1
|
Lao TD, Le TAH. Hypermethylation of genes on chromosome 3p as a biomarker for nasopharyngeal carcinoma diagnosis: A Vietnamese case-control study. Int J Biol Markers 2024; 39:201-208. [PMID: 39149888 DOI: 10.1177/03936155241268431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND The crucial event driving nasopharyngeal tumorigenesis is the hypermethylation of chromosome 3p-located tumor suppressor genes. This case-control study aims to investigate the methylation characteristics of RASSF1A, Blu, ADAMTS9, and DLEC1 to potentially develop effective diagnostic biomarkers for nasopharyngeal carcinoma, either individually or in combination. METHODS The methylation of RASSF1A, Blu, ADAMTS9, and DLEC1 in the collection of 93 biopsy samples and 100 healthy swab specimens were evaluated by Nested methylation-specific polymerase chain reaction. The strength of the correlation between candidate genes and nasopharyngeal carcinoma was estimated by the evaluation of odds ratios (ORs). RESULTS Promoter hypermethylation of RASSF1A, Blu, ADAMTS9, and DLEC1 were found in 60.22%, 80.65%, 62.37%, and 74.19%, respectively, in nasopharyngeal carcinoma tumors. A significant association between the methylation status of candidate genes with nasopharyngeal carcinoma was reported. The methylation of candidate genes significantly increased the risk of nasopharyngeal carcinoma in cancerous samples compared with control samples (OR > 1). Based on the value of the methylation index, methylation of at least one gene was found in 95.70% of nasopharyngeal tumors. Additionally, the methylation index among 93 tumors significantly correlated with advanced stage nasopharyngeal tumors. CONCLUSION The study explored a higher frequency of hypermethylation at least one candidate gene. Methylation of a panel of potential genes can be utilized to discriminate between nasopharyngeal carcinoma and non-cancer cells, particularly in the advanced stages of nasopharyngeal carcinoma. Thus, it could serve as a valuable marker for the diagnosis and monitoring of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
2
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
3
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Silencing of ciliary protein ZMYND10 affects amitotic macronucleus division in Paramecium tetraurelia. Eur J Protistol 2022; 82:125863. [DOI: 10.1016/j.ejop.2021.125863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]
|
5
|
Lao TD, Thieu HH, Nguyen DH, Le TAH. Hypermethylation of the RASSF1A gene promoter as the tumor DNA marker for nasopharyngeal carcinoma. Int J Biol Markers 2021; 37:31-39. [PMID: 34935528 DOI: 10.1177/17246008211065472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND RASSF1A is a tumor suppressor gene. The methylation of RASSF1A has been reported to be associated with nasopharyngeal tumorigenesis. However, the heterogeneity was high among different studies. A meta-analysis was performed to evaluate the value of RASSF1A methylation for the diagnosis and early screening of nasopharyngeal carcinoma. METHODS Relevant articles were identified by searching the MEDLINE database. Frequency and odds ratio (OR) were applied to estimate the effect of CDH-1 methylation based on random-/fixed-effect models. The meta-analysis was performed by using MedCalc® software. Subgroup analyses were performed by test method, ethnicity, and source of nasopharyngeal carcinoma samples to determine likely sources of heterogeneity. RESULTS A total of 17 studies, including 1688 samples (1165 nasopharyngeal carcinoma samples, and 523 from non-cancerous samples) were used for the meta-analysis. The overall frequencies of RASSF1A methylation were 59.68% and 2.65% in case-group and control-group, respectively. By removing the poor relative studies, the heterogeneity was not observed among the studies included. The association between RASSF1A gene methylation and the risk of nasopharyngeal carcinoma was also confirmed by calculating the OR value of 30.32 (95%CI = 18.22-50.47) in the fixed-effect model (Q = 16.41, p = 0.36,I2 = 8.62, 95% CI = 0.00-45.27). Additionally, the significant association was also found between the methylation of the RASSF1A gene and the subgroups. CONCLUSIONS This is the first meta-analysis that has provided scientific evidence that the methylation of RASSF1A is the potential diagnosis, prognosis, and early screening biomarker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| | - Hue Hong Thieu
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| | - Dung Huu Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, 486019Ho Chi Minh City Open University, HCMC, Vietnam
| |
Collapse
|
6
|
Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13235993. [PMID: 34885103 PMCID: PMC8657426 DOI: 10.3390/cancers13235993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy. The cause of chemoresistance is still largely unknown and may be due to epigenetics modifications that are driving HGSOC metastasis and treatment resistance. The identification of epigenetic changes in chemoresistant HGSOC enables the development of epigenetic modulating drugs that may be used to improve outcomes. Several epigenetic modulating drugs have displayed promise as drug targets for HGSOC, such as demethylating agents azacitidine and decitabine. Others, such as histone deacetylase inhibitors and miRNA-targeting therapies, demonstrated promising preclinical results but resulted in off-target side effects in clinical trials. This article reviews the epigenetic modifications identified in chemoresistant HGSOC and clinical trials utilizing epigenetic therapies in HGSOC.
Collapse
|
7
|
Promoter Hypermethylation of Tumor Suppressor Genes Located on Short Arm of the Chromosome 3 as Potential Biomarker for the Diagnosis of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11081404. [PMID: 34441339 PMCID: PMC8391633 DOI: 10.3390/diagnostics11081404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
DNA methylation, the most common epigenetic alteration, has been proven to play important roles in nasopharyngeal carcinoma (NPC). Numerous tumor suppressor genes located on the chromosome 3p, particularly in the region of 3p21, are frequently methylated in NPC, thus suggesting great potential for diagnosis of NPC. In this review, we summarize recent findings of tumor suppressor genes on chromosome 3 that likely drive nasopharyngeal tumor development and progression, based on previous studies related to the hypermethylation of these target genes. Better understanding will allow us to design further experiments to establish a potential test for diagnosis of NPC, as well as bring about methylated therapies to improve the treatment of NPC.
Collapse
|
8
|
Chujo T, Yoshida K, Takai R, Uehara O, Matsuoka H, Morikawa T, Sato J, Chiba I, Matsuzaka K, Abiko Y. Analysis of DNA methylation of E-cadherin and p16 ink4a in oral lichen planus/oral lichenoid lesions. Clin Exp Dent Res 2020; 7:205-210. [PMID: 33274608 PMCID: PMC8019760 DOI: 10.1002/cre2.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Epigenetic phenomena are changes in gene expression not involving the DNA sequence. DNA methylation is a major occurrence underlying epigenetic changes in human cells. Although aberrant DNA methylation is well documented in malignant lesions, limited information has been shown on the involvement of DNA methylation in oral lichen planus and oral lichenoid lesions (OLP). The present study aimed to investigate DNA methylation of E-cadherin and p16 in OLP, and compare the findings with those in non-inflamed gingiva (Non), radicular cyst (RC), and oral squamous cell carcinoma (SCC). MATERIALS AND METHODS Paraffin-embedded surgical biopsy specimens were sliced, DNA was extracted, bisulfite treatment was applied, and methylation-specific polymerase chain reaction was performed. Immunohistochemistry was performed to observe the relative expression patterns of these genes. RESULTS E-cadherin was hypermethylated in OLP (p < 0.01), SCC (p < 0.01), and RC (p < 0.05), when compared with Non; DNA hypermethylation was confirmed in OLP and SCC when compared to Non and RC. Hypermethylation of p16ink4a was observed only in SCC (p < 0.01). CONCLUSION DNA methylation levels of E-cadherin and p16ink4a were significantly higher in OLP than in normal tissues, and may be associated with the pathogenesis and progression of the disease.
Collapse
Affiliation(s)
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Rie Takai
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Jun Sato
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | | | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| |
Collapse
|
9
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
10
|
Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, Qiu Z, Tan Y, Ye L, Zhang M, Ren G, Tao Q. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics 2020; 10:2243-2259. [PMID: 32089740 PMCID: PMC7019175 DOI: 10.7150/thno.35861] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Zinc-finger proteins (ZFPs) are the largest transcription factor family in mammals, involved in the regulation of multiple physiologic processes including cell differentiation, proliferation, apoptosis and neoplastic transformation. Approximately one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs. Methods: ZNF471 expression and methylation were detected by reverse-transcription PCR and methylation-specific PCR. The impact and mechanism of ectopic ZNF471 expression in esophageal squamous cell carcinoma (ESCC) cells was evaluated in vitro and in vivo. Results: We identified a 19q13 KRAB-ZFP, ZNF471, as a methylated target in ESCC. We further found that ZNF471 is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues, due to its aberrant promoter CpG methylation, and further confirmed by methylation analysis and treatment with demethylation agent. Restoration of ZNF471 expression in silenced ESCC cells significantly altered cell morphology, induced apoptosis and G0/G1 arrest, and inhibited tumor cell colony formation, viability, migration and invasion. Importantly, ZNF471 was found to activate the expression of MAPK10/JNK3 and PCDH family genes, and further enhance MAPK10 signaling and downstream gene expression through binding to the MAPK10/JNK3 promoter. Conclusion: Our results demonstrate that ZNF471 is an important tumor suppressor and loss of ZNF471 functions hampers MAPK10/JNK3 signaling during esophageal carcinogenesis.
Collapse
|
11
|
Wang Y, Dan L, Li Q, Li L, Zhong L, Shao B, Yu F, He S, Tian S, He J, Xiao Q, Putti TC, He X, Feng Y, Lin Y, Xiang T. ZMYND10, an epigenetically regulated tumor suppressor, exerts tumor-suppressive functions via miR145-5p/NEDD9 axis in breast cancer. Clin Epigenetics 2019; 11:184. [PMID: 31801619 PMCID: PMC6894283 DOI: 10.1186/s13148-019-0785-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangying Dan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The People's Hospital of Tongliang District, Chongqing, China
| | - Qianqian Li
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bianfei Shao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Yu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanxiu He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Thomas C Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Qiu GH, Que W, Yan S, Zheng X, Xie X, Huang C, Yang X, Hooi SC. The pro-survival function of DLEC1 and its protection of cancer cells against 5-FU-induced apoptosis through up-regulation of BCL-XL. Cytotechnology 2019; 71:23-33. [PMID: 30607648 DOI: 10.1007/s10616-018-0258-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor DLEC1 has been shown to promote cell proliferation when AP-2α2 is down-regulated in HCT116 stable clones, suggesting its pro-survival nature. However, the pro-survival function of DLEC1 has not been confirmed in other cells and its underlying mechanisms remain elusive. Therefore, we knocked down DLEC1 in a panel of cell lines and found that DLEC1 depletion caused various extents of cell death through intrinsic pathway. DLEC1 overexpression promoted cell survival and reduced cell death in cancer cells after 5-FU treatment, while DLEC1 down-regulation sensitized cancer cells to 5-FU. Further studies demonstrated that DLEC1 attenuated the increase in cleaved PARP, caspase-3 and caspase-7, the activity of caspase-9 and the diffusion of cytosolic cytochrome c from mitochondria. Our data also showed that BCL-XL was up-regulated by DLEC1 in stable clones after 5-FU treatment. Altogether, these results indicated that DLEC1 protects cells against cell death induced by 5-FU through the attenuation of active proteins in caspase cascade and the up-regulation of BCL-XL. Therefore, DLEC1 can be a pro-survival protein under certain circumstances and a potential therapeutic target for increasing sensitivity of cancer cells to 5-FU.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wutang Que
- Orthopedics Department, Longyan First Hospital, Longyan, 364000, Fujian, People's Republic of China
| | - Shanying Yan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaojin Xie
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Shing Chuan Hooi
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
14
|
Jin Y, Qin X, Jia G. SOX10-dependent CMTM7 expression inhibits cell proliferation and tumor growth in gastric carcinoma. Biochem Biophys Res Commun 2018; 507:91-99. [DOI: 10.1016/j.bbrc.2018.10.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
|
15
|
Liu W, Wu J, Shi G, Yue X, Liu D, Zhang Q. Aberrant promoter methylation of PCDH10 as a potential diagnostic and prognostic biomarker for patients with breast cancer. Oncol Lett 2018; 16:4462-4470. [PMID: 30214581 PMCID: PMC6126325 DOI: 10.3892/ol.2018.9214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Protocadherin-10 (PCDH10) is a tumor suppressor gene. Its expression level is downregulated by promoter methylation in certain types of human tumors. The aim of the present study was to examine the expression level and promoter methylation status of PCDH10 in breast cancer cells and to evaluate the association of PCDH10 methylation and tumor progression and prognosis. MethyLight was used to detect the methylation status of PCDH10 in breast cancer tissues and healthy breast tissues. Reverse transcription-quantitative polymerase chain reaction was used to assess the mRNA expression level of PCDH10, as well as to evaluate the association between PCDH10 methylation and clinicopathological features, along with patients' overall survival (OS). PCDH10 5'-C-phosphate-G-3' (CpG) methylated sites were identified in tumor tissues and matched healthy tissues (n=392). Tumor tissues and matched healthy tissues exhibited identifiable PCR results, with PCDH10 gene promoter methylation identified in ductal carcinoma in situ (66%), invasive ductal carcinoma (82%), invasive ductal carcinoma with lymph node metastasis (85.32%) and hereditary breast cancer tissues (72.37%). PCDH10 mRNA expression was significantly decreased in breast cancer tissues compared with healthy breast tissues (P=0.032). PCDH10 methylation was associated with tumor size (P=0.004), but not associated with other clinical factors. Survival analysis revealed that the patients exhibiting methylated-PCDH10 had significantly poorer OS times than patients exhibiting unmethylated-PCDH10 (P<0.0001). Receiver operating characteristic analysis indicated a sensitivity of 75%, a specificity of 62.5%, and an area under the curve of 0.682 for PCDH10. Additionally, the results of the present study indicated that PCDH10 methylation status may be a useful diagnostic and prognostic evaluation biomarker for breast cancer. The results suggested that PCDH10 methylation is a common occurrence in primary breast cancer and is associated with poor survival rates among patients with breast cancer.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jin Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Guangyue Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaolong Yue
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Dan Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
16
|
Li L, Xu J, Qiu G, Ying J, Du Z, Xiang T, Wong KY, Srivastava G, Zhu XF, Mok TS, Chan ATC, Chan FKL, Ambinder RF, Tao Q. Epigenomic characterization of a p53-regulated 3p22.2 tumor suppressor that inhibits STAT3 phosphorylation via protein docking and is frequently methylated in esophageal and other carcinomas. Am J Cancer Res 2018; 8:61-77. [PMID: 29290793 PMCID: PMC5743460 DOI: 10.7150/thno.20893] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Rationale: Oncogenic STAT3 signaling activation and 3p22-21.3 locus alteration are common in multiple tumors, especially carcinomas of the nasopharynx, esophagus and lung. Whether these two events are linked remains unclear. Our CpG methylome analysis identified a 3p22.2 gene, DLEC1, as a methylated target in esophageal squamous cell (ESCC), nasopharyngeal (NPC) and lung carcinomas. Thus, we further characterized its epigenetic abnormalities and functions. Methods: CpG methylomes were established by methylated DNA immunoprecipitation. Promoter methylation was analyzed by methylation-specific PCR and bisulfite genomic sequencing. DLEC1 expression and clinical significance were analyzed using TCGA database. DLEC1 functions were analyzed by transfections followed by various cell biology assays. Protein-protein interaction was assessed by docking, Western blot and immunoprecipitation analyses. Results: We defined the DLEC1 promoter within a CpG island and p53-regulated. DLEC1 was frequently downregulated in ESCC, lung and NPC cell lines and primary tumors, but was readily expressed in normal tissues and immortalized normal epithelial cells, with mutations rarely detected. DLEC1 methylation was frequently detected in ESCC tumors and correlated with lymph node metastasis, tumor recurrence and progression, with DLEC1 as the most frequently methylated among the established 3p22.2 tumor suppressors (RASSF1A, PLCD1 and ZMYND10/BLU). DLEC1 inhibits carcinoma cell growth through inducing cell cycle arrest and apoptosis, and also suppresses cell metastasis by reversing epithelial-mesenchymal transition (EMT) and cell stemness. Moreover, DLEC1 represses oncogenic signaling including JAK/STAT3, MAPK/ERK, Wnt/β-catenin and AKT pathways in multiple carcinoma types. Particularly, DLEC1 inhibits IL-6-induced STAT3 phosphorylation in a dose-dependent manner. DLEC1 contains three YXXQ motifs and forms a protein complex with STAT3 via protein docking, which blocks STAT3-JAK2 interaction and STAT3 phosphorylation. IL-6 stimulation enhances the binding of DLEC1 with STAT3, which diminishes their interaction with JAK2 and further leads to decreased STAT3 phosphorylation. The YXXQ motifs of DLEC1 are crucial for its inhibition of STAT3 phosphorylation, and disruption of these motifs restores STAT3 phosphorylation through abolishing DLEC1 binding to STAT3. Conclusions: Our study demonstrates, for the first time, predominant epigenetic silencing of DLEC1 in ESCC, and a novel mechanistic link of epigenetic DLEC1 disruption with oncogenic STAT3 signaling in multiple carcinomas.
Collapse
|
17
|
Zhou J, Huang Z, Wang Z, Liu S, Grandien A, Ernberg I, He Z, Zhang X. Tumor suppressor BLU promotes TRAIL-induced apoptosis by downregulating NF-κB signaling in nasopharyngeal carcinoma. Oncotarget 2017; 8:43853-43865. [PMID: 28029652 PMCID: PMC5546445 DOI: 10.18632/oncotarget.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/19/2016] [Indexed: 12/17/2022] Open
Abstract
A putative tumor suppressor BLU mapped on the chromosomal 3p21 region, is frequently lost in human tumors including nasopharyngeal carcinoma (NPC). To explore the underlying mechanism of tumor suppression by BLU, its potential to promote apoptosis induced by TRAIL, an effector molecule elaborated by natural killer-T (NKT) cells was investigated. BLU was re-expressed in NPC-derived HNE1 cells by recombinant adenoviral infection and the cells were challenged with recombinant TRAIL. The growth inhibition of BLU was assayed and apoptosis was examined by flow cytometry-based tetramethylrhodamine ethyl ester (TMRE) and annexin V staining, cleavage of pro-caspase-8 and poly ADP ribose polymerase (PARP). The modulation of NF-κB pathway by BLU was evaluated by the reporter activity and estimation of the level of the molecules involved such as IKKalpha, p65 NF-κB, as well as NF-κB induced anti-apoptotic factors cFLIPL and cIAP2. The expression of BLU exerted in vitro and in vivo growth inhibitory effect and promoted TRAIL-induced apoptosis. This phenomenon was validated by FACS-based assays of mitochondrial membrane potential (BLU vs. Vector 87.8% ± 7.7% and 72.1%±6.7% at 6h exposure to TRAIL) and phosphatidylserine turnover (BLU vs. vector: 28.7%±2.9% and 22.6%±2.5%), as well as, enhanced caspapse-8 cleavage. Similar with the findings that BLU promotes chemotherapeutic agent-induced apoptosis, it also augmented death receptor-induced pathway through NF-κB pathway inhibition. In conclusion, BLU suppressed tumor formation by strengthening the antitumor immunity.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziyou Wang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shumin Liu
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Alf Grandien
- Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zhiwei He
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiangning Zhang
- Department of Pathophysiology and China-America Cancer Research Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
18
|
Diagnostic Capacity of RASSF1A Promoter Methylation as a Biomarker in Tissue, Brushing, and Blood Samples of Nasopharyngeal Carcinoma. EBioMedicine 2017; 18:32-40. [PMID: 28396012 PMCID: PMC5405182 DOI: 10.1016/j.ebiom.2017.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Methylation of the RAS association domain family protein 1A (RASSF1A) promoter has been observed in nasopharyngeal carcinoma (NPC). This study investigated the correlation of RASSF1A promoter methylation with clinicopathological features and its utility as a diagnostic biomarker in NPC. A total of 926 patients with NPC and 495 non-tumor controls were analyzed in this study. RASSF1A promoter methylation was notably higher in NPC compared with non-tumor tissue, brushing and blood samples. RASSF1A promoter methylation was associated with clinical stage, lymph node status, distant metastasis, and T classification of patients with NPC, although it was not linked to age and sex. The pooled sensitivity, specificity, and AUC (area under the curve) of RASSF1A promoter methylation were determined in NPC samples vs. non-tumor samples (tissue: sensitivity=0.72, specificity=0.99, AUC=0.98; brushing: sensitivity=0.56, specificity=1.00, AUC=0.94; blood: sensitivity=0.11, specificity=0.98, AUC=0.97). Our findings show that RASSF1A promoter methylation may be correlated with the development, progression and metastasis of NPC. RASSF1A promoter methylation is a promising noninvasive biomarker for the diagnosis of NPC from tissue and brushing samples.
Collapse
|
19
|
Chen T, Long B, Ren G, Xiang T, Li L, Wang Z, He Y, Zeng Q, Hong S, Hu G. Protocadherin20 Acts as a Tumor Suppressor Gene: Epigenetic Inactivation in Nasopharyngeal Carcinoma. J Cell Biochem 2016; 116:1766-75. [PMID: 25736877 DOI: 10.1002/jcb.25135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022]
Abstract
Genetic alterations of 13q21 (PCDH 8,9,17, and 20) are frequently observed in multiple tumors, suggesting the presence of critical tumor suppressor genes (TSGs). Protocadherin20 (PCDH20), located at 13q21.2, belongs to the δ1-protocadherins, which constitutes one of the largest subgroup within the adherin superfamily. Frequent downregulation/silencing of PCDH20 was found in NPC cell lines using semiquantitative PCR. PCDH20 mRNA was broadly expressed in normal nasopharyngeal tissues and cell lines. Promoter methylation of PCDH20 was observed in 80% (4/5) of NPC cell lines and 78.4% (40 of 51) of primary tumors by methylation-specific PCR, but rarely in normal nasopharygeal tissues and nasopharyngeal epithelial cell line (NP69). The silencing of PCDH20 can be reversed by pharmacological demethylation, indicating an epigenetic mechanism. Restoration of PCDH20 expression in NPC cells strongly suppressed cell numbers and colony formation. Overexpression of PCDH20 antagonized Wnt/β-catenin signaling pathway and promoted β-catenin to translocate from nucleus to cytoplasm and membrane. PCDH20 significantly inhibited the migration and invasion ability of NPC cells. PCDH20 also inhibited epithelial-mesenchymal transition (EMT) through enhanced expression of E-cadherin. Our study identified PCDH20 as a functional tumor suppressor and an important antagonist of Wnt/β-catenin signaling and EMT, with frequent epigenetic inactivation in NPC.
Collapse
Affiliation(s)
- Tao Chen
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Biaoli Long
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Lili Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhaohui Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ya He
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Quan Zeng
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Suling Hong
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
20
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Zhou S, Chen L, Mashrah M, Zhu Y, Liu J, Yang X, He Z, Wang L, Xiang T, Yao Z, Guo F, Yang W, Zhang C. Deregulation of secreted frizzled-related proteins is associated with aberrant β-catenin activation in the carcinogenesis of oral submucous fibrosis. Onco Targets Ther 2015; 8:2923-31. [PMID: 26508877 PMCID: PMC4610781 DOI: 10.2147/ott.s91460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Secreted frizzled-related proteins (SFRPs), the first identified Wnt antagonists, have been well recognized as tumor suppressors in multiple human cancers through suppressing the Wnt/β-catenin pathway. To better elucidate the mechanisms of SFRPs involved in the carcinogenesis of oral submucous fibrosis (OSF), one of the precancerous lesions of oral squamous cell carcinoma (OSCC), we investigated expression and localization of SFRP1, SFRP5, and β-catenin in normal oral epithelium, OSF, and OSCC tissues. We found that SFRP1 and SFRP5 were readily expressed in normal oral mucous tissues but gradually decreased in OSF early, moderately advanced, and advanced tissues and rarely expressed in OSCC tissues. We found the changes of SFRP1 localization and SFRP5 localization from nucleus to cytoplasm in the carcinogenesis of OSF. There is a significant association among reduced SFRP1, SFRP5, and cytoplasmic/nuclear β-catenin expression, which is correlated with higher tumor grade and stage of OSCC. We further found that SFRP1 and SFRP5 were frequently methylated in OSCC cases with betel quid chewing habit but not in normal oral mucous and different stages of OSF tissues, suggesting that methylation of SFRP1 and SFRP5 is tumor specific in the carcinogenesis of OSF. Taken together, our data demonstrated that reduced SFRP1 and SFRP5 by promoter methylation could lead to cytoplasmic/nuclear accumulation of β-catenin and tumor progression. The changes of SFRPs and β-catenin localization, as well as SFRPs' methylation, could be useful predictors or biomarkers of OSF malignant progression and prognosis.
Collapse
Affiliation(s)
- Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ling Chen
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mubarak Mashrah
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiannan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xi Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Lizhen Wang
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Zhou S, Chen L, Mashrah M, Zhu Y, He Z, Hu Y, Xiang T, Yao Z, Guo F, Zhang C. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol Rep 2015; 34:2636-42. [PMID: 26352791 DOI: 10.3892/or.2015.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of head and neck malignancy with a high mortality rate. Oral submucous fibrosis (OSF) is the pre-cancerous lesion of OSCC, whose molecular mechanisms in OSCC tumorigenesis remain largely unclear. Activation of the Wnt/β-catenin signaling pathway plays an important role in oral mucous carcinogenesis, although rare mutations of Wnt signaling molecules are found in OSCC, suggesting an epigenetic mechanism mediating aberrant Wnt/β‑catenin signaling in OSCC. Wnt inhibitory factor-1 (WIF1) is an Wnt antagonist, and its downregulation and methylation have been reported in a number of malignancies. However, the expression and methylation of WIF1 in the development of OSF have yet to be reported. In the present study, we investigated the WIF1 expression level by immuno-histochemical staining and semi‑quantitative RT-PCR in normal oral, OSF and OSCC tissues, as well as the methylation status by methylation-specific PCR and bisulfite genomic sequencing. The results showed that WIF1 was readily expressed in normal oral mucous tissues, but decreased gradually in OSF early, moderately advanced and advanced tissues, and was less expressed in OSCC tissues. Moreover, WIF1 was able to translocate from the nuclear to cytoplasm in OSF and OSCC tissues. Furthermore, WIF1 was frequently methylated in OSCC cases with betel quid chewing habit, but not in normal oral mucous and different stages of OSF tissues, suggesting WIF1 methylation is tumor-specific in the development of OSF. Thus, the results demonstrated that WIF1 is frequently downregulated or silenced by promoter methylation in the carcinogenesis of OSF, which serves as a potential epigenetic biomarker for the early detection of OSCC.
Collapse
Affiliation(s)
- Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Ling Chen
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mubarak Mashrah
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
23
|
Xiao K, Yu Z, Shi DT, Lei Z, Chen H, Cao J, Tian W, Chen W, Zhang HT. Inactivation of BLU is associated with methylation of Sp1-binding site of BLU promoter in gastric cancer. Int J Oncol 2015; 47:621-31. [PMID: 26043875 DOI: 10.3892/ijo.2015.3032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
BLU is a candidate tumor suppressor gene, which is epigenetically inactivated in many human malignancies. However, the expression and biological functions of BLU in gastric cancer has not yet been reported. In the present study, we identified a functional BLU promoter which was regulated by the transcription activator Sp1. Bisulfite sequencing and qRT-PCR assays indicated that the silence of BLU expression in gastric cancer was significantly associated with DNA hypermethylation of BLU promoter including -39 CpG site located in the Sp1 transcription element. The expression of BLU was notably restored in AGS and SGC7901 cells following the demethylation-treatment with 5'-Aza-2'-deoxycytidine. Moreover, the results from ChIP, EMSA and luciferase reporter gene showed that -39 CpG methylation could prevent Sp1 from binding to the promoter of BLU and decreased transcription activity of the BLU gene by ~70%. In addition, knockdown of BLU significantly promoted cellular proliferation and colony formation in gastric cancer cells. In conclusion, we identified a novel functional BLU promoter and proved that BLU promoter activity was regulated by Sp1. Furthermore, we found that hypermethylated -39 CpG in BLU proximal promoter directly reduced its binding with Sp1, which may be one of the mechanisms accounting for the inactivation of BLU in gastric cancer.
Collapse
Affiliation(s)
- Kunting Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhuwen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Dong-Tao Shi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hongbing Chen
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Municipal Hospital (Main Campus), Suzhou 215004, P.R. China
| | - Wenyan Tian
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
24
|
Wu K, Xu XN, Chen Y, Pu XL, Wang BY, Tang XD. RASSF1A Gene Methylation is Associated with Nasopharyngeal Carcinoma Risk in Chinese. Asian Pac J Cancer Prev 2015; 16:2283-7. [DOI: 10.7314/apjcp.2015.16.6.2283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng YX, Chan WY, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics 2014; 7:155-73. [PMID: 25479246 DOI: 10.2217/epi.14.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Nasopharyngeal carcinoma (NPC) is a common tumor consistently associated with Epstein-Barr virus infection and prevalent in South China, including Hong Kong, and southeast Asia. Current genomic sequencing studies found only rare mutations in NPC, indicating its critical epigenetic etiology, while no epigenome exists for NPC as yet. MATERIALS & METHODS We profiled the methylomes of NPC cell lines and primary tumors, together with normal nasopharyngeal epithelial cells, using methylated DNA immunoprecipitation (MeDIP). RESULTS We observed extensive, genome-wide methylation of cellular genes. Epigenetic disruption of Wnt, MAPK, TGF-β and Hedgehog signaling pathways was detected. Methylation of Wnt signaling regulators (SFRP1, 2, 4 and 5, DACT2, DKK2 and DKK3) was frequently detected in tumor and nasal swab samples from NPC patients. Functional studies showed that these genes are bona fide tumor-suppressor genes for NPC. CONCLUSION The NPC methylome shows a special high-degree CpG methylation epigenotype, similar to the Epstein-Barr virus-infected gastric cancer, indicating a critical epigenetic etiology for NPC pathogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cheng Y, Ho RLKY, Chan KC, Kan R, Tung E, Lung HL, Yau WL, Cheung AKL, Ko JMY, Zhang ZF, Luo DZ, Feng ZB, Chen S, Guan XY, Kwong D, Stanbridge EJ, Lung ML. Anti-angiogenic pathway associations of the 3p21.3 mapped BLU gene in nasopharyngeal carcinoma. Oncogene 2014; 34:4219-28. [PMID: 25347745 PMCID: PMC4761643 DOI: 10.1038/onc.2014.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
Zinc-finger, MYND-type containing 10 (ZMYND10), or more commonly called BLU, expression is frequently downregulated in nasopharyngeal carcinoma (NPC) and many other tumors due to promoter hypermethylation. Functional evidence shows that the BLU gene inhibits tumor growth in animal assays, but the detailed molecular mechanism responsible for this is still not well understood. In current studies, we find that 93.5% of early-stage primary NPC tumors show downregulated BLU expression. Using a PCR array, overexpression of the BLU gene was correlated to the angiogenesis network in NPC cells. Moreover, expression changes of the MMP family, VEGF and TSP1, were often detected in different stages of NPC, suggesting the possibility that BLU may be directly involved in the microenvironment and anti-angiogenic activity in NPC development. Compared with vector-alone control cells, BLU stable transfectants, derived from poorly-differentiated NPC HONE1 cells, suppress VEGF165, VEGF189 and TSP1 expression at both the RNA and protein levels, and significantly reduce the secreted VEGF protein in these cells, reflecting an unknown regulatory mechanism mediated by the BLU gene in NPC. Cells expressing BLU inhibited cellular invasion, migration and tube formation. These in vitro results were further confirmed by in vivo tumor suppression and a matrigel plug angiogenesis assay in nude mice. Tube-forming ability was clearly inhibited, when the BLU gene is expressed in these cells. Up to 70-90% of injected tumor cells expressing increased exogenous BLU underwent cell death in animal assays. Overexpressed BLU only inhibited VEGF165 expression in differentiated squamous NPC HK1 cells, but also showed an anti-angiogenic effect in the animal assay, revealing a complicated mechanism regulating angiogenesis and the microenvironment in different NPC cell lines. Results of these studies indicate that alteration of BLU gene expression influences anti-angiogenesis pathways and is important for the development of NPC.
Collapse
Affiliation(s)
- Y Cheng
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R L K Y Ho
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - K C Chan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R Kan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E Tung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - H L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - W L Yau
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - A K L Cheung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - J M Y Ko
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - Z F Zhang
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - D Z Luo
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - Z B Feng
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - S Chen
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - X Y Guan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - D Kwong
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E J Stanbridge
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - M L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| |
Collapse
|
27
|
Li L, Zhang Y, Guo BB, Chan FKL, Tao Q. Oncogenic induction of cellular high CpG methylation by Epstein-Barr virus in malignant epithelial cells. CHINESE JOURNAL OF CANCER 2014; 33:604-8. [PMID: 25322866 PMCID: PMC4308656 DOI: 10.5732/cjc.014.10191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a well-known human herpesvirus associated with virtually all nasopharyngeal carcinoma (NPC) and ∼10% of gastric cancer (GC) worldwide. Increasing evidence shows that acquired genetic and epigenetic alterations lead to the initiation and progression of NPC and GC. However, even deep whole exome sequencing studies showed a relatively low frequency of gene mutations in NPC and EBV-associated GC (EBVaGC), suggesting a predominant role of epigenetic abnormities, especially promoter CpG methylation, in the pathogenesis of NPC and EBVaGC. High frequencies of promoter methylation of tumor suppressor genes (TSGs) have been frequently reported in NPC and EBVaGC, with several EBV-induced methylated TSGs identified. Further characterization of the epigenomes (genome-wide CpG methylation profile—methylome) of NPC and EBVaGC shows that these EBV-associated tumors display a unique high CpG methylation epigenotype with more extensive gene methylation accumulation, indicating that EBV acts as a direct epigenetic driver for these cancers. Mechanistically, oncogenic modulation of cellular CpG methylation machinery, such as DNA methyltransferases (DNMTs), by EBV-encoded viral proteins accounts for the EBV-induced high CpG methylation epigenotype in NPC and EBVaGC. Thus, uncovering the EBV-associated unique epigenotype of NPC and EBVaGC would provide new insight into the molecular pathogenesis of these unique EBV-associated tumors and further help to develop pharmacologic strategies targeting cellular methylation machinery in these malignancies.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
28
|
Choi GCG, Li J, Wang Y, Li L, Zhong L, Ma B, Su X, Ying J, Xiang T, Rha SY, Yu J, Sung JJY, Tsao SW, Chan ATC, Tao Q. The Metalloprotease ADAMTS8 Displays Antitumor Properties through Antagonizing EGFR–MEK–ERK Signaling and Is Silenced in Carcinomas by CpG Methylation. Mol Cancer Res 2013; 12:228-38. [PMID: 24184540 DOI: 10.1158/1541-7786.mcr-13-0195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gigi C G Choi
- Room 315, Cancer Center, PWH, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth. Oncogene 2013; 33:3109-18. [PMID: 23893243 DOI: 10.1038/onc.2013.282] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis.
Collapse
|
30
|
Zhang X, Zhang Z, Zheng B, He Z, Winberg G, Ernberg I. An update on viral association of human cancers. Arch Virol 2013; 158:1433-1443. [PMID: 23417394 DOI: 10.1007/s00705-013-1623-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 12/27/2022]
Abstract
Up to now, seven viruses that infect humans have been identified as oncogenic and are closely associated with different human cancers. Most of them encode oncogenes whose products play important roles in the development of cancers in the context of environmental and genetic factors; others may act via indirect mechanisms. The transforming activities of the human oncogenic viruses have much in common with the well-studied tumorigenic processes elicited by the acutely transforming murine retroviruses. Many of these mechanisms have been elucidated for or are represented in the successive steps leading to the efficient in vitro immortalization by the lymphotropic herpesvirus Epstein-Barr virus, although the establishment of malignancy in vivo takes longer. The development of cancer is a complicated process involving multiple factors, from the host and the environment. Although any one of these etiologic factors may exert an effect on the carcinogenic process, vaccination against the viral pathogen in several cases has shown efficacy in preventing the spread of the virus and, in turn, the development of the associated cancers. Modern laboratory techniques can be expected to facilitate the identification of new emerging viruses whose association with malignancies is suggested by epidemiologic and clinical data.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Pathophysiology, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
31
|
Yoo HJ, Kim BR, Byun HJ, Park SY, Rho SB. BLU enhances the effects of anti-angiogenic activity in combination with gemcitabine-based chemotherapeutic agents. Int J Biochem Cell Biol 2013; 45:1236-45. [DOI: 10.1016/j.biocel.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
|
32
|
Feng X, Ren C, Zhou W, Liu W, Zeng L, Li G, Wang L, Li M, Zhu B, Yao K, Jiang X. Promoter hypermethylation along with LOH, but not mutation, contributes to inactivation of DLC-1
in nasopharyngeal carcinoma. Mol Carcinog 2013; 53:858-70. [DOI: 10.1002/mc.22044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Xiangling Feng
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Caiping Ren
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Wen Zhou
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Weidong Liu
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Liang Zeng
- Department of Pathology; Hunan Tumor Hospital; Changsha, Hunan, P.R. China
| | - Guifei Li
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Lei Wang
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Min Li
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Bin Zhu
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Kaitai Yao
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
- Cancer Research Institute; Southern Medical University; Guangzhou, Guangdong, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery; Xiangya Hospital, Central South University; Changsha, Hunan, P.R. China
| |
Collapse
|
33
|
Shu XS, Li L, Ji M, Cheng Y, Ying J, Fan Y, Zhong L, Liu X, Tsao SW, Chan ATC, Tao Q. FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis 2013; 34:1984-93. [PMID: 23677067 DOI: 10.1093/carcin/bgt165] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated tumor prevalent in southern China and southeast Asia, with the 3p14-p12 locus reported as a critical tumor suppressor gene (TSG) region during its pathogenesis. We identified a novel 3p14.2 TSG, FEZF2 (FEZ family zinc finger 2), for NPC. FEZF2 is readily expressed in normal tissues including upper respiratory epithelium, testis, brain and ovary tissues, as well as in immortalized nasopharyngeal epithelial cell line NP69, but it is completely silenced in NPC cell lines due to CpG methylation of its promoter, although no homozygous deletion of FEZF2 was detected. 5-Aza-2'-deoxycytidine treatment restored FEZF2 expression in NPC cell lines along with its promoter demethylation. FEZF2 was frequently downregulated in NPC tumors, with promoter methylation detected in 75.5% of tumors, but only in 7.1% of normal nasopharyngeal tissues. Restored FEZF2 expression suppressed NPC cell clonogenicity through inducing G2/M cell cycle arrest and apoptosis and also inhibited NPC cell migration and stemness. FEZF2 acted as a histone deacetylase-associated repressor downregulating multiple oncogenes including EZH2 and MDM2, through direct binding to their promoters. Concomitantly, overexpression of EZH2 was frequently detected in NPC tumors. Thus, we have identified FEZF2 as a novel 3p14.2 TSG frequently inactivated by promoter methylation in NPC, which functions as a repressor downregulating multiple oncogene expression.
Collapse
Affiliation(s)
- Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park ST, Byun HJ, Kim BR, Dong SM, Park SH, Jang PR, Rho SB. Tumor suppressor BLU promotes paclitaxel antitumor activity by inducing apoptosis through the down-regulation of Bcl-2 expression in tumorigenesis. Biochem Biophys Res Commun 2013; 435:153-9. [PMID: 23628417 DOI: 10.1016/j.bbrc.2013.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023]
Abstract
In this current work, we investigated whether BLU could enhance pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. A combination with a chemotherapeutic drug showed an additive effect, and this additive effect was supplemented by the enhancement of caspase-3 and -9 activities. BLU and paclitaxel induced cell cycle arrest in the G2/M phase through the reduction of cyclin dependent kinase 1, cyclin B1, while promoting both p16 and p27 expression. In addition, both BLU and paclitaxel enhanced the expression of the pro-apoptotic protein Bax together with the suppression of anti-apoptotic protein Bcl-2, a protein which is well-known for its function as a regulator in protecting cells from apoptosis. As expected, the Bax and p21 activities were enhanced by BLU or paclitaxel, while a combination of BLU and paclitaxel were additively promoted, whereas Bcl-xL and NF-κB including Bcl-2 activity were inactivated. This study has yielded promising results, which evidence for the first time that BLU could suppress the growth of carcinoma cells. Furthermore, both BLU and paclitaxel inhibited the phosphorylation of signaling components downstream of phosphoinositide 3-kinase, such as 3-phosphoinositide-dependent protein kinase 1, and Akt. Also, BLU plus paclitaxel decreased phosphorylation of p70 ribosomal S6 kinase, as well as decreasing the phosphorylation of glycogen synthase kinase-3β, which is one of the representative targets of the mammalian target of rapamycin signaling cascade. These results provide evidence that BLU enhances G2/M cell cycle arrest and apoptotic cell death through the up-regulation of Bax, p21 and p53 expression.
Collapse
Affiliation(s)
- Sung Taek Park
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University, 948-1, Daerim 1-dong, Yeongdeungpo-gu, Seoul 150-950, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Chiang YC, Chang MC, Chen PJ, Wu MM, Hsieh CY, Cheng WF, Chen CA. Epigenetic silencing of BLU through interfering apoptosis results in chemoresistance and poor prognosis of ovarian serous carcinoma patients. Endocr Relat Cancer 2013; 20:213-27. [PMID: 23329649 DOI: 10.1530/erc-12-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial ovarian carcinoma is usually present at the advanced stage, during which the patients generally have poor prognosis. Our study aimed to evaluate the correlation of gene methylation and the clinical outcome of patients with advanced-stage, high-grade ovarian serous carcinoma. The methylation status of eight candidate genes was first evaluated by methylation-specific PCR and capillary electrophoresis to select three potential genes including DAPK, CDH1, and BLU (ZMYND10) from the exercise group of 40 patients. The methylation status of these three genes was further investigated in the validation group consisting of 136 patients. Patients with methylated BLU had significantly shorter progression-free survival (PFS; hazard ratio (HR) 1.48, 95% CI 1.01-2.56, P=0.013) and overall survival (OS; HR 1.83, 95% CI 1.07-3.11, P=0.027) in the multivariate analysis. Methylation of BLU was also an independent risk factor for 58 patients undergoing optimal debulking surgery for PFS (HR 2.37, 95% CI 1.03-5.42, P=0.043) and OS (HR 3.96, 95% CI 1.45-10.81, P=0.007) in the multivariate analysis. A possible mechanism of BLU in chemoresistance was investigated in ovarian cancer cell lines by in vitro apoptotic assays. In vitro studies have shown that BLU could upregulate the expression of BAX and enhance the effect of paclitaxel-induced apoptosis in ovarian cancer cells. Our study suggested that methylation of BLU could be a potential prognostic biomarker for advanced ovarian serous carcinoma.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu X, Sui X, Li L, Huang X, Rong R, Su X, Shi Q, Mo L, Shu X, Kuang Y, Tao Q, He C. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J Pathol 2013; 229:62-73. [PMID: 22926751 DOI: 10.1002/path.4093] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023]
Abstract
Gastric and colorectal cancers are among the most common cancers worldwide and cause serious cancer mortality. Both epigenetic and genetic disruptions of tumour suppressor genes (TSGs) are frequently involved in their pathogenesis. Here, we studied the epigenetic and genetic alterations of a novel TSG-PCDH17 and its functions in the pathogenesis of these tumours. We found that PCDH17 was frequently silenced and methylated in almost all gastric and colorectal tumour cell lines as well as in ∼95% of primary tumours, but not in normal gastric and colonic mucosa. Moreover, its deletion was detected in only 18% of gastric and 12% of colorectal cancer tissues, suggesting that epigenetic and genetic inactivation of PCDH17 are both involved in gastric and colorectal tumourigenesis. PCDH17 protein expression was significantly correlated with low tumour stage and less lymph node metastasis of gastric and colorectal cancer patients, indicating its potential as a tumour marker. Restoring PCDH17 expression inhibited tumour cell growth in vitro and in vivo through promoting apoptosis, as evidenced by increased TUNEL staining and caspase-3 activation. Furthermore, PCDH17-induced autophagy, along with increased numbers of autophagic vacuoles and up-regulated autophagic proteins Atg-5, Atg-12 and LC3B II. Thus, PCDH17 acts as a tumour suppressor, exerting its anti-proliferative activity through inducing apoptosis and autophagy, and is frequently silenced in gastric and colorectal cancers. PCDH17 methylation is a tumour-specific event that could serve as an epigenetic biomarker for these tumours.
Collapse
Affiliation(s)
- Xiaotong Hu
- Biomedical Research Centre and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lo KW, Chung GTY, To KF. Acquired Genetic and Epigenetic Alterations in Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Wang Z, Li L, Su X, Gao Z, Srivastava G, Murray PG, Ambinder R, Tao Q. Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas. J Transl Med 2012; 10:209. [PMID: 23050586 PMCID: PMC3540012 DOI: 10.1186/1479-5876-10-209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
Background Inactivaion of tumor suppressor genes (TSGs) by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1), located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet. Methods We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT)-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS) in common lymphoma cell lines and tumors. Results Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23) of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL), 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK)/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25) of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55%) different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23%) Hodgkin lymphoma patients. Conclusions Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences-CUHK, Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen J, Kwong DLW, Zhu CL, Chen LL, Dong SS, Zhang LY, Tian J, Qi CB, Cao TT, Wong AMG, Kong KL, Li Y, Liu M, Fu L, Guan XY. RBMS3 at 3p24 inhibits nasopharyngeal carcinoma development via inhibiting cell proliferation, angiogenesis, and inducing apoptosis. PLoS One 2012; 7:e44636. [PMID: 22957092 PMCID: PMC3434166 DOI: 10.1371/journal.pone.0044636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/06/2012] [Indexed: 01/12/2023] Open
Abstract
Deletion of the short arm of chromosome 3 is one of the most frequent genetic alterations in many solid tumors including nasopharyngeal carcinoma (NPC), suggesting the existence of one or more tumor suppressor genes (TSGs) within the frequently deleted region. A putative TSG RBMS3 (RNA binding motif, single stranded interacting protein 3), located at 3p24-p23, has been identified in our previous study. Here, we reported that downregulation of RBMS3 was detected in 3/3 NPC cell lines and 13/15 (86.7%) primary NPC tissues. Functional studies using both overexpression and suppression systems demonstrated that RBMS3 has a strong tumor suppressive role in NPC. The tumor suppressive mechanism of RBMS3 was associated with its role in cell cycle arrest at the G1/S checkpoint by upregulating p53 and p21, downregulating cyclin E and CDK2, and the subsequent inhibition of Rb-ser780. Further analysis demonstrated that RBMS3 had a pro-apoptotic role in a mitochondrial-dependent manner via activation of caspase-9 and PARP. Finally, RBMS3 inhibited microvessel formation, which may be mediated by down-regulation of MMP2 and β-catenin and inactivation of its downstream targets, including cyclin-D1, c-Myc, MMP7, and MMP9. Taken together, our findings define a function for RBMS3 as an important tumor suppressor gene in NPC.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Cai-Lei Zhu
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei-Lei Chen
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sui-Sui Dong
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li-Yi Zhang
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jun Tian
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chu-Bo Qi
- Department of Pathology, Hubei Cancer Hospital, China
| | - Ting-Ting Cao
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kar-Lok Kong
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Ming Liu
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li Fu
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LF); (XG)
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LF); (XG)
| |
Collapse
|
40
|
Zhang X, Liu H, Li B, Huang P, Shao J, He Z. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter. BMC Cancer 2012; 12:267. [PMID: 22727408 PMCID: PMC3585814 DOI: 10.1186/1471-2407-12-267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. METHODS BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. RESULTS BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. CONCLUSIONS BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Hui Liu
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Binbin Li
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Peichun Huang
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dong Feng Road, Guangzhou, Guangdong, 510060, China
| | - Zhiwei He
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
41
|
Cheng Y, Liang P, Geng H, Wang Z, Li L, Cheng SH, Ying J, Su X, Ng KM, Ng MHL, Mok TSK, Chan ATC, Tao Q. A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol Cancer Res 2012; 10:925-36. [PMID: 22679109 DOI: 10.1158/1541-7786.mcr-11-0594] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic disruption of tumor suppressor genes is frequently involved in tumorigenesis. We identified a novel 19q13 KRAB domain-containing zinc finger protein, ZNF545/ZFP82, broadly expressed in normal tissues but downregulated in multiple tumor cell lines. The ZNF545 promoter contains a CpG island, which is frequently methylated in cell lines. The transcriptional silencing of ZNF545 could be reversed by pharmacologic or genetic demethylation, indicating direct epigenetic silencing. ZNF545 was also frequently methylated in multiple primary tumors of nasopharyngeal, esophageal, lung, gastric, colon, and breast, but rarely in normal epithelial tissues and paired normal tissues. ZNF545 is located in the nucleus and mainly sequestered in nucleoli, functioning as a repressor. ZNF545 is able to repress NF-κB and AP-1 signaling pathways, whereas ectopic expression of ZNF545 in silenced tumor cells significantly inhibited their growth and induced apoptosis. Functional studies showed that ZNF545 was involved in ribosome biogenesis through inhibiting the activity of rDNA promoter and decreasing cellular protein translation efficiency. Thus, we identified ZNF545 as a novel tumor suppressor inducing tumor cell apoptosis, repressing ribosome biogenesis and target gene transcription. The tumor-specific methylation of ZNF545 could be an epigenetic biomarker for cancer diagnosis.
Collapse
Affiliation(s)
- Yingduan Cheng
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang Y, Zhang Q, Xu F, Wu L, He Q, Li X. Tumor suppressor gene BLU is frequently downregulated by promoter hypermethylation in myelodysplastic syndrome. J Cancer Res Clin Oncol 2012; 138:729-37. [PMID: 22246278 DOI: 10.1007/s00432-012-1151-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/02/2012] [Indexed: 01/16/2023]
Abstract
PURPOSE BLU methylation status was investigated in bone marrow mononuclear cells from newly diagnosed myelodysplastic syndrome (MDS) patients and patients who received 5-aza-2'-deoxycytidine (decitabine) treatment so as to determine the effect of BLU in the pathogenesis of MDS. METHODS Methylation-specific polymerase chain reaction and bisulfite sequencing were used to evaluate the methylation status of the promoter region of the BLU gene. BLU expression was investigated by using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS Hypermethylation in the promoter region of BLU was detected in 34 of 79 (43%) newly diagnosed MDS patient samples and was significantly correlated with the loss of BLU mRNA and protein expression. There was a statistically significant difference in methylation frequency between the refractory anemia/refractory anemia with ringed sideroblasts/5q-syndrome (RA/RARS/5q-) group and the refractory anemia with excess blasts-1/-2 (RAEB-1/RAEB-2) group. A higher frequency of hypermethylation was observed in the intermediate-2/high-risk group compared to the low-risk/intermediate-1-risk group. The demethylating agent decitabine could partly reverse hypermethylation and restore the expression of the BLU gene. CONCLUSION BLU promoter hypermethylation frequently occurs in MDS cases, especially in higher risk MDS cases, and is significantly associated with the downregulated expression of BLU. BLU gene re-expression was induced in some MDS cases undergoing decitabine therapy. BLU may play a substantial role in the development and etiology of MDS.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Hematology, The Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY. Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2012; 31:215-22. [PMID: 22360856 PMCID: PMC3777521 DOI: 10.5732/cjc.011.10364] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 01/30/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China. Deletion of genomic DNA, which occurs during the complex pathogenesis process for NPC, represents a pivotal mechanism in the inactivation of tumor suppressor genes (TSGs). In many circumstances, loss of TSGs can be detected as diagnostic and prognostic markers in cancer. The short arm of chromosome 3 (3p) is a frequently deleted chromosomal region in NPC, with 3p21.1-21.2 and 3p25.2-26.1 being the most frequently deleted minimal regions. In recent years, our research group and others have focused on the identification and characterization of novel target TSGs at 3p, such as RASSF1A, BLU, RBMS3, and CHL1, in the development and progression of NPC. In this review, we summarize recent findings of TSGs at 3p and discuss some of these genes in detail. A better understanding of TSGs at 3p will significantly improve our understanding of NPC pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P. R. China;
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P. R. China;
| | - Li Fu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P. R. China;
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | - Li-Yi Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P. R. China;
| | - Dora L. Kwong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P. R. China;
| | - Li Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P. R. China;
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| |
Collapse
|
44
|
Li L, Su X, Choi GCG, Cao Y, Ambinder RF, Tao Q. Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins. BMC Cancer 2012; 12:125. [PMID: 22458933 PMCID: PMC3362778 DOI: 10.1186/1471-2407-12-125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/29/2012] [Indexed: 12/15/2022] Open
Abstract
Background Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of BZLF1 and BRLF1 promoters (Zp and Rp) in tumor samples. Methods We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as BZLF1 and BRLF1 expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins. Results We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing BZLF1 and BRLF1. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of BZLF1 and BRLF1 was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene BHRF1 and late lytic gene BLLF1. Conclusions Hypermethylation of Zp and Rp mediates the frequent silencing of BZLF1 and BRLF1 in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
45
|
Dong SM, Byun HJ, Kim BR, Lee SH, Trink B, Rho SB. Tumor suppressor BLU enhances pro-apoptotic activity of sMEK1 through physical interaction. Cell Signal 2012; 24:1208-14. [PMID: 22349239 DOI: 10.1016/j.cellsig.2012.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
BLU is a tumor suppressor that acts as a transcriptional regulator through the association with cellular components. However, the working mechanism of BLU in cellular functions was not understood. We found that BLU directly interacts with sMEK1, a regulatory subunit of protein phosphatase 4. Furthermore, we determined the binding domains that are required for interaction between BLU and sMEK1. The N-terminal of BLU was observed to interact with the C-terminal of sMEK1. Binding activity was confirmed by the BLU-dependent increase of sMEK1 expression, as well as by the induced apoptotic activity. Also, expression of BLU and sMEK1 was down-regulated in ovarian and cervical patients, and was hypermethylated. These findings indicate that BLU can mediate the pro-apoptotic activity through the induction of sMEK1.
Collapse
Affiliation(s)
- Seung Myung Dong
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, Xiong L, Putti TC, Oberst M, Kelly K, Ren G, Tao Q. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One 2012; 7:e29783. [PMID: 22279545 PMCID: PMC3261155 DOI: 10.1371/journal.pone.0029783] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear. Methodology/Principal Findings We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells. Conclusions/Significance UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.
Collapse
Affiliation(s)
- Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuedong Yin
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenfu Yuan
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cui Tan
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianwei Su
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Xiong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas C. Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael Oberst
- Signal Transduction Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen Kelly
- Signal Transduction Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (GR); (QT)
| | - Qian Tao
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (GR); (QT)
| |
Collapse
|
47
|
Lo KW, Chung GTY, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 2012; 22:79-86. [PMID: 22245473 DOI: 10.1016/j.semcancer.2011.12.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with EBV infection and prevalence in southern China and Southeast Asia. In addition to EBV, the development of NPC involves cumulative genetic and epigenetic changes influenced by predisposing genetic factors and environmental carcinogens. Over the past two decades, knowledge of genetic and epigenetic alterations of NPC has rapidly accumulated. Multiple chromosomal abnormalities (e.g. copy number changes on chromosomes 3p, 9p, 11q, 12p, and 14q), gene alterations (e.g. p16 deletion and LTBR amplification), and epigenetic changes (e.g. RASSF1A and TSLC1 methylation) have been identified by various genome-wide approaches, such as allelotyping, CGH, and microarray analysis. In this review, we will discuss the critical genetic events that contribute to the initiation and progression of NPC. Studies on the precancerous lesions and in vitro immortalized nasopharyngeal epithelial cell models provide important evidence for the involvement of genetic alterations and EBV infection in early development of this cancer. A hypothetical model describing the role of EBV latent infection and multiple genetic changes in NPC tumorigenesis is proposed.
Collapse
Affiliation(s)
- Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
48
|
The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/β-catenin signaling and silenced in common carcinomas. Oncogene 2011; 31:3901-12. [PMID: 22139084 PMCID: PMC3426851 DOI: 10.1038/onc.2011.541] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic alterations of 16q21-q22, the locus of a 6-cadherin cluster, are frequently involved in multiple tumors, suggesting the presence of critical tumor suppressor genes (TSGs). Using 1 Mb array comparative genomic hybridization (aCGH), we refined a small hemizygous deletion (∼1 Mb) at 16q21-22.1, which contains a single gene Cadherin-11 (CDH11, OB-cadherin). CDH11 was broadly expressed in human normal adult and fetal tissues, while its silencing and promoter CpG methylation were frequently detected in tumor cell lines, but not in immortalized normal epithelial cells. Aberrant methylation was also frequently detected in multiple primary tumors. CDH11 silencing could be reversed by pharmacologic or genetic demethylation, indicating an epigenetic mechanism. Ectopic expression of CDH11 strongly suppressed tumorigenecity and induced tumor cell apoptosis. Moreover, CDH11 was found to inhibit Wnt/β-catenin and AKT/Rho A signaling, as well as actin stress fiber formation, thus further inhibiting tumor cell migration and invasion. CDH11 also inhibited epithelial-to-mesenchymal transition and downregulated stem cell markers. Thus, our work identifies CDH11 as a functional tumor suppressor and an important antagonist of Wnt/β-catenin and AKT/Rho A signaling, with frequent epigenetic inactivation in common carcinomas.
Collapse
|
49
|
Shu XS, Geng H, Li L, Ying J, Ma C, Wang Y, Poon FF, Wang X, Ying Y, Yeo W, Srivastava G, Tsao SW, Yu J, Sung JJY, Huang S, Chan ATC, Tao Q. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors. PLoS One 2011; 6:e27346. [PMID: 22087297 PMCID: PMC3210799 DOI: 10.1371/journal.pone.0027346] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 10/14/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND PRDM (PRDI-BF1 and RIZ domain containing) proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5) nasopharyngeal, 44% (8/18) esophageal, 76% (13/17) gastric, 50% (2/4) cervical, and 25% (3/12) hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP) in multiple primary tumors, including 93% (43/46) nasopharyngeal, 58% (25/43) esophageal, 88% (37/42) gastric and 63% (29/46) hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.
Collapse
Affiliation(s)
- Xing-sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Hua Geng
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Jianming Ying
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chunhong Ma
- Shandong University School of Medicine, Shandong, China
| | - Yajun Wang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Fan Fong Poon
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Xian Wang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Ying Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Winnie Yeo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | | | - Sai Wah Tsao
- Department of Anatomy, University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J. Y. Sung
- Institute of Digestive Disease and Department of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Huang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Anthony T. C. Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, and CUHK Shenzhen Research Institute, Hong Kong, China
| |
Collapse
|
50
|
Zhang H, Feng X, Liu W, Jiang X, Shan W, Huang C, Yi H, Zhu B, Zhou W, Wang L, Liu C, Zhang L, Jia W, Huang W, Li G, Shi J, Wanggou S, Yao K, Ren C. Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines. J Cell Biochem 2011; 112:1832-43. [PMID: 21400573 DOI: 10.1002/jcb.23101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation-specific PCR (MSP), microsatellite assay, PCR-single-strand conformation polymorphism (PCR-SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re-expression in all cell lines after 5-aza-dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down-regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony-formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene.
Collapse
Affiliation(s)
- Hejun Zhang
- Cancer Research Institute, Xiang-Ya School of Medicine, Central South University, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|