1
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chem Biol 2021; 28:283-299. [PMID: 33740433 DOI: 10.1016/j.chembiol.2021.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
The use of phenotypic screening was central to the discovery and development of novel thalidomide analogs, the IMiDs (immunomodulatory drugs) agents. With the discovery that these agents bind the E3 ligase, CRL4CRBN, and alter its substrate specificity, there has been a great deal of endeavor to discover other small molecules that can modulate alternative E3 ligases. Furthermore, the chemical properties necessary for drug discovery and the rules by which neo-substrates are selected for degradation are being defined in the context of phenotypic alterations in specific cellular systems. This review gives a detailed summary of these recent advances and the methodologies being exploited to understand the mechanism of action of emerging protein degradation therapies.
Collapse
|
3
|
Kobaisi F, Fayyad N, Sulpice E, Badran B, Fayyad-Kazan H, Rachidi W, Gidrol X. High-throughput synthetic rescue for exhaustive characterization of suppressor mutations in human genes. Cell Mol Life Sci 2020; 77:4209-4222. [PMID: 32270227 PMCID: PMC7588364 DOI: 10.1007/s00018-020-03519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Inherited or acquired mutations can lead to pathological outcomes. However, in a process defined as synthetic rescue, phenotypic outcome created by primary mutation is alleviated by suppressor mutations. An exhaustive characterization of these mutations in humans is extremely valuable to better comprehend why patients carrying the same detrimental mutation exhibit different pathological outcomes or different responses to treatment. Here, we first review all known suppressor mutations' mechanisms characterized by genetic screens on model species like yeast or flies. However, human suppressor mutations are scarce, despite some being discovered based on orthologue genes. Because of recent advances in high-throughput screening, developing an inventory of human suppressor mutations for pathological processes seems achievable. In addition, we review several screening methods for suppressor mutations in cultured human cells through knock-out, knock-down or random mutagenesis screens on large scale. We provide examples of studies published over the past years that opened new therapeutic avenues, particularly in oncology.
Collapse
Affiliation(s)
- Farah Kobaisi
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Nour Fayyad
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Eric Sulpice
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Walid Rachidi
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Xavier Gidrol
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France.
| |
Collapse
|
4
|
Cserepes M, Türk D, Tóth S, Pape VFS, Gaál A, Gera M, Szabó JE, Kucsma N, Várady G, Vértessy BG, Streli C, Szabó PT, Tovari J, Szoboszlai N, Szakács G. Unshielding Multidrug Resistant Cancer through Selective Iron Depletion of P-Glycoprotein-Expressing Cells. Cancer Res 2019; 80:663-674. [PMID: 31888888 DOI: 10.1158/0008-5472.can-19-1407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/02/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
Clinical evidence shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and, eventually, most tumors become resistant to all available therapies. We compiled a focused library consisting of >500 commercially available or newly synthetized 8-hydroxyquinoline (8OHQ) derivatives whose toxicity is paradoxically increased rather than decreased by the activity of P-glycoprotein (Pgp), a transporter conferring multidrug resistance (MDR). Here, we deciphered the mechanism of action of NSC297366 that shows exceptionally strong Pgp-potentiated toxicity. Treatment of cells with NSC297366 resulted in changes associated with the activity of potent anticancer iron chelators. Strikingly, iron depletion was more pronounced in MDR cells due to the Pgp-mediated efflux of NSC297366-iron complexes. Our results indicate that iron homeostasis can be targeted by MDR-selective compounds for the selective elimination of multidrug resistant cancer cells, setting the stage for a therapeutic approach to fight transporter-mediated drug resistance. SIGNIFICANCE: Modulation of the MDR phenotype has the potential to increase the efficacy of anticancer therapies. These findings show that the MDR transporter is a "double-edged sword" that can be turned against resistant cancer.
Collapse
Affiliation(s)
- Mihály Cserepes
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Dóra Türk
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anikó Gaál
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit E Szabó
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Pál T Szabó
- Instrumentation Centre, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | | | - Gergely Szakács
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Close DA, Wang AX, Kochanek SJ, Shun T, Eiseman JL, Johnston PA. Implementation of the NCI-60 Human Tumor Cell Line Panel to Screen 2260 Cancer Drug Combinations to Generate >3 Million Data Points Used to Populate a Large Matrix of Anti-Neoplastic Agent Combinations (ALMANAC) Database. SLAS DISCOVERY 2018; 24:242-263. [PMID: 30500310 DOI: 10.1177/2472555218812429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.
Collapse
Affiliation(s)
- David A Close
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Allen Xinwei Wang
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Tongying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Julie L Eiseman
- 3 Cancer Therapeutics Program, The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,4 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Haney SA. High-Content Screening Approaches That Minimize Confounding Factors in RNAi, CRISPR, and Small Molecule Screening. Methods Mol Biol 2018; 1683:113-130. [PMID: 29082490 DOI: 10.1007/978-1-4939-7357-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Screening arrayed libraries of reagents, particularly small molecules began as a vehicle for drug discovery, but the in last few years it has become a cornerstone of biological investigation, joining RNAi and CRISPR as methods for elucidating functional relationships that could not be anticipated, and illustrating the mechanisms behind basic and disease biology, and therapeutic resistance. However, these approaches share some common challenges, especially with respect to specificity or selectivity of the reagents as they are scaled to large protein families or the genome. High-content screening (HCS) has emerged as an important complement to screening, mostly the result of a wide array of specific molecular events, such as protein kinase and transcription factor activation, morphological changes associated with stem cell differentiation or the epithelial-mesenchymal transition of cancer cells. Beyond the range of cellular events that can be screened by HCS, image-based screening introduces new processes for differentiating between specific and nonspecific effects on cells. This chapter introduces these complexities and discusses strategies available in image-based screening that can mitigate the challenges they can bring to screening.
Collapse
Affiliation(s)
- Steven A Haney
- Cancer Biology and the Tumor Microenvironment, Discovery Oncology, Lilly Research Laboratories/Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
7
|
List M, Elnegaard MP, Schmidt S, Christiansen H, Tan Q, Mollenhauer J, Baumbach J. Efficient Management of High-Throughput Screening Libraries with SAVANAH. SLAS DISCOVERY 2016; 22:196-202. [PMID: 27729504 DOI: 10.1177/1087057116673607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High-throughput screening (HTS) has become an indispensable tool for the pharmaceutical industry and for biomedical research. A high degree of automation allows for experiments in the range of a few hundred up to several hundred thousand to be performed in close succession. The basis for such screens are molecular libraries, that is, microtiter plates with solubilized reagents such as siRNAs, shRNAs, miRNA inhibitors or mimics, and sgRNAs, or small compounds, that is, drugs. These reagents are typically condensed to provide enough material for covering several screens. Library plates thus need to be serially diluted before they can be used as assay plates. This process, however, leads to an explosion in the number of plates and samples to be tracked. Here, we present SAVANAH, the first tool to effectively manage molecular screening libraries across dilution series. It conveniently links (connects) sample information from the library to experimental results from the assay plates. All results can be exported to the R statistical environment or piped into HiTSeekR ( http://hitseekr.compbio.sdu.dk ) for comprehensive follow-up analyses. In summary, SAVANAH supports the HTS community in managing and analyzing HTS experiments with an emphasis on serially diluted molecular libraries.
Collapse
Affiliation(s)
- Markus List
- 1 NanoCAN Center of Excellence, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,3 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Marlene Pedersen Elnegaard
- 1 NanoCAN Center of Excellence, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Steffen Schmidt
- 1 NanoCAN Center of Excellence, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Christiansen
- 1 NanoCAN Center of Excellence, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- 2 Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,4 Department of Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jan Mollenhauer
- 1 NanoCAN Center of Excellence, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Joint last author
| | - Jan Baumbach
- 3 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,5 Institute of Computer Science and Mathematics, University of Southern Denmark, Odense, Denmark.,Joint last author
| |
Collapse
|
8
|
Azorsa DO, Turnidge MA, Arora S. Data Analysis for High-Throughput RNAi Screening. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2016; 1470:247-60. [PMID: 27581298 DOI: 10.1007/978-1-4939-6337-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening.
Collapse
Affiliation(s)
- David O Azorsa
- Institute of Molecular Medicine, Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Megan A Turnidge
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shilpi Arora
- Constellation Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
9
|
Kacsinta AD, Dowdy SF. Current views on inducing synthetic lethal RNAi responses in the treatment of cancer. Expert Opin Biol Ther 2015; 16:161-72. [PMID: 26630128 DOI: 10.1517/14712598.2016.1110141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cancer cells arise from normal cells that have incurred mutations in oncogenes and tumor suppressor genes. The mutations are often unique and not readily found in normal cells, giving rise to the opportunity of exploiting these mutations to induce synthetic lethality. Synthetic lethality occurs when inhibition or mutation in two or more separate genes leads to cell death while inhibition or mutations of either gene alone has no lethal effect on the cell. Using RNA interference (RNAi) to identify synthetic lethality has become a growingly popular screening approach. AREAS COVERED In this review, we cover the use of RNAi therapeutics to induce synthetic lethality in cancer. Additionally, we discuss several select small molecule inhibitors that were identified or verified by RNAi that induce synthetic lethality in specific cancers. We also discuss the identification of novel synthetic lethal combinations and the cancer model that the combination was validated in. Lastly, we discuss RNAi delivery vehicles. EXPERT OPINION While RNAi therapeutics have great potential to treat cancer, due to the siRNA delivery problem, RNAi remains more commonly used as a tool, rather than a therapeutic. However, with emerging technological advances in the field of RNAi therapeutics, it is only a matter of time before RNAi-induced synthetic lethal clinical studies are initiated in cancer patients.
Collapse
Affiliation(s)
- Apollo D Kacsinta
- a Department of Cellular and Molecular Medicine , UCSD School of Medicine , La Jolla , CA , USA
| | - Steven F Dowdy
- a Department of Cellular and Molecular Medicine , UCSD School of Medicine , La Jolla , CA , USA
| |
Collapse
|
10
|
Lietard J, Hassler MR, Fakhoury J, Damha MJ. An orthogonal photolabile linker for the complete "on-support" synthesis/fast deprotection/hybridization of RNA. Chem Commun (Camb) 2015; 50:15063-6. [PMID: 25329642 DOI: 10.1039/c4cc07153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preparation of a polystyrene solid support decorated with a photolabile linker is described. The entire post-synthetic processing of RNA can be carried out in the solid phase in a minimum amount of time. The deprotected RNA is available for "on-support" hybridization and photolysis releases siRNA duplexes under mild, neutral conditions.
Collapse
Affiliation(s)
- Jory Lietard
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.
| | | | | | | |
Collapse
|
11
|
Shen H, McHale CM, Smith MT, Zhang L. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:31-42. [PMID: 26041264 DOI: 10.1016/j.mrrev.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cliona M McHale
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Luoping Zhang
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114:5753-74. [PMID: 24758331 PMCID: PMC4059772 DOI: 10.1021/cr4006236] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng CS, Wang Z, Chen J. Targeting FASN in Breast Cancer and the Discovery of Promising Inhibitors from Natural Products Derived from Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:232946. [PMID: 24778702 PMCID: PMC3976840 DOI: 10.1155/2014/232946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 01/06/2023]
Abstract
Molecular targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells process a fundamental change in its bioenergetic metabolism from normal cells on an altered lipid metabolism, also known as the de novo fatty acid synthesis, for sustaining their high proliferation rates. Fatty acid synthesis is now associated with clinically aggressive tumor behavior and tumor cell growth and has become a novel target pathway for chemotherapy development. Although the underlying mechanisms of the altered de novo fatty acid synthesis still remains unclear, recent progress has shown that by targeting Fatty acid synthase (FASN), a key enzyme that catalyzes the synthesis of endogenous long chain fatty acid could be a critical target for drug discovery. However, relatively few FASN inhibitors have been discovered. With the long history of clinical practices and numerous histological case study reports, traditional Chinese medicine enjoys an important role in seeking bioactive anticancer natural compounds. Herein, we will give an overall picture of the current progress of molecular targeted therapy in cancer fatty acid synthesis, describe the advances in the research on natural products-derived FASN inhibitors and their potential for enhancing our understanding of fatty acids in tumor biology, and may provide new therapeutic moieties for breast cancer patient care.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhiyu Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Ulbricht U, Sommer A, Beckmann G, Lutzenberger M, Seidel H, Kreft B, Toschi L. Isogenic human mammary epithelial cell lines: novel tools for target identification and validation. Breast Cancer Res Treat 2013; 138:437-56. [DOI: 10.1007/s10549-013-2472-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
15
|
Rodriguez-Barrueco R, Marshall N, Silva JM. Pooled shRNA screenings: experimental approach. Methods Mol Biol 2013; 980:353-70. [PMID: 23359166 DOI: 10.1007/978-1-62703-287-2_21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful genetic strategy to functionally interrogate the entire genome by loss-of-function studies. In the last years, several arrayed shRNA libraries that can silence almost all the human genome have been developed. The generation of new and more efficient shRNA plasmids has allowed performing genetic screens in a pooled fashion and provides the opportunity to investigate the entire genome finding relevant genes to any biological process. In this chapter, the pipeline and methods to perform a pooled shRNA screen are discussed.
Collapse
|
16
|
Batra R, Harder N, Gogolin S, Diessl N, Soons Z, Jäger-Schmidt C, Lawerenz C, Eils R, Rohr K, Westermann F, König R. Time-lapse imaging of neuroblastoma cells to determine cell fate upon gene knockdown. PLoS One 2012; 7:e50988. [PMID: 23251412 PMCID: PMC3521006 DOI: 10.1371/journal.pone.0050988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/29/2012] [Indexed: 11/22/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial solid tumor of early childhood. Standard therapies are not effective in case of poor prognosis and chemotherapy resistance. To improve drug therapy, it is imperative to discover new targets that play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery is an attractive target for therapeutic interventions and inhibitors can be developed to target mitotic entry, spindle apparatus, spindle activation checkpoint, and mitotic exit. We present an elaborate analysis pipeline to determine cancer specific therapeutic targets by first performing a focused gene expression analysis to select genes followed by a gene knockdown screening assay of live cells. We interrogated gene expression studies of neuroblastoma tumors and selected 240 genes relevant for tumorigenesis and cell cycle. With these genes we performed time-lapse screening of gene knockdowns in neuroblastoma cells. We classified cellular phenotypes and used the temporal context of the perturbation effect to determine the sequence of events, particularly the mitotic entry preceding cell death. Based upon this phenotype kinetics from the gene knockdown screening, we inferred dynamic gene functions in mitosis and cell proliferation. We identified six genes (DLGAP5, DSCC1, SMO, SNRPD1, SSBP1, and UBE2C) with a vital role in mitosis and these are promising therapeutic targets for neuroblastoma. Images and movies of every time point of all screened genes are available at https://ichip.bioquant.uni-heidelberg.de.
Collapse
Affiliation(s)
- Richa Batra
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Nathalie Harder
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sina Gogolin
- Division of Tumor Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Nicolle Diessl
- Department of Genomics and Proteomics Core Facility, High-Throughput Screening, German Cancer Research Center, Heidelberg, Germany
| | - Zita Soons
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christina Jäger-Schmidt
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christian Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Roland Eils
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Division of Tumor Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Rainer König
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
17
|
Gruber J, See Too WC, Wong MT, Lavie A, McSorley T, Konrad M. Balance of human choline kinase isoforms is critical for cell cycle regulation. FEBS J 2012; 279:1915-28. [DOI: 10.1111/j.1742-4658.2012.08573.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Gilbert DF, Erdmann G, Zhang X, Fritzsche A, Demir K, Jaedicke A, Muehlenberg K, Wanker EE, Boutros M. A novel multiplex cell viability assay for high-throughput RNAi screening. PLoS One 2011; 6:e28338. [PMID: 22162763 PMCID: PMC3230607 DOI: 10.1371/journal.pone.0028338] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/06/2011] [Indexed: 01/08/2023] Open
Abstract
Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.
Collapse
Affiliation(s)
- Daniel F Gilbert
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kitchens CA, McDonald PR, Shun TY, Pollack IF, Lazo JS. Identification of chemosensitivity nodes for vinblastine through small interfering RNA high-throughput screens. J Pharmacol Exp Ther 2011; 339:851-8. [PMID: 21880871 PMCID: PMC3226368 DOI: 10.1124/jpet.111.184879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/30/2011] [Indexed: 01/03/2023] Open
Abstract
Discovering chemosensitivity pathways or nodes is an attractive strategy for formulating new drug combinations for cancer. Microtubules are among the most successful anticancer drug targets. Therefore, we implemented a small interfering RNA (siRNA) synthetic lethal screen targeting 5520 unique druggable genes to identify novel chemosensitivity nodes for vinblastine, a microtubule-destabilizing agent used clinically. We transiently transfected human glioblastoma cells with siRNAs for 48 h and then treated cells with a sublethal concentration of vinblastine. Forty-eight hours later, we analyzed cell viability and, using a series of statistical methods, identified 65 gene products that, when suppressed, sensitized glioblastoma cells to vinblastine. After completion of the secondary assays, we focused on one siRNA, B-cell lymphoma extra large (BCL-xL), because of its role in the intrinsic apoptosis signaling pathway as well as the availability of pharmacological inhibitors. We found that nontoxic concentrations of 4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide (ABT-263), an inhibitor of the BCL-2 family members (BCL-2, BCL-xL, and BCL-w), sensitized glioblastoma and non-small-cell lung cancer cells to vinblastine and induced apoptosis through the intrinsic cell death pathway. These results illustrate the usefulness of unbiased siRNA screens as a method for identifying potential novel anticancer therapeutic combinations.
Collapse
Affiliation(s)
- Carolyn A Kitchens
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
20
|
Hucl T, Gallmeier E. DNA repair: exploiting the Fanconi anemia pathway as a potential therapeutic target. Physiol Res 2011; 60:453-65. [PMID: 21401292 DOI: 10.33549/physiolres.932115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.
Collapse
Affiliation(s)
- T Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
21
|
Zhang XD. A method for effectively comparing gene effects in multiple conditions in RNAi and expression-profiling research. Pharmacogenomics 2010; 10:345-58. [PMID: 20397965 DOI: 10.2217/14622416.10.3.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop a new analytical method to address the issues of traditional contrast analysis for comparing gene effects in RNAi and expression-profiling research. METHODS & RESULTS I propose a new method consisting of contrast variable, standardized mean of contrast (SMC) and c(+)-probability analysis for comparing gene effects in multiple conditions. Compared with traditional contrast analysis, this new method has the following major advantages: it directly addresses the primary question of interest, namely the assessment of the strength of comparison; SMC and c(+)-probability capture data variability and are robust to sample size. The simulation and application studies show that traditional contrast analysis produces misleading results and erroneous conclusions whereas the new method produces reasonable results and sensible conclusions. CONCLUSIONS The new method may have a broad utility in comparing gene effects in multiple conditions including selecting hits in RNAi research and identifying differential expression in microarray experiments.
Collapse
|
22
|
RNAi screen indicates widespread biological function for human natural antisense transcripts. PLoS One 2010; 5. [PMID: 20957177 PMCID: PMC2949395 DOI: 10.1371/journal.pone.0013177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
Natural antisense transcripts represent a class of regulatory RNA molecules, which are characterized by their complementary sequence to another RNA transcript. Extensive sequencing efforts suggest that natural antisense transcripts are prevalent throughout the mammalian genome; however, their biological significance has not been well defined. We performed a loss-of-function RNA interference (RNAi) screen, which targeted 797 evolutionary conserved antisense transcripts, and found evidence for a regulatory role for a number of natural antisense transcripts. Specifically, we found that natural antisense transcripts for CCPG1 and RAPGEF3 may functionally disrupt signaling pathways and corresponding biological phenotypes, such as cell viability, either independently or in parallel with the corresponding sense transcript. Our results show that the large-scale siRNA screen can be applied to evaluate natural antisense transcript modulation of fundamental cellular events.
Collapse
|
23
|
Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc Natl Acad Sci U S A 2010; 107:12463-8. [PMID: 20616055 DOI: 10.1073/pnas.1007462107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cervical carcinomas are initiated through a series of well-defined stages that rely on the expression of human papillomavirus (HPV) oncogenes. A panel of 100 small hairpin RNAs that target essential kinases in many tumor types was used to study the stepwise appearance of kinase requirements during cervical tumor development. Twenty-six kinases were commonly required in three cell lines derived from frank carcinomas, and each kinase requirement was traced to the specific stage in which the requirement emerged. Six kinases became required following HPV-induced immortalization, and the requirement for two kinases, SGK2 and PAK3, was mapped to the inactivation of p53 in primary human epithelial cells. Loss of the p53 tumor suppressor in other primary epithelial cells also induced dependence on SGK2 and PAK3. Hence, SGK2 and PAK3 provide important cellular functions following p53 inactivation, fulfilling the classical definition of synthetic lethality; loss of p53, SGK2, or PAK3 alone has little effect on cell viability, whereas loss of p53 together with either SGK2 or PAK3 loss leads to cell death. Whereas tumor suppressor gene mutations are not directly druggable, other proteins or pathways that become obligatory to cell viability following tumor suppressor loss provide theoretical targets for tumor suppressor-specific drug discovery efforts. The kinases SGK2 and PAK3 may thus represent such targets for p53-specific drug development.
Collapse
|
24
|
Naik S, Dothager RS, Marasa J, Lewis CL, Piwnica-Worms D. Vascular Endothelial Growth Factor Receptor-1 Is Synthetic Lethal to Aberrant {beta}-Catenin Activation in Colon Cancer. Clin Cancer Res 2009; 15:7529-7537. [PMID: 20008853 DOI: 10.1158/1078-0432.ccr-09-0336] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE: The Wnt/beta-catenin (beta-cat) signaling cascade is a key regulator of development, and dysregulation of Wnt/beta-cat contributes to selected cancers, such as colorectal, breast, and hepatocellular carcinoma, through abnormal activation of Wnt target genes. To identify novel modulators of the Wnt/beta-cat pathway that may emerge as therapeutic targets, we did an unbiased high-throughput RNA interference screen. EXPERIMENTAL DESIGN: A synthetic oligonucleotide small interfering RNA library targeting 691 known and predicted human kinases was screened in Wnt3a-stimulated human cells in a live cell luciferase assay for modulation of Wnt/beta-cat-dependent transcription. Follow-up studies of a selected high-confidence "hit" were conducted. RESULTS: A robust quartile-based statistical analysis and secondary screen yielded several kinases worthy of further investigation, including Cdc2L1, Lmtk3, Pank2, ErbB3, and, of note, vascular endothelial growth factor receptor (VEGFR)1/Flt1, a receptor tyrosine kinase (TK) with putative weak kinase activity conventionally believed to be a negative regulator of angiogenesis. A series of loss-of-function, genetic null, and VEGFR TK inhibitor assays further revealed that VEGFR1 is a positive regulator of Wnt signaling that functions in a glycogen synthase kinase-3beta (GSK3beta)-independent manner as a potential synthetic lethal target in Wnt/beta-cat-addicted colon carcinoma cells. CONCLUSIONS: This unanticipated non-endothelial link between VEGFR1 TK activity and Wnt/beta-cat signaling may refine our understanding of aberrant Wnt signaling in colon carcinoma and points to new combinatorial therapeutics targeted to the tumor cell compartment, rather than angiogenesis, in the context of colon cancer. (Clin Cancer Res 2009;15(24):7529-37).
Collapse
Affiliation(s)
- Snehal Naik
- Authors' Affiliation: Molecular Imaging Center, Mallinckrodt Institute of Radiology, and Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
25
|
Jiang Y, Fu J, Greenlee AR, Shen Y, Duan H, Chen X. Effects of silencing of HER2/neu gene in anti-BPDE-transformed cells. Toxicol In Vitro 2009; 23:53-9. [DOI: 10.1016/j.tiv.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 09/27/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
|
26
|
Barker GA, Diamond SL. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection. Mol Ther 2008; 16:1602-8. [PMID: 18628755 PMCID: PMC2854655 DOI: 10.1038/mt.2008.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.
Collapse
Affiliation(s)
- Gregory A Barker
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
27
|
LaPan P, Zhang J, Pan J, Hill A, Haney SA. Single cell cytometry of protein function in RNAi treated cells and in native populations. BMC Cell Biol 2008; 9:43. [PMID: 18673568 PMCID: PMC2529295 DOI: 10.1186/1471-2121-9-43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 08/01/2008] [Indexed: 01/10/2023] Open
Abstract
Background High Content Screening has been shown to improve results of RNAi and other perturbations, however significant intra-sample heterogeneity is common and can complicate some analyses. Single cell cytometry can extract important information from subpopulations within these samples. Such approaches are important for immune cells analyzed by flow cytometry, but have not been broadly available for adherent cells that are critical to the study of solid-tumor cancers and other disease models. Results We have directly quantitated the effect of resolving RNAi treatments at the single cell level in experimental systems for both exogenous and endogenous targets. Analyzing the effect of an siRNA that targets GFP at the single cell level permits a stronger measure of the absolute function of the siRNA by gating to eliminate background levels of GFP intensities. Extending these methods to endogenous proteins, we have shown that well-level results of the knockdown of PTEN results in an increase in phospho-S6 levels, but at the single cell level, the correlation reveals the role of other inputs into the pathway. In a third example, reduction of STAT3 levels by siRNA causes an accumulation of cells in the G1 phase of the cell cycle, but does not induce apoptosis or necrosis when compared to control cells that express the same levels of STAT3. In a final example, the effect of reduced p53 levels on increased adriamycin sensitivity for colon carcinoma cells was demonstrated at the whole-well level using siRNA knockdown and in control and untreated cells at the single cell level. Conclusion We find that single cell analysis methods are generally applicable to a wide range of experiments in adherent cells using technology that is becoming increasingly available to most laboratories. It is well-suited to emerging models of signaling dysfunction, such as oncogene addition and oncogenic shock. Single cell cytometry can demonstrate effects on cell function for protein levels that differ by as little as 20%. Biological differences that result from changes in protein level or pathway activation state can be modulated directly by RNAi treatment or extracted from the natural variability intrinsic to cells grown under normal culture conditions.
Collapse
Affiliation(s)
- Peter LaPan
- Department of Biological Technologies, Oncology Research, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | | | |
Collapse
|
28
|
Zhou L, Jiang Y, Tan A, Greenlee AR, Shen Y, Liu L, Yang Q. Silencing of N-Ras Gene Expression Using shRNA Decreases Transformation Efficiency and Tumor Growth in Transformed Cells Induced by Anti-BPDE. Toxicol Sci 2008; 105:286-94. [DOI: 10.1093/toxsci/kfn122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
|
30
|
Haney SA. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets. Expert Opin Ther Targets 2007; 11:1429-41. [DOI: 10.1517/14728222.11.11.1429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Nguyen DG, Yin H, Zhou Y, Wolff KC, Kuhen KL, Caldwell JS. Identification of novel therapeutic targets for HIV infection through functional genomic cDNA screening. Virology 2007; 362:16-25. [PMID: 17257639 DOI: 10.1016/j.virol.2006.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/10/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Despite decades of research, HIV remains a global health threat. Issues of multi-drug resistance and lack of an effective vaccine have recently led to the targeting of host factors for anti-viral drug development. While a few genome-wide screens for novel HIV co-factors have been reported, the promise of finding a therapeutic target has yet to be realized. Here, we report a screen of a cDNA library representing 15,000 unique genes in an infectious HIV system, and show that genomic screening can lead to the identification of novel proviral host factors. Mixed lineage kinase 3 (MLK3/MAP3K11) was identified as one of the strongest enhancers of infection and mutant studies show that its activity is dependent on its kinase function. Consistent with its known role in the activation of the AP-1 pathway through JNK kinase, MLK3 was able to enhance Tat-dependent HIV transcription in vitro thus leading to an increase in infection signal. RNA interference studies confirm the involvement of endogenous MLK3 in HIV infection, further implicating this kinase as a potential therapeutic target.
Collapse
Affiliation(s)
- Deborah G Nguyen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Carbone R, Giorgetti L, Zanardi A, Marangi I, Chierici E, Bongiorno G, Fiorentini F, Faretta M, Piseri P, Pelicci PG, Milani P. Retroviral microarray-based platform on nanostructured TiO2 for functional genomics and drug discovery. Biomaterials 2007; 28:2244-53. [PMID: 17276506 DOI: 10.1016/j.biomaterials.2006.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/31/2006] [Indexed: 01/12/2023]
Abstract
Living-cell microarrays are powerful tools for functional genomics and drug discovery. However, despite several attempts to improve this technology, it is still a challenge to obtain microarrays of cells efficiently overexpressing or downregulating specific genes to address complex phenotypes. Here, we present a cell-based microarray for phenotype screening on primary and cancer cells based on the localized reverse infection by retroviruses. Viral vectors are immobilized on a nanostructured titanium dioxide (ns-TiO2) film obtained by depositing a supersonic beam of titania clusters on a glass substrate. We validated the retroviral cell array by overexpression of GFP reporter genes in primary and cancer cells, and by RNA interference of p53 in primary cells by analyzing effects in cell growth. We demonstrate that ns-TiO2 retroviral arrays are an enabling tool for the study of gene function of families of genes for complex phenotypes and for the identification of novel drug targets.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Recently, RNA interference has evolved into a powerful research tool to functionally characterize genes. Genome-wide RNA interference reagents can study the loss-of-function phenotypes of candidate genes in the context of various disease model systems. In this review, we discuss the data from the most recent studies using RNA interference reagents with a focus on RNA interference-based genomic screening as a tool to expand our knowledge about the molecular basis of cancer. RECENT FINDINGS Tumorigenesis is the result of the progressive accumulation of mutations in genes controlling cell proliferation and death. Various genes carrying these alterations are known to be directly linked to tumor growth; however, how to translate this knowledge into effective chemotherapeutics, nontoxic to normal cells, is still a subject of intensive research. SUMMARY Loss-of-function studies offer a potential for validation of known and unrecognized tumor-associated targets. RNA interference-mediated gene knockdown can be exploited to study the reprogrammed circuitry of genes, discover gene interactions restricted to cancer cells and identify mechanisms of chemoresistance in cancer cells. In addition, the simultaneous use of cancer drugs and RNA interference also provides a paradigm to develop strategies to inactivate essential genes promoting neoplastic growth.
Collapse
Affiliation(s)
- Alex Gaither
- Genome and Proteome Sciences Department, Platform and Chemical Biology Unit, Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
34
|
Formstecher E, Reverdy C, Cholay M, Planquette C, Trouplin V, Lehrmann H, Aresta S, Calabrese A, Arar K, Daviet L, Colland F. Combination of active and inactive siRNA targeting the mitotic kinesin Eg5 impairs silencing efficiency in several cancer cell lines. Oligonucleotides 2007; 16:387-94. [PMID: 17155913 DOI: 10.1089/oli.2006.16.387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene silencing by RNA interference (RNAi) has proven to be a powerful tool for investigating gene function in mammalian cells. Combination of several short interfering RNA (siRNA) targeting the same gene is commonly used to improve RNA interference. However, in contrary to the well-described mechanism of RNAi, efficiency of single siRNA compared to pool remains poorly documented. We addressed this issue using several active and inactive siRNA targeting Eg5, a kinesin-related motor involved in mitotic spindle assembly. These siRNA, used alone or in combination, were tested for their silencing efficiency in several cancer cell lines. Here we show that presence of inactive Eg5 siRNA in a pool dramatically decreases knockdown efficacy in a cell line- and dose-dependent manner. Lack of inhibition by unrelated siRNA suggests that a competition may occur during siRNA incorporation into RNA-induced silencing complexes (RISCs) along with the target mRNA. Altogether, our results, which need to be confirmed with additional inactive siRNA, indicate that combination of siRNA may not increase but instead decrease silencing efficiency.
Collapse
|
35
|
Decaestecker C, Debeir O, Van Ham P, Kiss R. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 2007; 27:149-76. [PMID: 16888756 DOI: 10.1002/med.20078] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of the present review is to detail and analyze the pros and cons of in vitro tests available to quantify the anti-migratory effects of anti-cancer drugs for their eventual use in combating the dispersal of tumor cells, a clinical need which currently remains unsatisfied. We therefore briefly sum up why anti-migratory drugs constitute a promising approach in oncology while at the same time emphasizing that migrating cancer cells are resistant to apoptosis. To analyze the pros and cons of the various in vitro tests under review we also briefly sum up the molecular and cellular stages of cancer cell migration, an approach that enables us to argue both that no single in vitro test is sufficient to characterize the anti-migratory potential of a drug and that standardization is needed for the efficient quantitative analysis of cell locomotion in a 3D environment. Before concluding our review we devote the final two parts (i) to the description of new prototypes which, in the near future, could enter the screening process with a view to identifying novel anti-migratory compounds, and (ii) to the anti-migratory compounds currently developed against cancer, with particular emphasis on how these compounds were selected before entering the clinical trial phase.
Collapse
Affiliation(s)
- Christine Decaestecker
- Laboratory of Toxicology, Institute of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
36
|
Singh M, Johnson L. Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 2006; 12:5312-28. [PMID: 17000664 DOI: 10.1158/1078-0432.ccr-06-0437] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent developments in the generation and characterization of genetically engineered mouse models of human cancer have resulted in notable improvements in these models as platforms for preclinical target validation and experimental therapeutics. In this review, we enumerate the criteria used to assess the accuracy of various models with respect to human disease and provide some examples of their prognostic and therapeutic utility, focusing on models for cancers that affect the largest populations. Technological advancements that allow greater exploitation of genetically engineered mouse models, such as RNA interference in vivo, are described in the context of target and drug validation. Finally, this review discusses stratagems for, and obstacles to, the application of these models in the drug development process.
Collapse
Affiliation(s)
- Mallika Singh
- Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
37
|
Haney SA, LaPan P, Pan J, Zhang J. High-content screening moves to the front of the line. Drug Discov Today 2006; 11:889-94. [PMID: 16997138 DOI: 10.1016/j.drudis.2006.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 07/07/2006] [Accepted: 08/14/2006] [Indexed: 12/14/2022]
Abstract
High-content screening (HCS) has been used in late-stage drug discovery for a decade. In the past few years, technological advances have expanded the role of HCS into the early stages of drug discovery, including high-throughput screening and hit-to-lead studies. More recently, computational advances in image analysis and technological advancements in general cell biology have extended the utility of HCS into target validation and basic biological studies, including RNAi screening. The use of HCS in target validation is expanding the work that can be done at this stage, especially the range of targets that can be characterized, and putting it into a more biological context.
Collapse
Affiliation(s)
- Steven A Haney
- Department of Biological Technologies, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Large scale cDNA sequencing and genome tiling array studies have shown that around 50% of genomic DNA in humans is transcribed, of which 2% is translated into proteins and the remaining 98% is non-coding RNAs (ncRNAs). There is mounting evidence that these ncRNAs play critical roles in regulating DNA structure, RNA expression, protein translation and protein functions through multiple genetic mechanisms, and thus affect normal development of organisms at all levels. Today, we know very little about the regulatory mechanisms and functions of these ncRNAs, which is clearly essential knowledge for understanding the secret of life. To promote this emerging research subject of critical importance, in this paper we review (1) ncRNAs' past and present, (2) regulatory mechanisms and their functions, (3) experimental strategies for identifying novel ncRNAs, (4) experimental strategies for investigating their functions, and (5) methodologies and examples of the application of ncRNAs.
Collapse
Affiliation(s)
- Liwang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | | | | | | |
Collapse
|
39
|
Haney SA. Anticancer drug development incorporating high-content screening and RNAi: synergistic approaches to improve target identification and validation. Expert Opin Drug Discov 2006; 1:19-29. [DOI: 10.1517/17460441.1.1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
|
41
|
Stubbs S, Thomas N. Dynamic Green Fluorescent Protein Sensors for High‐Content Analysis of the Cell Cycle. Methods Enzymol 2006; 414:1-21. [PMID: 17110183 DOI: 10.1016/s0076-6879(06)14001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We have developed two dynamic sensors that report cell cycle position in living mammalian cells. The sensors use well-characterized components from proteins that are spatially and temporally regulated through the cell cycle. Coupling of these components to Enhanced Green Fluorescent Protein (EGFP) has been used to engineer fusion proteins that report G1/S and G2/M transitions during the cell cycle without perturbing cell cycle progression. Expression of these sensors in stable cell lines allows high content analysis of the effects of drugs and gene knockdown on the cell cycle using automated image analysis to determine cell cycle position and to abstract correlative data from multiplexed sensors and morphological analysis.
Collapse
Affiliation(s)
- Simon Stubbs
- GE Healthcare, the Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK
| | | |
Collapse
|
42
|
Shen Y, Senzer N, Nemunaitis J. Individualised cancer therapeutics: dream or reality? Therapeutics construction. Expert Opin Biol Ther 2005; 5:1427-41. [PMID: 16255647 DOI: 10.1517/14712598.5.11.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, Dallas, TX 75201, USA
| | | | | |
Collapse
|
43
|
Rottmann S, Wang Y, Nasoff M, Deveraux QL, Quon KC. A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci U S A 2005; 102:15195-200. [PMID: 16210249 PMCID: PMC1257707 DOI: 10.1073/pnas.0505114102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The MYC protooncogene is frequently deregulated in human cancers. Here, by screening a kinase-directed library of small inhibitory RNAs, we identify glycogen synthase kinase 3beta (GSK3beta) as a gene whose inactivation potentiates TNF-related apoptosis-inducing ligand death receptor-mediated apoptosis specifically in MYC-overexpressing cells. Small inhibitory RNA-induced silencing of GSK3beta prevents phosphorylation of MYC on T58, thereby inhibiting recognition of MYC by the E3 ubiquitin ligase component FBW7. Attenuating the GSK3beta-FBW7 axis results in stabilization of MYC, up-regulation of surface levels of the TNF-related apoptosis-inducing ligand death receptor 5, and potentiation of death receptor 5-induced apoptosis in vitro and in vivo. These results identify GSK3beta and FBW7 as potential cancer therapeutic targets and MYC as a critical substrate in the GSK3beta survival-signaling pathway. The results also demonstrate paradoxically that MYC-expressing tumors might be treatable by drug combinations that increase rather than decrease MYC oncoprotein function.
Collapse
Affiliation(s)
- Sabine Rottmann
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
44
|
Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 2005; 309:1570-3. [PMID: 16141075 DOI: 10.1126/science.1115901] [Citation(s) in RCA: 601] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Noncoding RNA molecules (ncRNAs) have been implicated in numerous biological processes including transcriptional regulation and the modulation of protein function. Yet, in spite of the apparent abundance of ncRNA, little is known about the biological role of the projected thousands of ncRNA genes present in the human genome. To facilitate functional analysis of these RNAs, we have created an arrayed library of short hairpin RNAs (shRNAs) directed against 512 evolutionarily conserved putative ncRNAs and, via cell-based assays, we have begun to determine their roles in cellular pathways. Using this system, we have identified an ncRNA repressor of the nuclear factor of activated T cells (NFAT), which interacts with multiple proteins including members of the importin-beta superfamily and likely functions as a specific regulator of NFAT nuclear trafficking.
Collapse
Affiliation(s)
- A T Willingham
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Two genes are synthetic lethal if mutation of either alone is compatible with viability but mutation of both leads to death. So, targeting a gene that is synthetic lethal to a cancer-relevant mutation should kill only cancer cells and spare normal cells. Synthetic lethality therefore provides a conceptual framework for the development of cancer-specific cytotoxic agents. This paradigm has not been exploited in the past because there were no robust methods for systematically identifying synthetic lethal genes. This is changing as a result of the increased availability of chemical and genetic tools for perturbing gene function in somatic cells.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, 44 Binney Street, Mayer 457, Boston, Massachusetts 02115, USA.
| |
Collapse
|
46
|
Westbrook TF, Stegmeier F, Elledge SJ. Dissecting cancer pathways and vulnerabilities with RNAi. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:435-44. [PMID: 16869781 DOI: 10.1101/sqb.2005.70.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The latest generation of molecular-targeted cancer therapeutics has bolstered the notion that a better understanding of the networks governing cancer pathogenesis can be translated into substantial clinical benefits. However, functional annotation exists for only a small proportion of genes in the human genome, raising the likelihood that many cancer-relevant genes and potential drug targets await identification. Unbiased genetic screens in invertebrate organisms have provided substantial insights into signaling networks underlying many cellular and organismal processes. However, such approaches in mammalian cells have been limited by the lack of genetic tools. The emergence of RNA interference (RNAi) as a mechanism to suppress gene expression has revolutionized genetics in mammalian cells and has begun to facilitate decoding of gene functions on a genome scale. Here, we discuss the application of such RNAi-based genetic approaches to elucidating cancer-signaling networks and uncovering cancer vulnerabilities.
Collapse
Affiliation(s)
- T F Westbrook
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Julian Downward
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|