role in the maintenance of genomic integrity of human breast cells. Whereas normal breast cells express low levels of Rad6B, increases in Rad6B expression occur in hyperplasia with overexpression in breast carcinomas. Here, we show that the human Rad6B gene is a transcriptional target of T-cell factor (TCF)-4/beta-catenin/p300. Rad6B promoter activity is subject to negative regulation in normal human MCF10A breast cells whereas it is constitutively active in metastatic MDA-MB-231 breast cancer cells. Derepression and activation of Rad6B promoter in MCF10A cells require coexpression of beta-catenin and p300. Using electrophoresis mobility shift assay, Western blot analysis of electrophoresis mobility shift assay, UV cross-linking, and chromatin immunoprecipitation assay, we show that Rad6B transcriptional repression in MCF10A cells is due to paucity of transcriptionally active beta-catenin assembled on the TCF binding sequence in the Rad6B promoter rather than to a deficit/decreased affinity of TCF-4 for the TCF binding element in Rad6B promoter. Three-dimensional epithelial acini generated in vitro from MCF10A cells cotransfected with beta-catenin and p300 showed beta-catenin expression on the membrane, cytoplasm, and/or nuclei with concomitant Rad6 overexpression, whereas control acini showed beta-catenin on the membranes and negligible Rad6 expression. Immunohistochemical analysis of 12 breast carcinomas showed an approximately 80% correlation between Rad6 and beta-catenin expression, and combined nuclear and cytoplasmic staining of beta-catenin and Rad6 was detected in 25% of the breast carcinomas. In vivo implantation of MCF10A-Rad6B cells produced hyperplastic lesions. These data reveal a potentially important role for transcriptionally active beta-catenin in the regulation of Rad6B gene expression, and link aberrant beta-catenin signaling with transcriptional deregulation of Rad6B and breast cancer development.
Collapse
Affiliation(s)
- Malathy P V Shekhar
- Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
34
|
Karaczyn AA, Golebiowski F, Kasprzak KS. Ni(II) affects ubiquitination of core histones H2B and H2A. Exp Cell Res 2006; 312:3252-9. [PMID: 16870173 DOI: 10.1016/j.yexcr.2006.06.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/30/2022]
Abstract
The molecular mechanisms of nickel-induced malignant cell transformation include effects altering the structure and covalent modifications of core histones. Previously, we found that exposure of cells to Ni(II) resulted in truncation of histones H2A and H2B and thus elimination of some modification sites. Here, we investigated the effect of Ni(II) on one such modification, ubiquitination, of histones H2B and H2A in nuclei of cultured 1HAEo- and HPL1D human lung cells. After 1-5 days of exposure, Ni(II) up to 0.25 mM stimulated mono-ubiquitination of both histones, while at higher concentrations a suppression was found. Di-ubiquitination of H2A was not affected except for a drop after 5 days at 0.5 mM Ni(II). The decrease in mono-ubiquitination coincided with the appearance of truncated H2B that lacks the K120 ubiquitination site. However, prevention of truncation did not avert the decrease of H2B ubiquitination, indicating mechanistic independence of these effects. The changes in H2B ubiquitination did not fully coincide with concurrent changes in the nuclear levels of the ubiquitin-conjugating enzymes Rad6 and UbcH6. Overall, our results suggest that dysregulation of H2B ubiquitination is a part of Ni(II) adverse effects on gene expression and DNA repair which may assist in cell transformation.
Collapse
Affiliation(s)
- Aldona A Karaczyn
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|