1
|
Renaud L, Waldrep KM, da Silveira WA, Pilewski JM, Feghali-Bostwick CA. First Characterization of the Transcriptome of Lung Fibroblasts of SSc Patients and Healthy Donors of African Ancestry. Int J Mol Sci 2023; 24:3645. [PMID: 36835058 PMCID: PMC9966000 DOI: 10.3390/ijms24043645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder that results in fibrosis of the skin and visceral organs. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death amongst SSc patients. Racial disparity is noted in SSc as African Americans (AA) have a higher frequency and severity of disease than European Americans (EA). Using RNAseq, we determined differentially expressed genes (DEGs; q < 0.1, log2FC > |0.6|) in primary pulmonary fibroblasts from SSc lungs (SScL) and normal lungs (NL) of AA and EA patients to characterize the unique transcriptomic signatures of AA-NL and AA-SScL fibroblasts using systems-level analysis. We identified 69 DEGs in "AA-NL vs. EA-NL" and 384 DEGs in "AA-SScL vs. EA-SScL" analyses, and a comparison of disease mechanisms revealed that only 7.5% of DEGs were commonly deregulated in AA and EA patients. Surprisingly, we also identified an SSc-like signature in AA-NL fibroblasts. Our data highlight differences in disease mechanisms between AA and EA SScL fibroblasts and suggest that AA-NL fibroblasts are in a "pre-fibrosis" state, poised to respond to potential fibrotic triggers. The DEGs and pathways identified in our study provide a wealth of novel targets to better understand disease mechanisms leading to racial disparity in SSc-PF and develop more effective and personalized therapies.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Willian A. da Silveira
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Joseph M. Pilewski
- Department of Medicine, Pulmonary, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Yang S, Liu Y, Xiao Z, Tang Y, Hong P, Sun S, Zhou C, Qian ZJ. Inhibition effects of 7-phloro-eckol from Ecklonia cava on metastasis and angiogenesis induced by hypoxia through regulation of AKT/mTOR and ERK signaling pathways. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
3
|
Jing F, Zhang SW, Zhang S. Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics 2020; 21:507. [PMID: 33160328 PMCID: PMC7648314 DOI: 10.1186/s12859-020-03844-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Enhancer-promoter interactions (EPIs) play key roles in transcriptional regulation and disease progression. Although several computational methods have been developed to predict such interactions, their performances are not satisfactory when training and testing data from different cell lines. Currently, it is still unclear what extent a across cell line prediction can be made based on sequence-level information. RESULTS In this work, we present a novel Sequence-based method (called SEPT) to predict the enhancer-promoter interactions in new cell line by using the cross-cell information and Transfer learning. SEPT first learns the features of enhancer and promoter from DNA sequences with convolutional neural network (CNN), then designing the gradient reversal layer of transfer learning to reduce the cell line specific features meanwhile retaining the features associated with EPIs. When the locations of enhancers and promoters are provided in new cell line, SEPT can successfully recognize EPIs in this new cell line based on labeled data of other cell lines. The experiment results show that SEPT can effectively learn the latent import EPIs-related features between cell lines and achieves the best prediction performance in terms of AUC (the area under the receiver operating curves). CONCLUSIONS SEPT is an effective method for predicting the EPIs in new cell line. Domain adversarial architecture of transfer learning used in SEPT can learn the latent EPIs shared features among cell lines from all other existing labeled data. It can be expected that SEPT will be of interest to researchers concerned with biological interaction prediction.
Collapse
Affiliation(s)
- Fang Jing
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 Shaanxi China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 Shaanxi China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55 Zhongguancun East Road, Beijing, 10090 China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
4
|
Weiser C, Petkova MV, Rengstl B, Döring C, von Laer D, Hartmann S, Küppers R, Hansmann ML, Newrzela S. Ectopic expression of transcription factor BATF3 induces B-cell lymphomas in a murine B-cell transplantation model. Oncotarget 2018; 9:15942-15951. [PMID: 29662618 PMCID: PMC5882309 DOI: 10.18632/oncotarget.24639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 02/24/2018] [Indexed: 12/03/2022] Open
Abstract
The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients. Intriguingly, BATF3-expressing B lymphocytes readily induced B-cell lymphomas after characteristic latencies, whereas T-cell transplanted animals remained healthy throughout the observation time. Further analyses revealed a germinal center B-cell-like phenotype of most BATF3-initiated lymphomas. In a multiple myeloma cell line, BATF3 inhibited BLIMP1 expression, potentially illuminating an oncogenic action of BATF3 in B-cell lymphomagenesis. In conclusion, BATF3 overexpression induces malignant transformation of mature B cells and might serve as a potential target in B-cell lymphoma treatment.
Collapse
Affiliation(s)
- Christian Weiser
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Mina V Petkova
- Experimental and Clinical Research Center (ECRC), Medical Faculty of the Charité and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Rengstl
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Dorothee von Laer
- Division of Virology, Department of Hygiene, Microbiology, Social Medicine Medical University IBK, Innsbruck, Austria
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Satpathy AT, Murphy KM, KC W. Transcription factor networks in dendritic cell development. Semin Immunol 2011; 23:388-97. [PMID: 21924924 PMCID: PMC4010935 DOI: 10.1016/j.smim.2011.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/19/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population within the mononuclear phagocyte system (MPS) that derive from bone marrow precursors. Commitment and specification of hematopoietic progenitors to the DC lineage is critical for the proper induction of both immunity and tolerance. This review summarizes the important cytokines and transcription factors required for differentiation of the DC lineage as well as further diversification into specific DC subsets. We highlight recent advances in the characterization of immediate DC precursors arising from the common myeloid progenitor (CMP). Particular emphasis is placed on the corresponding temporal expression of relevant factors involved in regulating developmental options.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
6
|
Schraml BU, Hildner K, Ise W, Lee WL, Smith WAE, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 2009; 460:405-9. [PMID: 19578362 PMCID: PMC2716014 DOI: 10.1038/nature08114] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
Abstract
Activator protein 1 (AP-1) transcription factors are dimers of Jun, Fos, MAF and activating transcription factor (ATF) family proteins characterized by basic region and leucine zipper domains1. Many AP-1 proteins contain defined transcriptional activation domains (TADs), but Batf and the closely related Batf3 (refs 2, 3) contain only a basic region and leucine zipper and have been considered inhibitors of AP-1 activity3–8. Here we show that Batf is required for the differentiation of IL-17-producing T helper (TH17) cells9. TH17 cells comprise a CD4+ T cell subset that coordinates inflammatory responses in host defense but is pathogenic in autoimmunity10–13.Batf−/−mice have normal TH1 and TH2 differentiation, but show a defect in TH17 differentiation, and are resistant to experimental autoimmune encephalomyelitis (EAE).Batf−/−T cells fail to induce known factors required for TH17 differentiation, such as RORγt11 and the cytokine IL-21 (refs 14–17). Neither addition of IL-21 nor overexpression of RORγt fully restores IL-17 production in Batf−/− T cells. The IL-17 promoter is Batf-responsive, and upon TH17 differentiation, Batf binds conserved intergenic elements in the IL-17A/F locus and to the IL-17, IL-21 and IL-22 (ref 18) promoters. These results demonstrate that the AP-1 protein Batf plays a critical role in TH17 differentiation.
Collapse
Affiliation(s)
- Barbara U Schraml
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Struewing IT, Durham SN, Barnett CD, Mao CD. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression. J Biol Chem 2009; 284:17595-606. [PMID: 19407340 DOI: 10.1074/jbc.m109.001735] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | |
Collapse
|
8
|
Tsunedomi R, Iizuka N, Tamesa T, Sakamoto K, Hamaguchi T, Somura H, Yamada M, Oka M. Decreased ID2 promotes metastatic potentials of hepatocellular carcinoma by altering secretion of vascular endothelial growth factor. Clin Cancer Res 2008; 14:1025-31. [PMID: 18281534 DOI: 10.1158/1078-0432.ccr-07-1116] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to explore the molecular and biological functions of Inhibitor of DNA binding/differentiation 2 (ID2), which was found to be responsible for portal vein invasion of hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN We measured ID2 mRNA levels in 92 HCC patients by real-time reverse transcription-PCR and examined the relation to clinicopathologic features. To clarify the precise roles of ID2, we did in vitro analysis with expression vectors and small interfering RNAs. Effects of ID2 on cell invasive potential and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1alpha were analyzed by Matrigel-coated invasion chamber, ELISA, and Western blot analysis, respectively. RESULTS ID2 mRNA level correlated inversely with portal vein invasion (P < 0.001), tumor-node-metastasis stage (P < 0.001), tumor size (P < 0.001), and early intrahepatic recurrence (P < 0.05). When limited to a cohort of hepatitis C virus-related HCCs, patients with low levels of ID2 had significantly shorter disease-free survival time than those with high levels of ID2. Invasive potential of cells transfected with ID2 expression vector was lower than that of empty vector-transfected cells. Cells overexpressing ID2 also showed decreased VEGF secretion and hypoxia-inducible factor-1alpha protein levels. The results of ID2-knockdown experiments were opposite to those of ID2 overexpression experiments. CONCLUSIONS On the basis of our clinical and in vitro data, we suggest that ID2 plays a significant role in the metastatic process during progression of HCC. This action might be explained, at least in part, by altered cell mobility due to decreased secretion of VEGF.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|